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Abstract The Hoek–Brown constant mi is a key

input parameter in the Hoek–Brown failure criterion

developed for estimating rock mass properties. The

Hoek–Brown constant mi values are traditionally

estimated from results of triaxial compression tests,

but these tests are time-consuming and expensive. In

the absence of laboratory test data, guideline chart and

empirical regression models have been proposed in the

literature to estimate mi values, and they give a general

trend of mi. Instead of only using either the guideline

chart or regression models, information from both

sources can be systematically integrated to improve

estimates of mi. In this study, a Bayesian approach is

developed for probabilistic characterization of mi,

using information from guideline chart, regression

model and site-specific uniaxial compression strength

(UCS) test values. The probabilistic characterization

of mi provides a large number of mi samples for

conventional statistical analysis of mi, including its

full probability distribution. The proposed approach is

illustrated and validated using real UCS and triaxial

compression test data from a granite site at Forsmark,

Sweden. To evaluate the reliability of the proposed

method, mi values estimated from the proposed

method are compared with those predicted from a

separate analysis which uses triaxial compression tests

data. In addition, a sensitivity study is performed to

explore the effect of site-specific input on the evolu-

tion of mi. The approach provides reasonable statistics

and probability distribution of mi at a specific site, and

the mi samples can be directly used in rock engineering

design and analysis, especially in Hoek–Brown failure

criterion to predict rock failure.

Keywords Bayesian approach � Hoek–Brown

constant mi � Hoek’s guideline chart � Probability

distribution � Site-specific test data � Statistical

analysis

1 Introduction

The Hoek–brown failure criterion (Hoek and Brown

1980) is widely used in rock engineering for the

determination of rock mass properties such as rock

mass strength and deformation modulus (e.g., Peng

et al. 2014). The rock mass strength and deformation

modulus are important parameters for evaluating the

stability of engineering structures in or on rock, such

as slopes, foundations, tunnels, and underground

caverns. The Hoek–Brown failure criterion is also

linked with the Mohr–Coulomb criterion to estimate
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friction angle and cohesion of rock mass. The criterion

has been updated several times in response to expe-

rience gained with its use and to address certain

practical limitations associated with its usage (e.g.,

Hoek and Brown 1988; Hoek et al. 1992, 1995, 2002).

The generalized Hoek–Brown criterion for jointed

rock mass is expressed as (Hoek et al. 2002):

r1 ¼ r3 þ rci mb

r3

rci
þ s

� �a

ð1Þ

where r1 and r3 are the major and minor principal

stresses, respectively, rci is the uniaxial compressive

strength (UCS) of intact rock, and mb, s, and a are

constants for the rock mass. The rock mass constants

(i.e., mb, s, and a) can be calculated as (Hoek et al.

2002):

mb ¼ mi exp
GSI � 100

28 � 14D

� �
ð2Þ

s ¼ exp
GSI � 100

9 � 3D

� �
ð3Þ

a ¼ 1

2
þ 1

6
expð�GSI=15Þ � expð� 20=3Þð Þ ð4Þ

where GSI, D and mi are geological strength index

(GSI), damage factor and Hoek–Brown constant,

respectively. For intact rocks, s and a are equal to 1

and 0.5, respectively, while mb ¼ mi. Therefore, for

intact rocks, Eq. (1) reduces to:

r1 ¼ r3 þ rci mi

r3

rci
þ 1

� �0:5

ð5Þ

Thus, UCS, GSI and mi are important parameters

required in the Hoek–Brown failure criterion to

estimate rock mass properties. While many practical,

empirical and probabilistic approaches have been

developed in the literature to estimate UCS and GSI

(e.g., Hoek and Brown 1997; Hoek et al. 2013;

Diamantis et al. 2009; Russo 2009; Aksoy et al. 2012;

Kahraman 2014; Wang and Aladejare 2015, 2016a, b;

Wong et al. 2015; Aladejare 2016), the determination

of mi remains a difficult task. mi depends on the

frictional characteristics of the component minerals in

the intact rock, and it has a significant influence on

rock strength (Hoek and Marinos 2000).

Different approaches have been proposed in the

literature to estimate mi. For example, one approach is

the determination of mi through analysis of series of

triaxial compression tests (Hoek and Brown 1997).

Another approach is guideline chart developed for

obtaining mi values in the absence of laboratory

triaxial test data (Hoek and Brown 1997; Hoek 2007).

Another approach is R index, which estimates mi value

as a ratio of UCS to tensile strength (e.g., Cai 2010;

Read and Richards 2011). The limitations to these

approaches are that triaxial tests require time-con-

suming procedures, and they are not always routinely

conducted at the early stage of a project (Cai 2010).

The guideline chart represents general information,

which does not necessarily reflect exact information

from a specific site. Also, direct tensile tests are not

frequently carried out as standard procedures in many

rock testing laboratories, because of the difficulty in

specimen preparation. To solve this problem, different

empirical models have been proposed in the literature

to estimate mi from parameters like crack initiation

stress and UCS etc. (e.g., Cai 2010; Peng et al. 2014;

Shen and Karakus 2014; Vasarhelyi et al. 2016).

Specifically, estimating mi from UCS has gained

prominence due to UCS availability in most rock

mechanics databases, and also because of the possi-

bility to estimate UCS from other rock properties like

point load index, when UCS data are not available

from laboratory test (e.g., Wang and Aladejare 2015).

When triaxial test results are not available at a project

site, rock engineers and engineering practitioners

frequently adopt the guideline chart proposed by Hoek

(2007) or regression models available in the literature

for predicting values of mi. Instead of only using

information from either the guideline chart or regres-

sion models available in the literature, information

from both sources can be systematically synthesized

and integrated to improve predictions of mi values.

