Skip to main content
Log in

On macroscopic dimension of rationally inessential manifolds

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

We show that, for a rationally inessential orientable closed n-manifold M whose fundamental group is a duality group, the macroscopic dimension of its universal cover \(\tilde M\) is strictly less than n: dim MC \(\tilde M < n\). As a corollary, we obtain the following partial result towards Gromov’s conjecture

The inequality dim MC \(\tilde M < n\) holds for the universal cover \(\tilde M\) of a closed spin n-manifold M with a positive scalar curvature metric if the fundamental group π 1 (M) is a duality group satisfying the analytic Novikov conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, “Dynamics of complexity of intersections,” Bol. Soc. Brasil. Mat. (N.S.), 21:1 (1990), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Bolotov, “Macroscopic dimension of 3-manifolds,” Math. Phys. Anal. Geom., 6 (2003), 291–299.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Bolotov and A. Dranishnikov, “On Gromov’s scalar curvature conjecture,” Proc. Amer. Math. Soc., 138:4 (2010), 1517–1524.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Brendle and R. Schoen, “Sphere theorems in geometry,” in: Surv. Differential Geometry, vol. XIII, Intern. Press, Somerville, MA, 2009, 49–84.

    Google Scholar 

  5. K. Brown, Cohomology of Groups, Springer-Verlag, New York-Berlin, 1982.

    MATH  Google Scholar 

  6. J. Cheeger, “Finiteness theorem of Riemannian manifolds,” Amer. J. Math., 92 (1970), 61–74.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Dranishnikov, “Infinite family of manifolds with bounded total curvature,” Proc. Amer. Math. Soc., 128:1 (2000), 255–260.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. N. Dranishnikov, “Macroscopic dimension and essential manifolds,” Proc. Steklov Inst. Math., 273 (2011), 35–47.

    Article  Google Scholar 

  9. A. Dranishnikov, “On macroscopic dimension of rationally essential manifolds,” Geometry and Topology (to appear); http://arxiv.org/abs/1005.0424.

  10. M. Gromov, Metric Structures for Riemannian and non-Riemannian Spaces, Birkhäuser, Boston, MA, 1999.

    MATH  Google Scholar 

  11. M. Gromov, “Positive curvature, macroscopic dimension, spectral gaps and higher signatures,” in: Functional Analysis on the Eve of the 21st Century. Vol II, Birkhäuser, Boston, MA, 1996, 1–213.

    Chapter  Google Scholar 

  12. M. Gromov and H. B. Lawson, Jr., “The classification of simply connected manifolds of positive scalar curvature,” Ann. of Math., 111 (1980), 209–230.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Gromov and H. B. Lawson, Jr., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds,” Publ. Math. I.H.E.S, 58 (1983), 83–196.

    MathSciNet  MATH  Google Scholar 

  14. N. Hitchin, “Harmonic spinors,” Adv. Math., 14 (1974), 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Lichnerowicz, “Spineurs harmoniques,” C. R. Acad. Sci. Paris, Ser. A-B, 257 (1963), 7–9.

    MathSciNet  MATH  Google Scholar 

  16. J. Rosenberg, “C*-algebras, positive scalar curvature, and the Novikov conjecture, III,” Topology, 25:3(1986), 319–336.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Rosenberg and S. Stolz, “Metrics of positive scalar curvature and connections with surgery,” in: Surveys on Surgery Theory, vol. 2, Ann. Math. Stud., vol. 149, Princeton Univ. Press, Princeton. NJ, 2001, 353–386.

    Google Scholar 

  18. Yu. Rudyak, On Thom Spectra, Orientability, and Cobordism, Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  19. T. Schick, “Counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture,” Topology, 37:6 (1998), 1165–1168.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Stolz, “Simply connected manifolds of positive scalar curvature,” Ann. of Math., 136:3 (1992), 511–540.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Dranishnikov.

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 45, No. 3, pp. 34–40, 2011

Original Russian Text Copyright © by A. N. Dranishnikov

To the memory of V. I. Arnold

Supported by NSF grant DMS-0904278.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dranishnikov, A.N. On macroscopic dimension of rationally inessential manifolds. Funct Anal Its Appl 45, 187–191 (2011). https://doi.org/10.1007/s10688-011-0022-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-011-0022-9

Key words

Navigation