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Abstract Vegetation height plays a key role in many
environmental applications such as landscape char-
acterization, conservation planning and disaster man-
agement, and biodiversity assessment and monitor-
ing. Traditionally, in situ measurements and airborne
Light Detection and Ranging (LiDAR) sensors are
among the commonly employed methods for vege-
tation height estimation. However, such methods are
known for their high incurred labor, time, and infras-
tructure cost. The emergence of wearable technology
offers a promising alternative, especially in rural envi-
ronments and underdeveloped countries. A method for
a locally designed data acquisition ubiquitous wear-
able platform has been put forward and implemented.
Next, a regression model to learn vegetation height on
the basis of attributes associated with a pressure sensor
has been developed and tested. The proposed method
has been tested in Oulu region. The results have
proven particularly effective in a region where the land
has a forestry structure. The linear regression model
yields (r2 = 0.81 and RSME = 16.73 cm), while
the use of a multi-regression model yields (r2 = 0.82
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and RSME = 15.73 cm). The developed approach
indicates a promising alternative in vegetation height
estimation where in situ measurement, LiDAR data, or
wireless sensor network is either not available or not
affordable, thus facilitating and reducing the cost of
ecological monitoring and environmental sustainabil-
ity planning tasks.

Keywords Vegetation height · Machine learning ·
Ubiquitous sensor platform

Introduction

Vegetation height is a key indicator for many terres-
trial ecosystems linked to habitats, their biodiversity,
and biomass structure (Hyde et al. 2006; Dong and
Wu 2008; Nilsson 1996). Indeed, vegetation height is
considered one of the most important forest proper-
ties and a fundamental characteristic for several areas
of ecological studies; particularly, fire modeling, bio-
diversity monitoring, and disaster management where
it can be utilized for classification of land cover or
estimating forest age and habitat quality. For instance,
vegetation height is highly correlated with vegetation
biomass (Hyde et al. 2006), which is the fundamental
element of the carbon cycle and a substitute for fuel
loading estimation (Finney 1998).

Short vegetation, known as herbaceous vegetation,
plays a key role in determining the confined live-
stock grazing and climatic variability as agents of
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vegetation change (Fuhlendorf et al. 2001). Conven-
tionally, herbaceous vegetation height is measured
using handheld devices such as hypsometers (for
mature trees) or measuring poles (for seedlings and
low vegetation) through field campaigns (Payero et al.
2004; Weltz et al. 1994). However, these methods
are time consuming while incurring high labor cost,
which, in turn, limit their ability to perform mapping
at fine scales. Among popular alternatives to these
approaches, one shall mention the imaging and radar-
based methodologies. LiDAR, referred to as a 3D laser
scanner, is recognized to be one of the most effi-
cient alternate for recording vegetation data through
airborne sensors (Nilsson 1996; Kwak et al. 2007; Lef-
sky et al. 2005), while LiDar provides highly efficient
measurements at a footprint level of observation for
forest structure. Nilsson (1996) estimated vegetation
height on mountainous region of China, by calculat-
ing various vegetation indices using the Landsat data
in collaboration with the LiDAR satellite data. Sto-
janova et al. (2010) estimated the vegetation height in
a Slovenian forest region using Landsat imagery seg-
ment measurement, together with LiDAR data. Yan-
hong et al. (2010) used the vegetation indices obtained
from the Landsat satellite data to provide an approxi-
mation of the vegetation height in an inland river basin
of China. A comparative study conducted by Hyde
et al. (2006) using airborne LiDAR, SAR/InSAR,
satellite Landsat ETM+, and Quickbird examined the
estimation of canopy height in a forest structure in the
USA. The results indicated that LiDAR provides a bet-
ter accuracy in height estimation as compared to other
single sensor-based estimation. Besides, combining
the LiDAR data with Landsat yielded more enriched
results. Likewise, Wang et al. (2011) employed a
MODIS sensor with a moderate resolution imaging
spectroradiometer for estimating vegetation height in
a large forest region area of the USA and Costa Rica.
Nevertheless, such techniques are alleged to be less
effective and challenging with the short vegetation
height mainly because short vegetation height does not
provide detectable increase among the initial and last
LiDar return (Petzold et al. 1999). This is also rein-
forced by Rosso’s study (Rosso et al. 2006) which
compared measurable errors of dataset obtained from
LiDar and ground measurement in order to character-
ize wetland topology, and concluded that LiDar-based
analysis has no potential to influence the ground

underneath vegetation. Nevertheless, although LiDar-
and satellite-based techniques are reliable, they only
provide spatial coverage at a large resolution while
requiring increasing demand of operational costs and
labor, which calls for future research on the issue.