This is consistent with the suggestion of Shen and

Karakus (2014) that the correlations between UCS and

mi available in the literature can be used together with

the guideline chart for preliminary estimation of mi in

the absence of triaxial test data. Bayesian method

provides a rational vehicle for such combination, as it

can integrate information from different sources to

improve predictions in terms of statistics and full

probability distribution of mi.

This paper develops a Bayesian approach for

probabilistic characterization of Hoek–Brown con-

stant mi through Bayesian integration of information
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from Hoek’s guideline chart, regression model and

site-specific UCS data. The proposed Bayesian

approach provides a logical route to determine the

characteristic values and full probability distribution

of mi when extensive triaxial testing cannot be

performed, which is often the case for a majority of

rock engineering projects, particularly those of small

to medium sizes. This study briefly reviews the

existing methods in the literature for estimating mi.

Then, probabilistic modelling of the inherent variabil-

ity of the Hoek–Brown constant mi at a site and

transformation uncertainty associated with the regres-

sion between mi and UCS are presented, followed by

the development of the proposed Bayesian approach.

The proposed approach derives the probability density

function (PDF) of mi based on the integration of

Hoek’s guideline chart, regression model and site-

specific UCS data, under a Bayesian framework. A

large number of equivalent samples of mi are gener-

ated from the PDF using Markov chain Monte Carlo

(MCMC) simulation. Conventional statistical analysis

of the equivalent examples is subsequently carried out

to determine the statistics of mi and its characteristic

values. The proposed approach is illustrated using a set

of real UCS data obtained from a granite site at

Forsmark, Sweden. In addition, several sets of simu-

lated data are used to explore the evolution of mi as the

number of site-specific data increases.

2 Existing Methods for Estimating Hoek–Brown

Constant mi

The Hoek–Brown constant mi defines the nonlinear

strength envelope of intact rocks. The parameter mi

depends on the frictional characteristics of the com-

ponent minerals in intact rock and it has significant

influence on rock strength (Hoek and Marinos 2000).

Some methods have been reported in the literature for

estimating mi at a site.

For example, one method introduced for estimating

mi is through the analysis of a series of triaxial

compression tests. Hoek and Brown (1997) suggested

that the values of mi be estimated by applying different

confining stress (r3) from 0 to 0.5UCS, with at least

five sets of triaxial tests included in the analysis. For n

number of triaxial data sets, the Hoek–Brown constant

mi can be calculated using Eqs. (6) and (7).

rci ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
y

n
�

P
xy� ð

P
x
P

y=nÞP
x2 � ½ð

P
xÞ2=n�

" #P
x

n

vuut ð6Þ

mi ¼
1

rci

P
xy� ð

P
x
P

y=nÞP
x2 � ½ð

P
xÞ2=n�

" #
ð7Þ

where x ¼ r3 and y ¼ ðr1 � r3Þ2
. Note that the value

of rci in Eq. (6) is calculated from triaxial data and is

different from UCS estimated from uniaxial compres-

sion tests. Singh et al. (2011), Peng et al. (2014), and

Shen and Karakus (2014) explained that the reliability

of mi values calculated from triaxial test analysis

depends on the quality and quantity of test data used in

the analysis. They concluded that the range of r3 can

have a significant influence on the calculation of mi. In

addition, triaxial tests require time-consuming proce-

dures, and they are not always routinely conducted in

a significant number especially at small to medium

project sites and at the early stage of a project.

In the absence of triaxial tests or when the number

of triaxial test results available is not sufficient for

estimating mi, Hoek et al. (2007) proposed a guideline

chart, which is based on a more detailed lithologic

classification of rocks and geologic description of rock

types. Table 1 shows the guideline chart for estimating

mi values of intact rock, by rock group. The guideline

chart, however, represents general information,

acquired through engineering experience which does

not necessarily reflect exact information of mi at a

specific site.

In order to determine mi at a specific site when there

are no triaxial test results, some regression models

have been developed and reported in the literature to

estimate mi from results of uniaxial compression tests

(i.e., UCS values) (e.g., Shen and Karakus 2014;

Vasarhelyi et al. 2016). They developed regression

models with a general format, as expressed in Eq. (8).

min ¼ aUCSb ð8Þ

where min ¼ mi=UCS = normalized mi (the unit for

min is 1/MPa). From Eq. (8) and min ¼ mi=UCS, mi

can be estimated using UCS values, as expressed in

Eq. (9).

mi ¼ aUCSbþ1 ð9Þ

where a and b are rock type specific model constants,

and they were derived by their respective authors.
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Table 1 Values of mi for intact rock, by rock group (after Hoek 2007)

Rock type Class Group Texture

Coarse Medium Fine Very fine

Sedimentary Clastic Conglomeratesa

(21 ± 3)

Breccias

(19 ± 5)

Sandstones

17 ± 4

Siltstones

7 ± 2

Greywackes

(18 ± 3)

Claystone

4 ± 2

Shales

(6 ± 2)

Marls

(7 ± 2)

Non-clastic Carbonates Crystalline limestones

(12 ± 3)

Sparitic limestones

(10 ± 2)

Micritic limestones

(9 ± 2)

Dolomites

(9 ± 3)

Evaporites Gypsum

8 ± 2

Anhydrite

12 ± 2

Organic Chalk

7 ± 2

Metamorphic Non-foliated Marble

9 ± 3

Hornfels

(19 ± 4)

Metasandstone

(19 ± 3)

Quartzites

20 ± 3

Slightly foliated Migmatite

(29 ± 3)

Amphibolites

26 ± 6

Foliatedb Gneiss

28 ± 5

Schists

12 ± 3

Phyllites

(7 ± 3)

