Skip to main content
Log in

Bioavailability and toxicity of bromine and neodymium for plants grown in soil and water

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Information about biological significance and possible phytotoxicity of many trace elements is still scarce. Bromine and neodymium are among the poorly investigated trace elements. In the research, greenhouse experiment was conducted to study the effects of bromide of neodymium on wheat seedlings grown in soil and water. The wheat seedlings were capable of accumulating large amounts of both Br and Nd. Compared to the soil-grown plants, the water-grown plants accumulated higher concentrations of the trace elements. The bioaccumulation of Br and Nd resulted in statistically significant variations in the concentrations of several elements. The concentrations of P, Cl, and Ca in roots and Cl in leaves of the plants grown in the contaminated water and the concentration of I in roots of the soil-grown plants decreased. In the water-grown seedlings, the concentrations of Na and P were higher and concentrations of Mg and K were lower than those in the seedlings grown in soil. In leaves of the plants grown in water, the concentration of Cl was lower than that in leaves of the soil-grown plants. In roots of the water-grown plants, the concentration of Zn was higher, and in leaves, it was lower compared with Zn content in roots and leaves of the plants grown in soil. The K/Na ratios were 4 (leaves) and 20 (roots) times higher in the soil-grown plants, while the Ca/Mg ratios were 8 – 19 times higher in the water-grown plants. Marked distinctions were also observed in relationships between different elements in the soil-grown and water-grown plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Carpenter, D., Boutin, C., Allison, J. E., Parsons, J. L., & Ellis, D. M. (2015). Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PLoS ONE. https://doi.org/10.1371/journal.pone.0129936

    Article  Google Scholar 

  • Chandraa, R., Bharagavaa, R. N., Yadava, S., & Mohan, D. (2009). Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. Journal of Hazardous Materials, 162, 1514–1521.

    Article  Google Scholar 

  • Chapin, F. S., Bloom, A. J., Field, C. B., & Waring, R. H. (1987). Plant responses to multiple environmental factors. BioScience, 37(1), 49–57.

    Article  Google Scholar 

  • Freitas, R., Costa, S., Cardoso, C. E. D., Morais, T., Moleiro, P., Matias, A. C., et al. (2020). Toxicological effects of the rare earth element neodymium in Mytilus galloprovincialis. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.125457

    Article  Google Scholar 

  • Gan, J., Yates, S. R., Ohr, H. D., & Sims, J. J. (1998). Production of methyl bromide by terrestrial higher plants. Geophysical Research Letters, 25(19), 3595–3598.

    Article  CAS  Google Scholar 

  • Gorena, T., Fadic, X., & Cereceda-Balic, F. (2020). Cupressus macrocarpa leaves for biomonitoring the environmental impact of an industrial complex: The case of Puchuncaví-Ventanas in Chile. Chemosphere, 260, 127521. https://doi.org/10.1016/j.chemosphere.2020.127521

  • Gribble, G. W. (1999). The diversity of naturally occurring organobromine compounds. Chemical Society Reviews, 28, 335–346.

    Article  CAS  Google Scholar 

  • Gribble, G. W. (2015). A recent survey of naturally occurring organohalogen compounds. Environmental Chemistry, 12(4), 396–405.

    Article  CAS  Google Scholar 

  • Guo, W., Chen, S., Hussain, N., Cong, Y., Liang, Z., & Chen, K. (2015). Magnesium stress signaling in plant: Just a beginning. Plant Signaling & Behavior. https://doi.org/10.4161/15592324.2014.992287

    Article  Google Scholar 

  • Kabata-Pendias, A., & Szteke, B. (2015). Trace elements in abiotic and biotic environments. CRC Press Taylor & Francis Group.

    Book  Google Scholar 

  • Klink, A., Macioł, A., Wisłocka, M., & Krawczyk, J. (2013). Metal accumulation and distribution in the organs of Typha latifolia L. (cattail) and their potential use in bioindication. Limnologica, 43(3), 164–168.

    Article  CAS  Google Scholar 

  • Låg, J., & Steinnes, E. (1977). Halogens in barley and wheat grown at different locations in Norway. Acta Agriculturae Scandinavica, 27(4), 265–268.

    Article  Google Scholar 

  • Lu, N. H., Wu, L. M., Yang, R., Li, H., & Shan, C. J. (2020). Neodymium improves the activity of ascorbate-glutathione cycle and chloroplast function of wheat seedlings under chromium stress. Photosynthetica, 58(3), 748–754.