In this respect, our study aims to overcome the
challenges of such operational costs experienced in
remote sensing technologies and wireless sensor net-
work (WSN) deployment infrastructure, by utilizing
low-cost sensors in the form of wearable devices. The
goal is to introduce a new perspective in data acquisi-
tion and analysis from a low-cost multisensory handed
device through a wearable platform for estimating
the vegetation height. For this purpose, we propose a
novel foot-based wearable platform that records mea-
surements like plantar pressure, humidity, and inner
temperature. The intuition behind the proposal is simi-
lar in spirit to touch-sensing technology, which allows
us to recognize objects by solely touching the various
parts of the object(s). Similarly, we hypothesize that
soil properties, including vegetation height, can also
be approached by exploring the foot-sensing modali-
ties as measured by some foot-wearable platform. For
this goal, a simple regression model was developed in
order to carry out the estimation process. An experi-
mentation is performed in the Oulu region in an area
involving various vegetation types and heights. Com-
parison with traditional methods is also carried out for
illustration purpose. Especially, the pressure sensors
are found to positively correlate with the vegetation
height measured using a handheld device.

In this respect, extending our earlier findings at
Nasim et al. (2019), this paper demonstrates the fea-
sibility of an affordable foot-based ubiquitous plat-
form for vegetation height estimation, hinting the
development of new technology for soil analysis and
remote environment monitoring. The second section
of this paper highlights the Section “Study area”.
The detailed Section “Methodology” is described
in the third section. Section “Results and discus-
sion” is reported in the fourth section, and finally,
Section “Conclusion” is drawn in the last section.

Study area

This study has been conducted in an 8-type soil variety
area in Oulu region, Finland (Fig. 1) which highlights
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Fig. 1 Study area where the experiment was conducted. a Finland’smap; b satellite view of Kuivasjärvi; c NDVI map of the study
area (July 2018)

distinct vegetation height levels. Typically, Normal-
ized Difference Vegetation Index (NDVI) is a stan-
dard way to measure healthy vegetation. High (low)
NDVI values indicate healthy (poor) vegetation qual-
ity. Besides, the existence of several repositories and
open data where NDVI values are publicly available
provides us with an efficient tool to guide the selection
of the study area in a way to ensure useful differen-
tiation. Accordingly, we have selected the study area
based on NDVI index and the Google Earth location to
ensure the variability in vegetation height at each site.
However, the amount of variation is quite difficult to
estimate solely using the NDVI index. See Fig. 1 for
an overview of the NDVI map around the study region
together with Google Maps view of the area (Fig. 2).
The types of vegetation encountered in the study area
are summarized in Tables 1 and 2.

It has been noted that almost all of the study area is
filled with an assortment of different structures such
as a mixture of woody and herbaceous, and herba-
ceous plants. On the other hand, woody plants are
found to dominate herbaceous plants in general, while
important concentration of herbaceous vegetation is
observed at each study area (Fig. 3).

Methodology

Overall system design

The overall wearable platform highlighted in Fig. 4c
consists of three sensors and one micro-controller.
It includes temperature, humidity, and pressure sen-
sors together with a Bluetooth wireless sensor. In
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Fig. 2 Study areas near Kuivasjärvi, Oulu, Finland: a site 1; b site 2; c site 3; d site 4

general, temperature and humidity sensors are com-
monly employed in monitoring environmental con-
ditions, which provide insights to comprehend soil
properties. The use of pressure sensor is rather new in
remote monitoring applications, although it is widely
employed in other applications, e.g., health-related
applications. Intuitively, one expects that different
pressure signal patterns generated from the force sen-
sor when subjected to different types of canopy cover
provides us with useful insights about soil and veg-
etation patterns as well. In this study, the canopy
cover refers to the proportion of the study site covered
by a specific vegetation type. The Arduino micro-
controller retrieves the state and outputs of various
sensor signals, processes the decision-signal output,
and transmits it to a mobile platform through a serial
port.

The weight of the developed platform is only
around 110 g, which makes it not exceed that of a
normal winter or sport shoes. Therefore, this does
not affect the movement of the user and his normal
walking patterns should not be affected.