Slates

7 ± 4

Igneous Plutonic Light Granite

32 ± 3

Diorite

25 ± 5

Granodiorite

(29 ± 3)

Dark Gabbro

27 ± 3

Dolerite

(16 ± 5)

Norite

20 ± 5

Hypabyssal Porphyrites

(20 ± 5)

Diabase

(15 ± 5)

Peridodite

(25 ± 5)

Volcanic Lava Rhyolite

(25 ± 5)

Andesite

(25 ± 5)

Dacite

(25 ± 3)

Basalt

(25 ± 5)

Obsidian

(19 ± 3)

Pyroclastic Agglomerate

(19 ± 3)

Breccia

(19 ± 5)

Tuff

(13 ± 5)

Note that values in parenthesis are estimates
aConglomerates and breccias may present a wide range of mi values depending on the nature of the cementing material and the degree

of cementation, so they may range from values similar to sandstone, to values used for fine grained sediments
bThese values are for intact rock specimens tested normal to bedding or foliation. The value of mi will be significantly different if

failure occurs along a weakness plane
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3 Probabilistic Modelling of Inherent Variability

in mi

Probability theory (e.g., Ang and Tang 2007; Wang

and Aladejare 2015; Aladejare and Wang 2018) is

applied in this study to model the inherent variability

of Hoek–Brown constant mi of rock at a rock deposit

or project site. Consider, for example, the Hoek–

brown constant mi, of a rock deposit, which is a

continuous variable and must be strictly non-negative.

To explicitly model the inherent variability, mi is taken

as a lognormal random variable with a mean l and

standard deviation r; and it is expressed as (e.g., Ang

and Tang 2007; Wang and Cao 2013):

mi ¼ expðlN þ rNzÞ ð10Þ

where z is a standard Gaussian random variable; lN ¼

ln l� 0:5r2
N and rN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1 þ ðr=lÞ2

q
are the mean

and standard deviation of the logarithm of mi (i.e.,

lnðmiÞ), respectively. Since mi is lognormally dis-

tributed, lnðmiÞ is normally distributed, and it is

expressed as:

lnðmiÞ ¼ lN þ rNz ð11Þ

Both r of mi and rN of lnðmiÞ represent the inherent

variability of the Hoek–brown constant at a rock

deposit or project site.

4 Transformation Uncertainty in the mi and UCS

Regression

The Hoek–Brown constant mi of rock can be estimated

from other rock properties when the required sets of

triaxial tests are not readily available at a project site.

Among the rock properties that have been proposed to

estimate mi, UCS is readily available in the literature

or could be estimated from other properties like point

load index (e.g., Bell and Lindsay 1999; Tsiambaos

and Sabatakakis 2004; Sabatakakis et al. 2008; Wang

and Aladejare 2015; Aladejare 2016). Therefore, the

model for estimating mi from UCS is considered in the

development of the proposed Bayesian approach.

Take, for instance, the empirical model proposed by

Vasarhelyi et al. (2016) for estimating mi of granitic

rocks from UCS as expressed in Eqs. (8) or (9), in

which a = 216 and b = - 1.53. Equation (9) can be

rewritten in a log–log scale as:

lnðUCSÞ ¼ 1

bþ 1
lnðmiÞ �

1

bþ 1
lnðaÞ þ e ð12Þ

where lnðUCSÞ denotes the UCS values in a log scale,

e is the transformation uncertainty associated with the

regression for estimating mi from UCS in Eq. (12). e is

a Gaussian random variable with a mean of le ¼ 0 and

standard deviation of re ¼ 0:467, calculated from the

original dataset that was used to develop the model.

Combining Eqs. (11) and (12) leads to:

lnðUCSÞ ¼ lN � lnðaÞ
bþ 1

� �
þ rNz
bþ 1

þ e ð13Þ

The inherent variability is from the spatial vari-

ability in mi (e.g., Aladejare and Wang 2017) while the

transformation uncertainty is from the empirical

model for estimating mi from UCS. The inherent

variability and transformation uncertainty are from

different sources and can be assumed to be indepen-

dent of each other (i.e., z is independent of e).
Therefore, ln(UCS) is taken as a Gaussian random

variable with a mean
lN�lnðaÞ

bþ1

� �
and standard deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rN
bþ1

� �2

þðreÞ2

r
.

5 Bayesian Quantification of Probabilistic Model

Parameters for Hoek–Brown Constant mi

As defined by Eqs. (10) or (11), the Hoek–Brown

constant is modelled by a lognormally distributed

random variable mi with a mean l and standard

deviation r. The information on the model parameters

(i.e., l and r) is required for probabilistic character-

ization of Hoek–Brown constant mi. Such information

is unknown and can be determined using site obser-

vation data (e.g., UCS data) and guideline chart on mi

reported in the literature. The information on mi from

the guideline chart is used as prior information in this

study, to reflect the knowledge on mi before site

observation data are obtained. For a given set of the

prior knowledge (i.e., information from the Hoek’s

guideline chart) and site-specific UCS data, there are

many sets of possible combinations of l and r. Each

set of l and r has its corresponding occurrence

probability, which is defined by a joint conditional

probability density function (PDF),

Pðl; r Data;Priorj Þ.
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Under a Bayesian framework, the updated knowl-

edge (i.e., posterior knowledge) on model parameters

l and r (i.e., Pðl; r Data;Priorj Þ) is simplified as

Pðl; r Dataj Þ. Using Bayes’ theorem, Pðl; r Dataj Þ is

expressed as (e.g., Ang and Tang 2007; Wang et al.

