Skip to main content

Advertisement

Log in

Preclinical investigation of tolerance and antitumour activity of new fluorodeoxyglucose-coupled chlorambucil alkylating agents

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Our strategy is to increase drug accumulation in target tumour cells using specific “vectors” tailored to neoplastic tissue characteristics, which ideally are not found in healthy tissues. The aim of this work was to use 2-fluoro-2-deoxyglucose (FDG) as a drug carrier, in view of its well-known accumulation by most primary and disseminated human tumours. We had previously selected two FDG-cytotoxic conjugates of chlorambucil (CLB), i.e. compounds 21a and 40a, on the basis of their in vitro profiles. Here we investigated the antitumour profile and tolerance of these compounds in vitro and in vivo in two murine cell lines of solid tumours. In vitro, we found that micromolar concentrations of compounds 21a and 40a inhibited proliferation of B16F0 and CT-26 cell lines. Interestingly, compounds 21a and 40a were found to act at different levels in the cell cycle: S and subG1 accumulation for 21a and G2 accumulation for 40a. In vivo, a single-dose-finding study to select the Maximum Tolerated Dose (MTD) by the intraperitoneal route (IP) showed that the two peracetylated glucoconjugates of CLB were less toxic than CLB itself. When given to tumour-bearing mice (melanoma and colon carcinoma models), according to a “q4d × 3” schedule (i.e., three doses at 4-day intervals) both compounds demonstrated a promising antitumour activity, with Log Cell Kill (LCK) values higher than 1.3 in both B16F0 and CT-26 models. Hence compounds 21a and 40a are good candidates for further works to develop new highly active antineoplastic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Juillerat-Jeanneret L, Schmitt F (2007) Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Med Res Rev 27:574–590

    Article  PubMed  CAS  Google Scholar 

  2. Jang SH, Wientjes MG, Lu D, Au JL (2003) Drug delivery and transport to solid tumours. Pharm Res 20:1337–1350

    Article  PubMed  CAS  Google Scholar 

  3. Bielawski K, Bielowska A (2008) Small-molecule based delivery systems for alkylating antineoplastic compounds. Chem Med Chem 3:536–542

    PubMed  CAS  Google Scholar 

  4. Chezal JM, Papon J, Labarre P, Lartigue C, Galmier MJ, Decombat C, Chavignon O, Maublant J, Teulade JC, Madelmont JC, Moins N (2008) Evaluation of radiolabeled (hetero)aromatic analogues of N-(2-diethylaminoethyl)-4-iodobenzamide for imaging and targeted radionuclide therapy of melanoma. J Med Chem 51:3133–3144

    Article  PubMed  CAS  Google Scholar 

  5. Rapp M, Giraud I, Maurizis JC, Madelmont JC (2003) Synthesis and pharmacokinetic profile of a quaternary ammonium derivative of chlorambucil, a potential anticancer drug for the chemotherapy of chondrosarcoma. Bioorg Med Chem 11:5007–5012

    Article  PubMed  CAS  Google Scholar 

  6. Rapp M, Giraud I, Maurizis JC, Galmier MJ, Madelmont JC (2003) Synthesis and in vivo biodisposition of [14C]-quaternary ammonium-melphalan conjugate, a potential cartilage-targeted alkylating drug. Bioconjug Chem 14:500–506

    Article  PubMed  CAS  Google Scholar 

  7. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  PubMed  CAS  Google Scholar 

  8. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    Article  PubMed  CAS  Google Scholar 

  9. Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Cheson BD, O’shaughnessy J, Guyton KZ, Mankoff DA, Shankar L, Larson SM, Sigman CC, Schilsky RL, Sullivan DC (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808

    Article  PubMed  CAS  Google Scholar 

  10. Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology (2004). Radiology 231:305–332

    Article  PubMed  Google Scholar 

  11. Reux B, Weber V, Galmier MJ, Borel M, Madesclaire M, Madelmont JC, Debiton E, Coudert P (2008) Synthesis and cytotoxic properties of new fluorodeoxyglucose-coupled chlorambucil derivatives. Bioorg Med Chem 16:5004–5020

    Article  PubMed  CAS  Google Scholar 

  12. Boyd MR (1995) The NCI in vitro anticancer drug discovery screen. Concept, implementation, and operation; Part 1, in vitro methods. In: Teicher B (ed) Anticancer drug development guide: preclinical screening, clinical trials and approval. Humana Press, Totowa, pp 23–42

    Google Scholar 

  13. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  PubMed  Google Scholar 

  14. Workman P, Twentyman P, Balkwill F, Balmain A, Chaplin D, Double J, Embleton J, Newell D, Raymond R, Stables J, Stephens T, Wallace J (1998) United Kingdom Coordinating Committee on Cancer Research (UKCCCR) guidelines for the welfare of animals in experimental neoplasia (2nd edition). Br J Cancer 77:1–10

    Google Scholar 

  15. Miot-Noirault E, Legault J, Cachin F, Mounetou E, Degoul F, Gaudreault RC, Moins N, Madelmont JC (2004) Antineoplastic potency of arylchloroethylurea derivatives in murine colon carcinoma. Invest New Drugs 22:369–378