The synergy of the three sensors, namely, flexi-
force sensitive resistor, temperature and humidity,
and Bluetooth, is utilized for strengthening the over-
all building of the wearable platform (Fig. 4d). The
Bluetooth sensor is employed solely for transmission
purpose. An Android application is also developed
to store the readings obtained from the sensors on
a mobile application and perform advanced calculus
on a cloud platform. As a working principle of the
system, DHT22 collects the information of tempera-
ture and humidity from the external surroundings and
transmits the output as a digital signal via MaxDetect

Table 1 Detail of study
area locations including its
vegetation types and 5
structures

Study area X coordinates Y coordinates Vegetation type Structure presents

Site 1 65.069220 25.483756 Sand None

Site 2 65.070162 25.480847 Grassland A, B, C

Site 3 65.071213 25.478959 Forest A, B, C

Site 4 65.072667 25.471560 Grassland A, C

Site 5 65.071420 25.465581 Forest A, B

Site 6 65.063355 25.475950 Forest A, B, C

Site 7 65.064639 25.472442 Forest A, B, C

Site 8 65.064445 25.467862 Road None
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Table 2 Vegetation structures present in study area

Structure type Description

A Mixture of woody and herbaceous plants

B Woody plants dominate herbaceous plants

C Herbaceous plants

1-wire to the Arduino board. The Arduino receives
40 bits in the form of a digital signal where the first
16 data bits represent Relative Humidity. The next 16
data bits represent the Temperature, and, finally, the
last 8 bits correspond to Check Sum bits.

Whereas, the force is calculated, when it is applied
on the sensing area of the Force Sensor Resistor,
which in turns, creates a change in the analogue output
voltage. The calculation of the output voltage is given
by:

V o = V s ∗ R/(R + Fsr) (1)

That is, the voltage is proportional to the inverse of
the FSR resistance. More specifically, at first, the ana-
logue voltage is transformed to a digital signal using
ADC conversion function provided by the Arduino
library. Then, the obtained digital voltage is con-
verted into a force using the best-fit linear Eq. 2,
derived during the calibration process. The complete
detail of acquiring pressure, temperature, and humid-
ity measure is described in the flowchart (Fig. 5).
Data logging part takes place after the data has been
processed.

The Arduino board transmits the data of time inter-
val, temperature, humidity, force, and voltage through
the serial port, where the Bluetooth connected to TX

pin receives the output and wirelessly transmits it to
the mobile application. The application stores it as a
text file, which is then converted to an Excel file in
a PC for calculating the results. The block diagram
shown in Fig. 6 details the various data communica-
tion modules.

Arduino microcontroller

Arduino platform is a widely used open-source elec-
tronic prototyping platform with a single board micro-
controller, which is flexible and user-friendly in
term of hardware and software components. Arduino
UNO board is based on ATmega328, with 14 digi-
tal input/output pins, 6 analogue pins, and 16 MHz
of clock speed, which provides the ample setup for
various sensors, connection, and transmission.

Sensors

The choice of the sensors (temperature, humidity,
flexi-force, and Bluetooth) embedded in our platform
has been mainly motivated by low cost, compatibility
with Arduino module, and good cost/quality balance.
Figure 8 provides a circuit connection to Arduino
module of each of the three sensors, respectively.
The detail of individual sensor is reported in the next
subsections.

Temperature and humidity

We have chosen DHT 22 temperature and humid-
ity sensor (Fig. 8a) due to its high reliability, good
stability, and compatibility with Arduino platform.

Fig. 3 Study areas near Kuivasjärvi,Oulu, Finland: e site 5; f site 6; g site 7; h site 8
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Fig. 4 aWearable-foot platform attached to user’s foot. b Pressure sensor placement. c Image view of the developed system. d Block
diagram representation

The DHT22 sensor consists of two parts: a capacitive
humidity sensor, which is responsible for measur-
ing the humidity, and a thermistor that measures the
temperature of its surroundings. The sensor has the
capacity to measure the temperature in the ranges
from −40 to +125 °C with ±0.5° accuracy, offer-
ing excellent quality, fast response, anti-interference
ability, and cost-effectiveness. The DHT 22 tempera-
ture sensor comprises three pin VCC, GND, and data
pin. It can be easily interfaced with Arduino board
via connecting the VCC pin to 5v, GND to GND pin,
and data pin to any of the digital pin of the Arduino
board. On the software part, the DHT library is avail-
able in Arduino website. This enables us to read the

temperature from the sensor and display it in the serial
monitor.

Flexi-force sensor (pressure sensor)

Flexi-force sensor (Fig. 8b), also referred to as the
force sensitive resistor, is used for calculating the
pressure value. It operates on changing its resistance
when an external force, pressure, or stress is applied.
Tekscan flexi-force A 201 became nowadays quite
a standard and among most popular instruments for
measuring force in wearable platforms. A fixed value
resistor of 1 Mohm is connected in a series with the
FSR resistance. The connection of FSR with Arduino
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Fig. 5 Flowchart of the pressure-sensory system

is established by joining one end to the power pin and
the other end to the fixed value resistor ground, the
point where the resistor is connected to analogue pin
of Arduino board (see Fig. 8e).