2016; Wang and Aladejare 2016a, b):

Pðl; r Dataj Þ ¼ KPðData l; rj ÞPðl; rÞ ð14Þ

where K ¼ PðDataÞ ¼ ð
RR
PðData l; rj ÞPðl; rÞ

dldrÞ�1
is a normalizing constant such that the area

under the updated PDF is unity, Data ¼
flnðUCSÞi; i ¼ 1; 2; . . .; nkg is a set of UCS data with

a total of nk ln(UCS) values obtained at a specific

project site, PðData l; rj Þ is the likelihood function,

which reflects the model fit with the Data. Pðl; rÞ is

the prior distribution of l and r, which reflects the

prior knowledge on l and r to express the user’s

judgment about the relative plausibility of the values

of l and r in the absence of observation data at a

project site. The prior information on l and r is

obtained from the Hoek’s guideline chart on mi.

As described in Sect. 4, ln(UCS) is a Gaussian

random variable with a mean
lN�lnðaÞ

bþ1

� �
and standard

deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð rN
bþ1

Þ2 þ ðreÞ2
q

. The samples for estimat-

ing UCS are often obtained at a rock site by grab

sampling or by drilling in discrete manner at consid-

erable distance between drilled holes, and hence, the

site-specific UCS data points can be considered to be

independent of each other. Therefore, the site-specific

UCS data (i.e., Data ¼ flnðUCSÞi; i ¼ 1; 2; . . .; nkg)

can be simplified as nk independent realizations of the

Gaussian random variable ln(UCS). Then, the likeli-

hood function PðData l; rj Þ is a product of the data

points of ln(UCS), which is expressed as:

PðData l; rj Þ ¼
Ynk
i¼1

1ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð rN
bþ1

Þ2 þ ðreÞ2
q

exp � 1

2

lnðUCSÞi �
lN�lnðaÞ

bþ1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð rN
bþ1

Þ2 þ ðreÞ2
q

2
64

3
75

28><
>:

9>=
>;

ð15Þ

When there is no prevailing prior knowledge of l
and r, a non-informative prior distribution can be

employed so that the prior PDF can be absorbed into

the normalizing constant. With this type of prior

distribution, the Bayesian inference on l and r will

rely solely on the likelihood function. The prior

distribution can be simply assumed as a joint uniform

distribution of l and r with respective minimum

values of lmin and rmin and respective maximum

values of lmax and rmax and it is expressed as (e.g.,

Ang and Tang 2007; Cao et al. 2016):

Pðl; rÞ

¼
1

ðlmax � lminÞ � ðrmax � rminÞ
for l 2 ½lmin; lmax�
and r 2 ½rmin; rmax�

0 others

8<
:

ð16Þ

Only the possible ranges (i.e., lmin, lmax, rmin and

rmax) of the model parameters are needed to com-

pletely define a uniform prior distribution presented in

Eq. (16). The values of lmin, lmax, rmin and rmax are

obtained from the information contained in the Hoek’s

guideline chart (Hoek 2007). Consider, for example,

the information ofmi reported for granite in the Hoek’s

guideline chart. mi of granite is reported to have a

range of 32 ± 3. Therefore, lmin and lmax are taken as

the lower and upper bound of the ranges of mi (i.e.,

32 ± 3) reported in the Hoek’s guideline chart.

Hence, lmin = 29 and lmax = 35, rmin = 0 to reflect

the non-negative physical meaning of the standard

deviation of mi. Since there is no rmax reported in

literature, this study adopted rmax as a factor of the

range of mi reported in the Hoek’s guideline chart. As

suggested by Cao et al. (2016), when there is lack of

confident information, a relatively large range shall be

used as prior information in Bayesian method. There-

fore, rmax is taken as twice the range of values of mi

reported by Hoek (2007) (i.e., rmax = 12). For non-

informative prior knowledge like the one adopted in

this study, uniform prior distribution is sufficient to

quantitatively reflect the engineering common sense

and judgment. These typical ranges (i.e., l: [29, 35]

and r: [0, 12]) obtained from the Hoek’s guideline

chart is integrated with site-specific UCS data (i.e.,

Data ¼ flnðUCSÞi; i ¼ 1; 2; . . .; nkg) to update infor-

mation on mi. In the next section, the updated

distribution of model parameters of mi is used in

formulating the PDF of mi.
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6 Probability Density Function of Hoek–Brown

Constant mi

As earlier discussed in Sect. 5, for a given prior

knowledge and site-specific data, there are many

possible combinations of l and r. Using the theorem

of total probability (e.g., Ang and Tang 2007) and the

updated distribution of model parameters of mi

obtained in Sect. 5, the PDF of the Hoek–Brown

constant mi for a given set of prior knowledge

(obtained from guideline chart) and site-specific

UCS data is denoted as Pðmi Data;Priorj Þ, and

expressed as:

Pðmi Data;Priorj Þ

¼
ZZ

Pðmi l; rj ÞPðl; r Data;Priorj Þdldr
ð17Þ

Using the updated knowledge of the model param-

eters given by Eq. (14), the PDF of Hoek–Brown

constant mi (i.e., Eq. 17) is rewritten as:

Pðmi Data;Priorj Þ

¼ K

ZZ
Pðmi l; rj ÞPðData l; rj ÞPðl; rÞdldr

ð18Þ

Pðmi l; rÞj is the conditional PDF of mi for a given set

of model parameters (i.e., l and r). Since mi is

lognormally distributed, Pðmi l; rÞj is expressed as

(e.g., Ang and Tang 2007):

Pðmi l; rj Þ ¼ 1ffiffiffiffiffiffi
2p

p
rNmi

exp � 1

2

lnðmiÞ � lN
rN

� �2
( )