    Article  CAS  Google Scholar 

  • Luo, J., Zhang, J., & Wang, Y. (2008). Changes in endogenous hormone levels and redox status during enhanced adventitious rooting by rare earth element neodymium of Dendrobium densiflorum shoot cuttings. Journal of Rare Earths, 26(6), 869–874.

    Article  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants. Academic Press Ltd.

    Google Scholar 

  • Masto, R. E., Ram, L. C., Verma, S. K., Selvi, V. A., George, J., Tripathi, R. C., et al. (2011). Rare earth elements in soils of Jharia coal field. International Journal of Geological and Environmental Engineering, 5, 653–658.

    Google Scholar 

  • München, D. D., & Veit, H. M. (2017). Neodymium as the main feature of permanent magnets from hard disk drives (HDDs). Waste Management, 61, 372–376.

    Article  Google Scholar 

  • Onoda, H., Nariai, H., Moriwaki, A., Maki, H., & Motooka, I. (2002). Formation and catalytic characterization of various rare earth phosphates. Journal of Materials Chemmistry, 12(6), 1754–1760.

    Article  CAS  Google Scholar 

  • Patra, A. C., Lenka, L., Sahoo, S. K., Jha, S. K., & Kulkarni, M. S. (2020). Probing rare earth element distributions in soils of the mineralized Singhbhum region in India using INAA. Applied Radiation and Isotopes. https://doi.org/10.1016/j.apradiso.2020.109360

    Article  Google Scholar 

  • Pourimani, R., Abasnejad, K., Ghanbarzadeh, K., Reza Zare, M., & Kamali, M. (2013). Determining the amount of Br, Na and K in six wheat sampleswith neutron activation analysis (NAA) method in Arak, I.R Iran. Journal of Radioanalytical Nuclear Chemistry, 295, 163–166.

    Article  CAS  Google Scholar 

  • Rezaee, A., Hale, B., Santos, R. M., & Chiang, Y. W. (2018). Accumulation and toxicity of lanthanum and neodymium in horticultural plants (Brassica chinensis L. and Helianthus annuus L.). Canadian Journal of Chemical Engineering., 96(10), 2263–2272.

    Article  CAS  Google Scholar 

  • Romero-Freire, A., Turlin, F., André-Mayer, A.-S., Pelletier, M., Cayer, A., & Giamberini, L. (2019). Biogeochemical cycle of lanthanides in a light rare earth element-enriched geological area (Quebec, Canada). Minerals. https://doi.org/10.3390/min9100573

    Article  Google Scholar 

  • Sahin, O., Taskin, M. B., Kadioglu, Y. K., Inal, A., Gunes, A., & Pilbeam, D. J. (2012). Influence of chloride and bromate interaction on oxidative stress in carrot plants. Scientia Horticulturae, 137, 81–86.

    Article  CAS  Google Scholar 

  • Schneider, S. M., Rosskopf, E. N., Leesch, J. G., Chellemi, D. O., Bull, C. T., & Mazzola, M. (2003). United states department of agriculture-agricultural research Service research on alternatives to methyl bromide: Pre-plant and post-harvest. Pest Management Science, 59(6–7), 814–826.

    Article  CAS  Google Scholar 

  • Shorter, J. H., Kolb, C. E., Crill, P. M., Kerwin, R. A., Talbot, R. W., Hines, M. E., et al. (1995). Rapid degradation of atmospheric methyl bromide in soils. Nature, 377(6551), 717–719.

    Article  CAS  Google Scholar 

  • Shtangeeva, I. (2017). Bromine accumulation in some crops and grasses as determined by neutron activation analysis. Communications in Soil Science and Plant Analysis, 48(19), 2338–2346.

    Article  CAS  Google Scholar 

  • Shtangeeva, I., Niemelä, M., Perämäki, P., Ryumin, A., Timofeev, S., Chukov, S., et al. (2017). Phytoextraction of bromine from contaminated soil. Journal of Geochemical Exploration, 174, 21–28.

    Article  CAS  Google Scholar 

  • Shtangeeva, I., Niemelä, M., Perämäki, P., & Timofeev, S. (2015). Response of wheat and pea seedlings on increase of bromine concentration in the growth medium. Environmental Science and Pollution Research, 22, 19060–19068.