In order to determine the force of unknown loads,
the equation for the best fit is to be derived. For this
purpose, a set of input–output voltage measurements
should be carried out. Next, voltage–force graph is
plotted, as in Fig. 7, and the best linear fit is identi-
fied. Typically, in order to filter out potential outliers
and increase consistency of measurements, in agree-
ment with manufacture recommendation, a voltage vs.
force graph is plotted in order to find the best linear fit
as shown in Fig. 7. Besides, a calibration stage is also
initially carried out.

In view of manufacturer’s recommendation and our
initial calibration phase, the output voltage is related
to pressure as in Eq. 2:

V = 0.0278 ∗ Pressure + 0.75 (2)

From Eq. 2, equivalently, the pressure parameter is
derived as:

Pressure = (V − 0.75)/0.0278 (3)

Bluetooth sensor

In order to communicate the sensor outputs (pressure,
temperature, and humidity), a communication chan-
nel is required. For this purpose, a Bluetooth sensor,
which allows us to transfer data over a short distance,
up to around 10 m, is employed. We used the HC-05
Bluetooth sensor (see Fig. 8c) because of its simplic-
ity. The module has 6 pins and can easily be interfaced
with Arduino board. The logic voltage level of data
pin of HC-05 is 3.3 V. Therefore, the connection of
data line between Arduino TX and RX needs to con-
nect through a voltage divider in order to not burn the
module. On the other hand, the pin of Bluetooth can
be connected directly to the Arduino board.
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Fig. 6 Block diagram of data transmission

Android mobile application

An Android mobile application is developed using
Android Studio, which is an open-source software for
developing the mobile application and while provid-

ing handful support for Android operating system.
The purpose for implementing the mobile application
was to record the reading from the developed multi-
sensor platform. The application uses the Bluetooth
communication for acquiring the real-time sensor data

Fig. 7 Linear interpolation
of measurements for value
estimation of forces
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Fig. 8 a Temperature and humidity. b Flexi FSR sensor. c HC-05 Bluetooth module. d Temperature and humidity schematic design.
e FSR schematic design. f HC-05 schematic design

from the HC-05 Bluetooth module. The data is then
recorded and saved into a csv text file: a screenshot of
the running application is highlighted in Fig. 9.

Data acquisition

The acquisition of sensor data is performed during the
experimentation stage where around 10 m of distance

Fig. 9 Screenshots of the mobile application

is covered by a walk at each designated site. Dur-
ing this walk, the wearable platform is attached to the
user’s foot. In total, eight tests were performed at each
study area where at every test, the path is changed for
finding the variation in the sensor data. The general
execution plan is shown in Fig. 10, which provides
fine experimental details.

Field measurements and height estimation

In our study, we utilize the line-point intercept
method, a popular practitioner-based approach for
vegetation height measurement, proposed by Herrick
et al. (2014), with some alteration. In this method, the
cover is measured along a linear transect line count-
ing the number of “hits” on a target species out of the
total number of points measured along that line. In our
case, the vegetation height is measured as the height
of the tallest plant part within a 30-cm-diameter cylin-
der projected tangent to transect (Nasim et al. 2019),
measured vertically from the soil surface at the center
of the cylinder (see Fig. 11), for illustration purpose.
Besides, in order to take into account the inherent geo-
metrical constraint of our study area and the density
of the plants, we performed the transcend-based mea-
surement five times at regular interval in the region of
the study where the plant density is deemed important,
and then averaged over. More formally, let Hi be the
ith transcend-based vegetation height measurement,
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Fig. 10 General execution plan of the experiment setup

so that five distinct measurements Hi are carried out
at each interval of 2.5 m. We then estimate the average
maximum vegetation height of canopy cover, over the
five measurements (Herrick et al. 2014):

Avg. V H = 1

5

∑

i=1,5

(Hi) (4)

Fig. 11 Vegetation field measurement using transcend

The preceding is motivated by the reasonable
observation that each of the study fields is associated
with at least three distinct vegetation heights (obtained
by averaging of transcend measurements according to
Eq. 4 in each vegetation type/structure). Indeed, the
plant type (either grassland or forest) and structure
type (A, B, or C) in each site of study were almost
homogeneous in terms of height. Consequently, it gen-
uinely makes sense to consider the vegetation of the
same structure, say, A, B, or C to be of the same
height. This entails the following. First, the aver-
age operation (4) is carried out for each of these
structure types present in the study site. Second, the
fine-grained variation of the vegetation height at a
given structure type is not the prime concern of the
study as we hypothesize that it is possible to recognize
the structure type using vegetation height informa-
tion. Third, there exists a mechanism which maps the
location to the structure type at each site in order to
build the ground truth model, required for the sub-
sequent analysis, which is usually provided through
the availability of GPS and Google Maps information.
Table 3 exhibits the overall structure of the ground
truth dataset where rectangular geometrical approxi-
mations were used to model the region in the same
site of the same structure type to imitate the bounding
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Table 3 Ground truth structure of each study area