ð19Þ

Note that both lN and rN are functions of l and r
(see Sect. 2). Equation (18) gives the PDF of mi for a

given set of prior knowledge (i.e., information of mi on

specific rock type available in the Hoek’s guideline

chart) and site-specific UCS data (i.e., Data). The PDF

obtained using Eq. (18) is incorporated into MCMC

simulation to improve its robustness and practicality

and make the proposed approach readily applicable to

general choices of prior distributions (e.g., normal

prior distribution, an arbitrary histogram type of prior

distribution etc.). Metropolis–Hastings (MH) algo-

rithm (Metropolis et al. 1953; Hastings 1970) is

adopted in the MCMC simulation to generate a

sequence of large number of mi samples from

Eq. (18). Then, using conventional statistical

methods, the equivalent samples of mi simulated

through MCMC simulation are used to construct a

histogram and cumulative frequency diagram for

proper estimations of the PDF and cumulative distri-

bution function (CDF) of mi and to estimate the

statistics (e.g., mean, standard deviation, and per-

centiles) of mi. Finally, the characteristic values of mi

are determined from the statistics accordingly. Details

of the MH algorithm used in MCMC simulation for

generating samples from arbitrary and complicated

PDF like Eq. (18) have been reported in the literature

(e.g., Wang and Cao 2013; Wang and Aladejare

2016a).

7 Illustrative Example

This section illustrates the proposed Bayesian

approach using a set of real-life UCS data of granite

from uniaxial compression test of cylindrical speci-

mens obtained from borehole KFM05A at Forsmark,

Sweden (Jacobsson 2005a). Note that reported data

from sophisticated laboratory and field tests on

Forsmark, Sweden have been previously used in rock

engineering studies (e.g., Peng et al. 2014). In

addition, Jacobsson (2005b) reported results of triaxial

compression tests (i.e., 8 data pairs of r1 and r3) of

cylindrical specimens obtained from borehole

KFM05A at Forsmark, Sweden. These data (i.e., r1

and r3) are of great value, as they are used in this study

for separate analysis in order to validate the results

obtained from the proposed Bayesian approach. This

section aims to illustrate how the proposed Bayesian

approach is used together with only 10 UCS data

points to provide a probabilistic characterization of mi,

which is practically identical to a mi characterization

obtained from a separate analysis using triaxial

compression test results from the site. Note that, quite

often, the triaixal compression tests are not available

for a majority of rock engineering projects, because of

limited resources or testing condition requirements.

Table 2 presents the 10 UCS data in the second

column while Table 3 presents eight data pairs of r3

and r1 from triaxial compression tests in the second

and third columns, respectively. To validate the results

of the proposed Bayesian approach, a bootstrap

analysis is performed using results of the triaxial

compression tests from the site with Eqs. (6) and (7)

123

Geotech Geol Eng (2019) 37:5045–5060 5051



proposed by Hoek and Brown (1997) to obtain mi. The

bootstrap method is especially advantageous for the

situation when the distributions of property of interest

are unknown and/or the sample size is insufficient

(e.g., Luo et al. 2012). Using the original set of

observations (i.e., r1 and r3) presented in Table 3,

bootstrapping begins with random sampling of a data

point (i.e., a pair of r1 and r3) with replacement until

the total number of sample pair is equal to the original

sample pairs in Table 3 (i.e., n = 8). In the bootstrap-

ping, the size of a bootstrap sample pairs in a single

resampling is set to the original sample size, n. This is

because if the size of each bootstrap sample pairs is set

to be smaller or greater than the original sample size,

the sample statistics may be overestimated or under-

estimated (e.g., Johnson 2001). The 8 bootstrap

sample pairs of r1 and r3 are then used in Eqs. (6)

and (7) to calculate mi. These processes of bootstrap-

ping and calculation of mi are repeated 1000 times to

obtain 1000 data points of mi, for separate estimation

of the statistics and probability distribution of mi. The

choice of 1000 simulations samples of mi is consistent

with some geotechnical engineering studies that have

successfully used 1000 bootstrapped samples in

geotechnical applications, like comparing soil depth

profiles (Keith et al. 2016), predicting the soil–water

retention curve (Babaeian et al. 2015) etc. The scatter

plot of the 1000 data points of mi obtained from the

bootstrap analysis using results of the triaxial com-

pression tests in Eqs. (6) and (7) are shown in Fig. 1.

The bootstrapping of a limited number of triaxial data

set of r1 and r3 is used as independent test results to

validate the proposed Bayesian method, because the

proposed method does not use triaxial data set of r1

and r3. In addition, since the sampled data set of r1

and r3 obtained from the original data set are in

different order, they can be taken as independent test

results in this study. Therefore, the data points of mi

shown in Fig. 1, which are estimated from boot-

strapped data sets of r1 and r3 are used as independent

test results. They are used to compare and validate the

results from the proposed Bayesian approach.

7.1 Equivalent Samples of Hoek–Brown Constant

mi

In this illustrative example, the 10 UCS data points in

Table 2, regression model for estimating mi and the

information on mi reported in the Hoek’s guideline

chart are systematically synthesized and integrated as

input in the proposed Bayesian approach. An MCMC

simulation is performed to simulate 30,000 equivalent

samples of mi. Figure 2 shows a scatter plot for the

Fig. 1 Bootstrap samples of mi of granite from borehole

KFM05A, Forsmark, Sweden, obtained using triaxial compres-

sion test results

Table 2 Results of

uniaxial compression tests

on granite from borehole

KFM05A, Forsmark site,

Sweden (after Jacobsson

2005a)

S/N UCS (MPa)

1 269.3

2 265.0

3 248.1

4 255.1

5 261.2

6 233.1

7 244.1

8 243.5

9 227.9

10 245.9

Table 3 Results of triaxial

compression tests on granite

from borehole KFM05A,

Forsmark site, Sweden

(after Jacobsson 2005b)