    Article  CAS  Google Scholar 

  • Sneller, F. E. C., Kalf, D. F., Weltje, L., & Van Wezel, A. P. (2000). Maximum permissible concentrations and negligible concentrations for rare earth elements (REEs). National Institute of Public Health and Environmental Protection RIVM, Bilthoven (Netherlands). https://inis.iaea.org/search/search.aspx?orig_q=RN:31053152.

  • Tensho, K. (1970). Iodine and bromine in soil-plant system with special reference to “reclamation-akagare disease” of lowland rice. Japan Agricultural Research Quarterly, 5(3), 26–32.

    CAS  Google Scholar 

  • Turra, C., De Nadai Fernandes, E. A., Bacchi, M. A., Sarriés, G. A., & Reyes, A. E. L. (2020). Temporal variability of rare earth elements in ultisol soil under citrus plants. Journal of Radioanalytical and Nuclear Chemistry, 324, 219–224.

    Article  CAS  Google Scholar 

  • Tyler, G. (2004). Rare earth elements in soil and plant systems – a review. Plant and Soil, 267, 191–206.

    Article  CAS  Google Scholar 

  • Tyler, G., & Olsson, T. (2002). Conditions related to solubility of rare and minor elements in forest soils. Journal of Plant Nutrition and Soil Science, 165, 594–601.

    Article  CAS  Google Scholar 

  • Wang, L., Christakos, G., Wu, C., & Wu, J. (2020). Spatial variability assessment of La and Nd concentrations in coastal China soils following 1000 years of land reclamation. Journal of Soils and Sediments, 20, 1651–1661.

    Article  CAS  Google Scholar 

  • Watanabe, T., Broadley, M. R., Jansen, S., White, P. J., Takada, J., Satake, K., et al. (2007). Evolutionary control of leaf element composition in plants. New Phytologist, 174(3), 516–523.

    Article  CAS  Google Scholar 

  • Wei, Z. G., Yin, M., Zhang, X., Hong, F. S., Li, B., Tao, Y., Zhao, G. W., & Yan, C. H. (2001). Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Env. Pol., 114, 345–355.

    Article  CAS  Google Scholar 

  • Wishkerman, A. (2006). Bromine and iodine in plant-soil systems. Dissertation, Universität Heidelberg.

  • Zhang, S., & Shan, X. (2001). Speciation of rare earth elements in soil and accumulation by wheat with rare earth fertilizer application. Environmental Pollution, 112(3), 395–405.

    Article  CAS  Google Scholar 

  • Zhang, Y., Sun, H., Liu, F., Dai, Y., Qin, X., Ruan, Y., et al. (2013). Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China: Diastereomer- and enantiomer-specific profiles, biomagnification, and human exposure. Chemosphere, 93(8), 1561–1568.

    Article  CAS  Google Scholar 

  • Zhao, C.-M., Shi, X., Xie, S.-Q., Liu, W.-S., He, E.-K., Tang, Y. T., & Qiu, R.-L. (2019). Ecological risk assessment of neodymium and yttrium on rare earth element mine sites in Ganzhou, China. Bulletin of Environmental Contaminationand Toxicology, 103, 565–570.

    Article  CAS  Google Scholar 

  • Zhu, H., Wang, F., Li, B., Yao, Y., Wang, L., & Sun, H. (2020). Accumulation and translocation of polybrominated diphenyl ethers into plant under multiple exposure scenarios. Environment International. https://doi.org/10.1016/j.envint.2020.105947

    Article  Google Scholar 

Download references

Funding

Irina Shtangeeva acknowledges financial support from Academy of Finland (Grant No 317686) and a partial support of this work by Russian Foundation of Basic Research (Grant No. 18–53–80010).

Author information

Authors and Affiliations

Authors

Contributions

Irina Shtangeeva contributed to study conception and design; Matti Niemelä, Paavo Perämäki contributed to the analysis of experimental samples; Irina Shtangeeva contributed to draft manuscript preparation. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Irina Shtangeeva.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtangeeva, I., Niemelä, M. & Perämäki, P. Bioavailability and toxicity of bromine and neodymium for plants grown in soil and water. Environ Geochem Health 44, 285–293 (2022). https://doi.org/10.1007/s10653-021-01034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01034-6

Keywords

Navigation