Attribute Description

Vegetation type Grassland or forest

Structure type A, B, or C structure

Bounding box Latitude and longitude of the top left

and bottom right of the approximate

rectangular region

Vegetation height Average vegetation height measured

using transcend method

box-based reasoning. The developed approach allows
us to construct the ground truth in terms of vegetation
height for each of the eight study sites.

Dataset generation and description

Armed with the developed footwear platform, the user
performs normal walking task at each site ensuring
that all structure types present in the site are covered.
At each walk step, the sensory information is trans-
mitted to the mobile station, and, thereby, to the cloud
platform to enable further pre-processing. We partic-
ularly focused on pressure sensor output as both the
temperature and humidity sensors exhibit no variation
due to the experimental setup where all measurements
were taken in very short time interval (almost instanta-
neous) so that the variation of temperature or humidity
data is void both within the same site and across dif-
ferent sites. More specifically, after a series of walks
at each site using the footwear platform, pressure data
are acquired, and their statistics in terms of average
pressure value, minimum value, and maximum value
are reported. These three entities (average, min, and
max of pressure values), whose description is listed
in Table 4, are taken as independent variables in our
study to infer vegetation height.

In total, 62 samples or observations are collected
during the experiments where 8 experiments were
conducted in site 1 (soil type: sand); 8 experiments in
site 2 soil type “sand” where all the three vegetation
structures A, B, and C were present; 5 experiments in

Table 4 List of independent variables and targeted variable

Independent variables Method of acquisition Targeted variable Methods of calculus

Max pressure Min pressure Mean pressure Sen. platform Veget. height Point intercept method

site 3; 8 experiments in site 4; 7 experiments in site 5;
7 experiments in site 6; 8 experiments in site 7; and 8
in site 8. The dataset is split into training and testing
datasets, with proportion 80% and 20%, respectively.
This was used for training and testing linear regression
models.

Vegetation height estimation using wearable sensors

For the purpose of estimating the vegetation height
from the pressure measurement, a multi-regression–
based approach is devised in order to assess the
relevance of the underlined independent variables in
this estimation process where the vegetation heights
estimated in the field measurement through transcend
method are used to determine the parameters of the
regression model as highlighted in Fig. 12. Table 5
highlights the pressure attributes employed in the
subsequent study.

On the other hand, for the purpose of simplicity and
fair results obtained elsewhere, this paper advocates a
multi-linear regression model. More specifically, the
regression model boils down, for a response variable
y, to the following:

y = β0 + β1x1 + β2x2 + β3x3 (5)

where βi (i = 0 to 3) are the parameters, to be
determined using the training dataset, of the model,
interpreted as regression coefficients.

On the other hand, instead of carrying out the
regression analysis across all attributes, we have also
considered the effects of narrowing down the scope
and seeking whether a single attribute will be enough
to ensure a good performance in terms of estimating
the vegetation height. In other words, this boils down
to the following question: To which extent can a single
attribute xi (i = 1, 3) estimate the vegetation height?
Statistically speaking, this is equivalent to estimating
the extent to which a single linear regression model
of xi is a good fit to estimate the vegetation height of
the training dataset. This corresponds to the following
fitting equation, where xi stands for x1, x2, or x3.

y = β0 + β1xi (6)
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Fig. 12 Method of estimation VH

This corresponds to a backward elimination–based
strategy where we restrict to the most significant
attributes as testified by the simple regression fit-
ting outcome Efroymson (1960) with a predefined
threshold-based pruning as shown in Fig. 13, instead
of treating the three attributes simultaneously, lead-
ing to a multi-regression model of three parameters.
We set β0 to 1 for scaling purpose. This yields β1,
β2, and β3 to be estimated using the (multi-)regression
model(s). The next section details the result of this
investigation.