S/N r3 (MPa) r1 (MPa)

1 5 360.5

2 10 410.2

3 10 345.6

4 20 462.8

5 5 289.2

6 10 355.8

7 10 354.2

8 20 488.5
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30,000 equivalent samples of mi obtained through the

proposed Bayesian approach. 27,930 equivalent sam-

ples (i.e., around 93% of the 30,000 equivalent

samples) of mi are less than 48. The equivalent

samples become growingly sparse when mi[ 48. To

examine the statistical distribution of the equivalent

samples, the corresponding histogram is constructed,

as shown in Fig. 3. The histogram peaks at a mi value

of around 30, and roughly about 27,479 out of the total

30,000 samples representing about 91.5% are within

mi range of [18, 48]. Therefore, the 90% inter-

percentile range of mi is roughly between mi values

of 18 and 48.

7.2 Probability Distribution of Hoek–Brown

Constant mi

Figure 4 shows the PDF of mi estimated through the

histogram (see Fig. 3) of the equivalent samples from

Bayesian approach by a solid line. Figure 4 also

includes the histogram of the 1000 mi samples

obtained from bootstrap analysis using triaxial com-

pression test results in Eqs. (6) and (7). 913 out of the

1000 values of mi provided by the bootstrap analysis

using triaxial compression test results in Eqs. (6) and

(7) fall within a mi range of [18, 48], i.e., around the

90% inter-percentile range of mi estimated from the

equivalent samples through the Bayesian approach. It

can be observed that the probability distribution of the

30,000 samples of mi from Bayesian approach is

consistent with the distribution of the 1000 samples of

mi estimated from bootstrap analysis by using the site-

specific triaxial compression test results in Eqs. (6)

and (7). The PDF line estimated from 30,000 samples

ofmi from Bayesian approach peaks at the same region

of the peak of the histogram estimated from 1000

samples of mi estimated from bootstrap analysis using

triaxial compression test results in Eqs. (6) and (7). In

addition, the spread of the PDF line is consistent with

that of the histogram of 1000 mi samples obtained

from the bootstrap analysis. The consistency indicates

that the proposed Bayesian approach provides a

reasonable representation of the distribution of mi at

the site.

Figure 5 plots the CDFs of mi estimated from the

cumulative frequency diagrams of the 30,000 equiv-

alent samples (see Fig. 2) obtained through Bayesian

approach and the 1000 mi samples obtained through

bootstrap analysis using triaxial compression test

results in Eqs. (6) and (7) (see Fig. 1) by a solid line

and dashed line, respectively. The solid line plots

closely to the dashed line, which indicates good

agreement between them. The CDF of mi estimated

from the equivalent samples compares favourably

with that obtained from the 1000 mi samples obtained

through the bootstrap analysis. Such a good agreement

suggests that the information contained in the equiv-

alent samples from Bayesian approach is consistent

with that obtained from bootstrap analysis, which uses

triaxial compression test results. The equivalent

samples of mi from Bayesian approach contain

combined information of site-specific UCS data,

regression model and guideline on the typical ranges
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of mi reported in the Hoek’s guideline chart. Based on

the regression model, limited uniaxial compression

test data (i.e., 10 UCS values) and guideline chart on

mi reported in the literature, the Bayesian approach

provides a reasonable estimate of the statistical

distribution of mi at the site. Such probabilistic

characterization is often difficult to obtain from direct

triaxial compression tests because of a large amount of

data required, and the associated cost, time and

equipment set-up. Many times, triaxial compression

tests are not performed at mining project sites or at

most the number of triaxial compression tests

performed are not sufficient to obtain distribution of

mi. The approach developed in this study helps to

bypass the difficulty in obtaining probability distribu-

tion of mi from limited test data. The full probability

distribution of Hoek–Brown constant mi is helpful in

estimating rock mass properties through Hoek–Brown

failure criterion, especially when probabilistic assess-

ment of rock properties is required.

7.3 Statistics of Hoek–Brown Constant, mi

Table 4 summarizes the estimates of the mean and

standard deviation of the 30,000 equivalent samples of

mi from the Bayesian approach in the second column.

The mean and standard deviation of mi from the

30,000 equivalent samples are calculated as 29.37 and

11.37, respectively. Table 4 also includes the mean

and standard deviation of the 1000 samples of mi

obtained through the bootstrap analysis using triaxial

compression test results in the third column, calculated

as 28.79 and 10.52, respectively.

The absolute difference between the mean values

estimated from the equivalent samples of Bayesian

approach and samples from the bootstrap analysis

using triaxial compression test results is 0.58, which

represents a relative difference of 2.1%. The absolute

difference between their standard deviation values is

0.85, which represents a relative difference of 8.1%.
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The small relative differences in the mean and

standard deviation values suggest that the Bayesian

approach proposed in this study properly characterizes

the mi at the site, using information from guideline

chart, regression model and available site-specific

UCS data. This tackles the difficulty in estimating the

statistics of mi, especially when triaxial compression

test results are not available or when available in small

quantities, which is often the case for most rock

engineering projects.

With the statistics of mi obtained, design calcula-

tions involving the use of mi values can be carried out

accordingly. The mi samples from the proposed

approach can be used in preliminary design and

construction stage when triaxial compression tests

data are not available, or when they are only available

in limited quantity for meaningful statistics of mi to be

made. In addition, the mi samples obtained through the

proposed approach can be used directly in probability-

based estimation of rock mass properties through the

Hoek–Brown failure criterion.