    Article  PubMed  CAS  Google Scholar 

  16. Bissery MC, Guenard D, Gueritte-Voegelein F, Lavelle F (1991) Experimental antitumour activity of Taxotere (RP 56976, NSC 628503), a taxol analogue. Cancer Res 51:4845–4852

    PubMed  CAS  Google Scholar 

  17. Polin L, White K, Kushner J, Paluch J, Simpson C, Pugh S, Edelstein MK, Hazeldine S, Fontana J, LoRusso P, Horwitz JP, Corbett TH (2002) Preclinical efficacy evaluations of XK-469: Dose schedule, route and cross-resistance behaviour in tumourbearing mice. Invest New Drugs 20:13–22

    Article  PubMed  CAS  Google Scholar 

  18. Rose WC, Wild R (2004) Therapeutic synergy of oral taxane BMS-275183 and cetuximab versus human tumour xenografts. Clin Cancer Res 10:7413–7417

    Article  PubMed  CAS  Google Scholar 

  19. Beverly AT (1997) Anticancer drug development guide. Humana Press, Totowa

    Google Scholar 

  20. Hait WN (2009) Targeted cancer therapeutics. Cancer Res 69:1263–1267

    Article  PubMed  CAS  Google Scholar 

  21. Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11(suppl 2):S81–S91

    Article  PubMed  CAS  Google Scholar 

  22. Warburg O (1931) The metabolism of tumours. Richard Smith, New York, pp 29–169

    Google Scholar 

  23. Maryanoff BE, Costanzo MJ, Nortey SO, Greco MN, Shank RP, Schupsky JJ, Ortegon MP, Vaught JL (1998) Structure-activity studies on anticonvulsivant sugar sulfamates related to topiramate. Enhanced potency with cyclic sulphate derivatives. J Med Chem 41:1315–1343

    Article  PubMed  CAS  Google Scholar 

  24. Iglesias-Guerra F, Candela JI, Banco E, Alcudia F, Vega-Perez JM (2002) Alkylating agents from sugars: synthesis of chlorambucil derivatives carriers by chiral glycosyl glycerols derived from D-glucosamine. Chirality 14:199–203

    Article  PubMed  CAS  Google Scholar 

  25. Cantuaria G, Magalhaes A, Angioli R, Mendez L, Mirhashemi R, Wang J, Wang P, Penalver M, Averette H, Braunschweiger P (2000) Antitumour activity of a novel glycol-nitric oxide conjugate in ovarian carcinoma. Cancer 88:381–388

    Article  PubMed  CAS  Google Scholar 

  26. Pohl J, Bertram B, Hilgard P, Nowroussian MR, Stuben J, Wiessler M (1995) D-19575-a sugar-linked isophosphoramide mustard derivative exploiting transmembrane glucose transport. Cancer Chemother Pharmacol 35:364–370

    Article  PubMed  CAS  Google Scholar 

  27. Seker H, Bertram B, Burkle A, Kaina B, Pohl J, Koepsell H, Wiessler M (2000) Mechanistic aspects of the cytotoxic activity of glufosfamide, a new tumour therapeutic agent. Br J Cancer 82:629–634

    Article  PubMed  CAS  Google Scholar 

  28. Sorg BL, Hull WE, Kliem HC, Mier W, Wiessler M (2005) Synthesis and NMR characterization of hydroxyurea and mesylglycol glycoconjugates as drug candidates for targeted cancer chemotherapy. Carbohydr Res 340:181–189

    Article  PubMed  CAS  Google Scholar 

  29. Briasoulis E, Pavlidis N, Terret C, Bauer J, Fiedler W, Schöffski P, Raoul JL, Hess D, Selvais R, Lacombe D, Bachmann P, Fumoleau P (2003) Glufosfamide administered using a 1-hour infusion given as first-line treatment for advanced pancreatic cancer. A phase II trial of the EORTC-new drug development group. Eur J Cancer 39:2334–2340

    Article  PubMed  CAS  Google Scholar 

  30. Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 231:305–332

    Article  PubMed  Google Scholar 

  31. Kelloff GJ, Hoffman JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808

    Article  PubMed  CAS  Google Scholar 

  32. Matsumoto T, Fujimoto-Ouchi K, Tamura S, Tanaka Y, Ishitsuka H (1999) Tumour inoculation site-dependent induction of cachexia in mice bearing colon 26 carcinoma. Br J Cancer 79:764–769

    Article  PubMed  CAS  Google Scholar 

  33. Garbe C, Eigentler TK (2007) Diagnosis and treatment of cutaneous melanoma: state of the art 2006 (2007). Melanoma Res 17:117–127

    Article  PubMed  Google Scholar 

  34. Miller AJ, Mihm MC (2006) Melanoma. N Engl J Med 355:51–65

    Article  PubMed  CAS  Google Scholar 

  35. Tarhini AA, Agarwala SS (2006) Cutaneous melanoma: available therapy for metastatic disease. Dermatol Ther 19:19–25

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. Yves Communal (Centre Jean Perrin, Clermont Ferrand) for cell cycle analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Miot-Noirault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miot-Noirault, E., Reux, B., Debiton, E. et al. Preclinical investigation of tolerance and antitumour activity of new fluorodeoxyglucose-coupled chlorambucil alkylating agents. Invest New Drugs 29, 424–433 (2011). https://doi.org/10.1007/s10637-009-9371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9371-0

Keywords

Navigation