Results and discussion

Soil pressure and vegetation height

Intuitively, pressure-based sensors may provide infor-
mation on land cover such as soil properties, water
content, and vegetation properties (density, height,
etc.) where the relationship between soil and vegeta-
tion is not fully unknown. Indeed, soil compactness,
texture, bulk density, and organic/mineral composition

Table 5 Summary of attribute variables of the regression model

Attribute variables Description

x1 = MaxPres Maximum pressure

x2 = MinPres Minimum pressure

x3 = MeanPres Mean pressure

directly influence plant growth, quality, and abun-
dance. For instance, Gale et al. (1991) used soil pro-
ductivity index to predict spruce growth. Landhaeuser
et al. (1996) studied the effects of soil compactness
on the depth and lateral spread of marsh reed grass.
Silva et al. (2008) found that animal trampling can
cause soil compactness and degradation of soil struc-
ture which negatively affect vegetation growth and
height. Similarly, Botta et al. (2006) reinforced Silva
et al.’s findings and showed that even an increased
frequency of pedestrian or wheel passages can lead
to an increase of dry bulk density, which in turn,
affects vegetation height. The question can therefore
be raised to investigate the extent to which soil pat-
terns can be employed to estimate vegetation height.
Especially, is it possible to perform such estima-
tion using solely low-cost sensor platforms? With
the recent advances in sensor technologies, includ-
ing IoT framework, cloud computing, and wearable
technology, several breakthroughs in low-cost and
efficient environment monitoring technology become
accessible to a wider audience (non-specialist group).
Indeed, one notices, for instance, a range of wireless
sensor networks deployed for habitat and environ-
ment monitoring applications; see, e.g., the review
paper (Ruiz-Garcia et al. 2009) on the use of smart
and low-cost sensors in agriculture, food, and related
applications. Zheng et al. (2018) used wireless sensor
network (WSN) to conduct the ground-level measure-
ment of snow depth, for understanding the canopy
effect. O’shaughnessy et al. (2012) employed WSN
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Fig. 13 Flowchart of backward elimination technique

along with moving sprinkling system for continuous
monitoring of crop canopy temperature. Zhou et al.
(2017) put forward a scalable field cost-effective IoT-
powered phenotyping platform, referred CropQuant,
for crop monitoring and trait measurement in a way to
predict vegetation growth. Nevertheless, in the afore-
mentioned studies, one still requires an initial stage of
setting up and installing the underlying network and/or
sensor infrastructure, which call for cheap alternative
solutions.

Correlation analysis and general trend

In order to show the effect of each individual attribute
(max-pressure, min-pressure, and mean-pressure) on
field measurement of vegetation height as computed
using the average expression in Eq. 4, the variation
of field-measured vegetation height with respect to
individual site is plotted alongside each of the pres-
sure attributes in Fig. 14. On the same plot, we also
draw the linear approximation for both field-measured
vegetation height and pressure attribute. One notices
that any increase (decrease) of the vegetation height

is translated into either an increase or a decrease of
the pressure attribute value, except for site location A
(sand), where both vegetation height and pressure val-
ues are meaningless. On other hand, the direction of
variation (either increase or decrease) with respect to
that of vegetation height indicates a positive or a neg-
ative correlation of the given attribute with respect to
vegetation height. In this respect, Fig. 14a highlights a
rough negative correlation of maximum pressure with
vegetation height (a slight deviation can be observed
in sites F, C, E, and D but without changing the over-
all trend). To confirm this trend, the calculus of the
Pearson correlation coefficient between the attribute
variable and the vegetation height indicates a corre-
lation value of r = −0.9451 with p value 0.0013,
which testifies of high statistical significance at 5%
significance level. Similarly, Fig. 14c indicates that the
mean pressure negatively correlates with the vegeta-
tion height as the corresponding Pearson correlation
coefficient reads r = −0.9219 and p value = 0.0011.
However, the min-pressure attribute does not exhibit
the same behavior since the corresponding Pearson
correlation coefficient reads r = −0.79 but p value
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Fig. 14 Linearity relation between a average maximum pressure (N) and vegetation height (cm); b average maximum pressure (N)
vegetation height (cm); c average maximum pressure (N) and vegetation height (cm)

= 0.02. On the other hand, the linear fit of individual
attribute evolution shown in Fig. 14 indicates that the
linear interpolation is roughly tenable, especially for
mean and min-pressure attributes.

Moreover, in order to comprehend the order of
magnitude of the variations of the attribute variables
in different site locations, Fig. 15 exhibits the overall
quantification of the three attributes (mean-pressure,
max-pressure, and min-pressure) at each site location.
The plot indicates that higher pressure readings are
observed when exposed to more stiff surface such as
asphalt and sand, whereas stiffness may exhibit higher
variations in lands where different levels of vegetation
are observed. The results also demonstrate that sites
with high vegetation height yield lower values of pres-
sure attributes. To explain this observation, one notices
that small stiffness around the surface is often due
to the presence of irregularities in the vicinity area,
which causes walking difficulty that is translated into
low pressure values.