8 Sensitivity Study on Site-Specific Test Data

In this section, a sensitivity study is performed to

explore the evolution of mi as the number of test data

increases. The equivalent samples of mi generated

through the approach developed in this study use site-

specific test data and information from guideline

chart as input data, it is therefore logical that the results

from the approach may be affected by the test data and

guideline chart used. While the guideline chart repre-

sents general information about mi existing in the

literature, the site-specific test data can be obtained for

different sites and are different from site to site. To

perform the sensitivity study, simulated UCS data are

used, which are simulated using the uncertainty model

given by Eq. (13) with l ¼ 30:0 and r ¼ 10:0, while

the information from the guideline chart are kept

constant as used in Sect. 5. 10 data sets each of UCS

data are simulated for different number of UCS test

values (i.e. nk) at nk = 1, 3, 5, 10, 20, and 30 resulting

in a total of 60 sets of UCS data with 10 sets for each

nk. For example, Fig. 6 shows 10 sets of the simulated

UCS data with 10 UCS values in each data set (i.e.,

data quantity nk = 10 in each data set). Each of the 60

data sets of simulated UCS data is used as site-specific

test data in the Bayesian approach, together with the

information from guideline chart used in Sect. 5 to

generate 30,000 equivalent samples of mi. This leads

to 60 sets of the probabilistic characterization of mi

including estimates of mean and standard deviation for

each data set, which are compared with the true mean

and standard deviation (i.e., l ¼ 30:00 and r ¼ 10:00)

in the next subsections.

8.1 Effect of Data Quantity on the Mean of mi

Table 5 presents the summary of the mean values ofmi

from probabilistic characterization using the 60 sim-

ulated data sets. The ranges of the mean values of mi

from probabilistic characterizations using different
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Fig. 6 Ten sets of simulated UCS data

Table 4 Summary of the statistics of Hoek–Brown constant, mi

Approaches Bayesian approach with uniaxial

compression test results

Bootstrap analysis with triaxial

compression test results

Absolute

difference

Relative

difference (%)

Mean 29.37 28.79 0.58 2.1

Standard

deviation

11.37 10.52 0.85 8.1
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data quantity (i.e., nk = 1, 3, 5, 10, 20, and 30) are

presented. The ranges presented for each nk in Table 5

are from 10 estimates of mean obtained by using 10

data sets of nk = 1, 3, 5, 10, 20, and 30 in the proposed

approach for probabilistic characterization of mi. The

maximum difference of the mean values for each nk is

included in parenthesis. Table 5 also includes the

averages of the mean values of mi from using different

number of input data, and their absolute and relative

differences. The true value of mean (i.e., l ¼ 30:00) is

included in the footnote of Table 5 for comparison

with the results from the proposed approach. It is

observed that when nk = 1, 3 and 5, the equivalent

samples of mi from Bayesian approach are dominated

by information in the guideline chart. The average

mean values ofmi when nk = 1, 3 and 5 are close to the

mid value of the mi range (i.e., 32.00) in the guideline

chart. As the number of input data increases, the mean

values of mi begin to approach the true mean (i.e.,

30.00). Also, it is observed that the scatterness of the

mean values of mi reduces as the number of input data

increases. The absolute and relative differences in the

mean values of mi reduce as the number of input data

increases, from 7.67% at nk = 1 to 0.40% at nk = 30.

At nk = 10, the relative difference is as small as

2.17%, indicating closeness in the estimates of the

mean values of mi from the proposed approach with

the true value of mi.

In addition, Fig. 7 plots the mean values from each

probabilistic characterization by open circles, and the

true mean value by dashed lines. It is observed that the

spread of the mean values is wide and above the true

value before nk = 10. At nk = 10 and above, the

spread of the mean values reduces drastically and

clustered more around the true mean. This shows that

the estimates of the mean of mi become more

consistent as the number of input data increases. The

uncertainty arising from limited number of data

reduces as the number of input data increases. This

is because as the number of input data increases, the

equivalent samples of mi from the proposed approach

reflects more of information from the site-specific test

data than the guideline chart. At nk = 30, the mean

estimates from the proposed approach clustered

closely to the true mean value of mi, which was used

to simulate the UCS data used in the probabilistic

characterizations. From the results, it is deduced that

as from nk = 10, the proposed approach provides

characterization of mi which reflects the information

from the site. Thus, at such a limited number of site-

specific data, the proposed approach provides a full

probability distribution of mi, therefore bypassing the

prevalent problem of non-availability of triaxial

compression tests data for estimation of mi at most

rock engineering project sites.
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Fig. 7 Sensitivity results on the mean of Hoek–Brown constant

mi

Table 5 Effect of the data quantity on mean of mi

Number of UCS input data 1 3 5 10 20 30

Range of mean of mi 31.11–32.98

(1.78)

30.84–32.40

(1.56)

30.51–31.90

(1.39)

29.84–30.95

(1.11)

29.96–30.63

(0.67)

29.99–30.32

(0.33)

Average mean of mi 32.30 31.90 31.58 30.65 30.33 30.12

Absolute difference 2.30 1.90 1.58 0.65 0.33 0.12

Relative difference (%) 7.67 6.33 5.27 2.17 1.10 0.40

True mean of mi = 30.00
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8.2 Effect of Data Quantity on the Standard