For validating and verifying the results, we later
applied statistical analysis, in order to find out whether
the associated attributes show any significance level of
correlation with the targeted variable. This is detailed
in the next section.

Attribute variability and relevance

In order to assess the viability and ability of each of
the pressure attributes to discriminate the various veg-
etation heights, Table 6 summarizes the key statistics
related to attributes x1, x2, and x3 over each study site
and for each vegetation type. A simple reading of the
measurement trend indicates, for instance, that if the
maximum pressure attribute is taken alone, we can-
not discriminate between grassland A (type B, in site
B) and forest C (type A in site F) as they yield very
close maximum pressure values. However, when con-
sidering the other two attributes (minimum pressure
and mean pressure), it becomes intuitively possible to
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Fig. 15 Pressure attributes applied on different heights of vegetation

Table 6 Metrics derived from pressure sensor reading

Study area Structure Vegetation type Max pressure Min pressure Mean pressure Standard deviation

Site A Sand No type – – – –

Type A–B 16.85 2.51 2.49 4.49

Site B Grassland A Type B–B 19.54 2.35 4.79 6.42

Type C–B 17.61 3.27 3.6 5.18

Site C Forest A Type A–C 13.88 1.01 2.80 4.60

Type B–C 22.39 4.62 3.86 6.61

Type C–C 20.61 1.93 3.22 6.28

Site D Grassland B Type A–D 30 2.20 4.98 9.51

Type B–D 37.03 1.93 6.19 10.85

Site E Forest B Type A–E 41.83 2.66 8.23 11.67

Type B–E 38.53 1.77 7.60 10.83

Site F Forest C Type F–A 19.54 4.31 3.25 5.59

Type F–B 21.65 8.20 5.60 8.07

Type F–C 31.96 10.89 5.72 8.70

Site G Forest D Type G–A 22.69 1.31 22.69 6.56

Type G–B 20 0.43 5.32 6.84

Type G–C 18.35 5.35 5.43 6.39

Site H Road No type – – – –
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Table 7 Pearson’s correlation coefficient max, min and mean
pressure vs. VH and regression analysis

Variable Sample 95 % Clevel

VH value Correlation p value Reg. coef.

Max. Pres. 62 −0.86 <0.00* β = −2.11

Min. Pres. 62 −0.39 <0.00* β = −2.81

Mean Pres. 62 −0.85 <0.00* β = 8.74

discriminate between the two cases. This exemplifica-
tion is further generalized later on and reinforced by
findings from correlation analysis.

More specifically, we first compute Pearson’s cor-
relation to find the significance correlation between
each attribute (minimum pressure, maximum pres-
sure, and mean pressure) with the vegetation height,
where unlike averaged outcomes over each site shown
in Section “Correlation analysis and general trend”,
the whole attribute readings are considered in this
case. The results summarized in Table 7 indicate
that there is a weakly significant inverse relation-
ship between the min pressure and vegetation height
r(61) = −0.39, n = 62, p << 0.00*. In contrary,
Table 7 also indicates a strong statistically negative
correlation observed between the maximum pressure
and vegetation height r(61) = −0.86, n = 62, p <<

Table 8 Statistical summary after first iteration of multi-
regression model

Regression statistics

Multiple R 0.880

R square 0.774

Adjusted R square 0.762

Standard error 18,291

Observations 61

ANOVA

df MS F Significance F

Regression 3 65,364.73 21,788.24 65.13 < 0.00

Residual 57 19,069.88 334.56

Total 60 84,434.61

Coefficients Standard error t Stat p value Lower 95% Upper 95%

Intercept 123,587 5.533 22,337 <0.000 112,507 134,667

Min-pressure 0.743 0.611 1.216 0.229 −0.481 1.966

Max-pressure −1.067 0.423 −2.525 0.014 −1.914 −0.221

Mean-pressure −5.287 1.997 −2.648 0.010 −9.286 −1.289

0.00*. Similar relationship holds for the mean pres-
sure output and the vegetation height where it was
found r(61) = −0.85, n = 62, p < 0.00∗.

Especially, Table 7 exhibits the regression coef-
ficient when a linear fit between the underlined
independent variable (max-pressure, min-pressure, or
mean-pressure) and vegetation height is enforced.

Clearly, the small value of Pearson coefficient in
Table 8 indicates again the min pressure attribute
should be discarded and would not predict the vegeta-
tion height appropriately.

Multi-regression results

Results of Sections “Correlation analysis and general
trend” and “Attribute variability and relevance”
showed that the max and mean-pressure exhibit strong
and statistically significant negative correlation with
vegetation height when considering either average site
values (as in Section “Correlation analysis and general
trend”) or the whole readings (as in Section “Attribute
variability and relevance”). Initially, we apply the
multi-regression model with backward elimination
method while all the independent variables (min-,
max-, and mean-pressure) are taken into account dur-
ing the training phase of the model. After we trained
the model, we computed the p value for each attribute
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Table 9 Statistical summary of final iteration of multi-regression model

Regression statistics

Multiple R 0.877

R square 0.768

Adjusted R square 0.760

Standard error 18,366

Observations 61

ANOVA

df MS F Significance F

Regression 2 64,870.22 32435.11 96.16 <0.00

Residual 58 19,564.39 337.32

Total 60 84,434.61

Coefficients Standard error t Stat p value Lower 95% Upper 95%

Intercept 123,978 5.546 22,353 <0.000 112,876 135,080

Max −1.266 0.392 −3.233 0.002 −2.050 −0.482

Mean −3.885 1.637 −2.374 0.021 −7.161 −0.609

that is then compared to some predefined significance
threshold. The latter triggers the decision to maintain
or discard the corresponding attribute variable (see
Fig. 13). Table 8 highlights the statistical summary
obtained after the first iteration. Especially, we have
conduced the analysis of variance (ANOVA) to iden-
tify the level of variability within the corresponding
regression model and quantifies the significance level.
In this regard, the table shows that the min-pressure
attribute does not yield a statistically significant result
(p value = 0.229). This is in agreement with the cor-
relation analysis performed in Section “Correlation
analysis and general trend”, whereas the maximum
and mean attribute p values are consistent with 5%
significance level. This indicates that the min-pressure
attribute is a statistically low significant parameter to
be considered as a powerful predicator for the training
model. Therefore, considering such an elimination-
based analysis, the next iteration is run without the
min-pressure attribute. The results of this subsequent
analysis are shown in Table 9.

On the other hand, two performance metrics were
employed to quantify the performance of the multi-
regression model; namely, the standard root mean

squared error (RMSE) and R-squared. The latter indi-
cates the percentage of the variance in the dependent
variable that the independent variables explain col-
lectively, measuring the strength of the relationship
between the regression model and the dependent vari-
ables. These are employed as performance metrics
for the evaluation of the multi-regression model and
calculus of regression coefficients using the train-
ing dataset. The predictive performance of the linear
regression and multi-regression model in terms of two
evaluation measures for a single target variable is
presented in Table 10.

Conclusion

In this study, a data acquisition approach from a
locally developed ubiquitous sensor’s wearable plat-
form, for predicting the vegetation height, has been
proposed and evaluated. The approach is based on
developing a machine learning model to learn the
vegetation height from key attributes associated to
pressure, temperature, and humidity measurements.
The idea consists of exploring the variation of pressure

Table 10 Evaluating the
performance of linear
regression and
multi-regression for
estimating VH

Attributes R squared RMSE (cm) Model

Max pressure 0.81 16.73 127.03–2.12*x1

Max and mean pressure 0.83 15.75 122.91–1.25*x1–3.75*x3
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attribute from the wearable measurement platform at
different levels of vegetation height. The approach
uses a multi-regression model that involves pressure-
related attributes (minimum-pressure, maximum-
pressure, and mean-pressure). The experimental setup
and its time frame discarded any impact of tempera-
ture and humidity information on the output, leaving
only the pressure indicator as a relevant parameter
to investigate further. The correlation and statisti-
cal analyses showed that the maximum-pressure and
the mean-pressure are more significant in predict-
ing the vegetation height. Thereby, both single and
multi-regression models were appropriately designed
and tested. In general, the results acquired from the
developed approach are not meant to outperform or
even approach some state-of-the-art models that use
elaborated remote sensing or satellite imaging tech-
niques, but will pave the way for the development of
low-cost ubiquitous technology. Indeed, contrary to
satellite imaging and advanced remote sensing tech-
nology that demand high operational costs, time, and
labor, our approach entitles new opportunities toward
data acquisition at low cost, and less time and labor
demanding. However, this is a pilot approach and
much work is still needed to be done in order to con-
struct a more efficient machine learning model that
takes into account user’s various modalities and possi-
bly integrating other soil-related sensory information.
In addition, our approach provides the feasibility for
estimating minimalistic characteristic of forest struc-
ture nearly at very low cost and less labor demand. The
results encourage future research in data acquisition
methods from wearable ubiquitous sensor platforms in
vegetation height estimation without the use of active
sensors, such as LiDAR, or the need of extensive
field campaigns. This can reduce the operational and
labor cost and facilitate the ecological monitoring and
environmental sustainability planning.
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