Deviation of mi

Table 6 presents the summary of the standard devia-

tion values of mi from probabilistic characterization

using the 60 simulated data sets. The ranges of the

standard deviation values of mi from probabilistic

characterization using different data quantity (i.e.,

nk = 1, 3, 5, 10, 20, and 30) are presented. The ranges

presented for each nk in Table 6 are obtained from 10

estimates of standard deviation obtained by using 10

data sets of nk = 1, 3, 5, 10, 20, and 30 in the proposed

approach for probabilistic characterization of mi. The

maximum difference of the standard deviation values

for each nk is included in parenthesis. Table 6 also

includes the averages of the standard deviation values

of mi from using different number of input data, and

the absolute and relative differences. The true value of

standard deviation (i.e., r ¼ 10:00) is included in the

footnote to Table 6 for comparison with the results

from the proposed approach. In a similar trend to the

estimates of the mean of mi, the estimates of the

standard deviation of mi are affected by the number of

input data. At nk = 1, 3 and 5, most estimates of the

standard deviation of mi are far from the true standard

deviation. As nk increases the estimates of the

standard deviation of mi continue to approach the true

standard deviation. In addition, the average values of

the standard deviations in each nk continue to

approach the true standard deviation as nk increases

from 1 to 30. Most of the estimates of the standard

deviation are far from the true standard deviation until

at nk = 10, when the average standard deviation is

10.44, which is quite close to the true standard

deviation of 10.00. The average standard deviation

improves as the number of input data increases. As nk
increases from 1 to 30, the maximum difference

between the standard deviation values for each nk
reduces from 4.25 to 0.40. Also, the absolute and

relative differences decrease as the input data increase,

with the relative difference decreasing from 26.00% at

nk = 1 to 2.10% at nk = 30. In a similar trend to mean

estimates, the relative difference in the standard

deviation values as from nk = 10 is less than 5%.

Furthermore, Fig. 8 plots the standard deviation

values from each probabilistic characterization by

open circles, and the true standard deviation value by

dashed lines. It is observed that the spread of the

standard deviation values is wide and mostly fall

below the true standard deviation value before

nk = 10. At nk = 10 and above, the spread of the

standard deviation values reduces drastically and

clustered more around the true standard deviation.

This shows that the estimates of the standard deviation

of mi become more consistent as the number of input

data increases. At nk \ 10, there is underestimation of

the standard deviation of mi, which may be due to

insufficient information from the available site input

data. As from nk = 10, the estimates of the standard

deviation of mi become more consistent with the true

standard deviation of mi. This indicates that as the

number of input data increases, the estimates of the

standard deviation from the proposed approach

becomes more confident and reliable, reflecting the

characteristics of the true standard deviation of mi,

which was used to simulate the UCS data used in the

probabilistic characterizations. The clustering of the

standard deviation values around the true standard

deviation as from nk = 10 to 30 indicates that the

equivalent samples of mi from the proposed approach

become more dominated by the information contained

in the input data, which is more consistent across

different data sets as the number of input data

increases.

Table 6 Effect of the data quantity on standard deviation of mi

Number of UCS input data 1 3 5 10 20 30

Range of standard deviation of mi 5.57–9.82

(4.25)

6.33–10.05

(3.72)

8.14–10.53

(2.39)

9.42–10.93

(1.51)

10.02–10.52

(0.50)

10.01–10.41

(0.40)

Average standard deviation of mi 7.40 8.05 8.95 10.44 10.29 10.21

Absolute difference 2.60 1.95 1.05 0.44 0.29 0.21

Relative difference (%) 26.00 19.50 10.50 4.40 2.90 2.10

True standard deviation of mi = 10.00
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9 Summary and Conclusions

This study tackled the difficulty involved in character-

ization of Hoek–Brown constant mi when triaxial data

sets are not available at a project site. A Bayesian

approach is developed for probabilistic characterization

of Hoek–Brown constant mi, which systematically

synthesizes and integrates information from regression

model, site-specific UCS data and ranges of mi reported

in Hoek’s guideline chart, to give better predictions of

mi values. The proposed approach provides a systematic

way to obtain the statistics and full probability distri-

bution of mi when extensive triaxial compression test

cannot be performed, which is mainly the case for small

to medium-sized rock engineering projects. Regression

model relating mi to UCS is used in the Bayesian

approach to systematically integrate the site-specific

UCS data and information available onmi in the Hoek’s

guideline chart for probabilistic characterization of mi.

The integrated information from Hoek’s guideline

chart and site-specific test data is transformed into a

large number, as many as needed, of equivalent mi

samples using MCMC simulation. Conventional statis-

tical analysis of the equivalent samples is subsequently

performed to obtain the statistics and probability

distributions of mi, for rock engineering analysis and

design, particularly those using Hoek–Brown failure

criterion. The proposed approach effectively tackles the

problem of inability to estimate site-specific statistics

and probability distributions of Hoek–Brown constant

mi when triaxial compression test data are not available

or when they are available in limited quantity. The mi

samples can be directly used in rock engineering design

and analysis, especially in Hoek–Brown failure crite-

rion to predict rock failure. The site-specific statistics

and probability distribution of mi can also be used in

probability-based estimation of rock mass properties

through the Hoek–Brown failure criterion.

Equations were derived for the proposed Bayesian

approach, and the proposed approach was illustrated

using real-life UCS data of granite obtained from

borehole KFM05A at Forsmark, Sweden. Based on the

available UCS data (i.e., 10 UCS values), regression

model and the ranges of mi reported in Hoek’s

guideline chart, the Bayesian approach provides rea-

sonable statistics and full probability distribution ofmi.

Such probabilistic characterization used to require a

large number of triaxial compression tests, which are

quite often not available for most rock engineering

projects. The difficulty in obtaining full distribution of

mi at project sites from limited triaxial compression

tests is rationally tackled by the proposed approach.

A sensitivity study was performed to explore the effect

of quantity of site-specific test data on the evolution ofmi

through the proposed approach. It has been shown that the

information from the equivalent samples of mi from the

proposed approach becomes more consistent and infor-

mative as the number of input data increases. At relatively

limited number of input data, the samples are dominated

by information contained in the guideline chart. As the

input data increases, the dominance of information from

the guideline chart gradually disappears leading to the

equivalent samples reflecting more of information from

the input data.
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