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Abstract
Introduction Abdominal aortic calcifications (AAC) are incidentally found on medical imaging and useful cardiovascular 
burden approximations. The Morphomic Aortic Calcification Score (MAC) leverages automated deep learning methods to 
quantify and score AACs. While associations of AAC and non-alcoholic fatty liver disease (NAFLD) have been described, 
relationships of AAC with other liver diseases and clinical outcome are sparse. This study’s purpose was to evaluate AAC 
and liver-related death in a cohort of Veterans with chronic liver disease (CLD).
Methods We utilized the VISN 10 CLD cohort, a regional cohort of Veterans with the three forms of CLD: NAFLD, hepatitis 
C (HCV), alcohol-associated (ETOH), seen between 2008 and 2014, with abdominal CT scans (n = 3604). Associations 
between MAC and cirrhosis development, liver decompensation, liver-related death, and overall death were evaluated with 
Cox proportional hazard models.
Results The full cohort demonstrated strong associations of MAC and cirrhosis after adjustment: HR 2.13 (95% CI 1.63, 
2.78), decompensation HR 2.19 (95% CI 1.60, 3.02), liver-related death HR 2.13 (95% CI 1.46, 3.11), and overall death 
HR 1.47 (95% CI 1.27, 1.71). These associations seemed to be driven by the non-NAFLD groups for decompensation and 
liver-related death [HR 2.80 (95% CI 1.52, 5.17; HR 2.34 (95% CI 1.14, 4.83), respectively].
Discussion MAC was strongly and independently associated with cirrhosis, liver decompensation, liver-related death, and 
overall death. Surprisingly, stratification results demonstrated comparable or stronger associations among those with non-
NAFLD etiology. These findings suggest abdominal aortic calcification may predict liver disease severity and clinical 
outcomes in patients with CLD.
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Introduction

Chronic liver diseases (CLD) are estimated to affect 
1.5 billion people worldwide [1, 2]. Causally, 59% of 
CLDs are attributed to non-alcoholic fatty liver disease 
(NAFLD), 9% to hepatitis C virus (HCV), and 2% to 
alcohol-related liver disease (ETOH) [2–4]. Comorbid 
occurrences of hepatic manifestation and cardiovascu-
lar conditions are prevalent; those with CLD have higher 
cardiovascular disease (CVD) burden than the general 
population [5, 6]. The strongest risk factors for NAFLD 
and CVD include insulin resistance, diabetes, obesity, and 
metabolic syndrome [7–11].

Abdominal aortic calcifications (AAC) were previously 
considered incidental findings from medical imaging. AAC 
has recently gained clinical interest as a strong independent 
predictor of incident CVD and related events [12–16]. Previ-
ous research has demonstrated strong associations of AAC 
with standard cardiovascular risk scores, stronger predictive 
ability of AAC for cardiovascular events than Framingham 
Risk Scores, evidence supporting the approximation of coro-
nary calcification scores from AAC, and demonstration of 
AAC additively improving cardiovascular risk classifica-
tion [15, 17–21]. Computer tomography (CT) scans can be 
opportunistically leveraged for surveillance purposes, cap-
turing calcification measurements in anyone who already 
has a scan and contextualizing calcification burden among 
the general population [22, 23]. The Morphomics Analysis 
Group has developed the Morphomic Aortic Calcification 
Score (MAC) to identify those with elevated AAC [18, 21].

While the relationship of AAC and NAFLD has been 
described, evidence supporting the associations of AAC with 
other liver diseases and clinical outcomes is relatively sparse 
and may be overlooked [6]. The liver is a central organ sup-
porting homeostasis, metabolism, immunity, digestion, and 
detoxification [24, 25]. Modification of lipid and glucose 
metabolism are common factors of both cardiovascular dis-
ease and liver disease [26–29]. While similar, the causal 
direction of effect of CLD and other metabolic diseases is 
difficult to discern and likely bidirectional [30–33]. While 
the pathogenic mechanism is not well understood, the asso-
ciations between CLD and CVD are of clinical importance: 
for example, the treatment of HCV results in improved all-
cause mortality including CVD-related outcomes [33–35].

The purpose of this study was to evaluate the associa-
tion of AAC and liver-related clinical outcomes in a large 
cohort of Veterans with CLD. We sought to evaluate the 
effects of elevated aortic calcification and clinically rel-
evant events when stratified by NAFLD classifications. 
Understanding the clinical effects of AAC and NAFLD 
may further assist clinicians in identifying those who may 
benefit from intervention or treatment.

Methods

Study Cohort

This study retrospectively utilizes the Veterans Integrated 
Services Network (VISN) 10 liver disease cohort [36]. 
Encounters occurred within the VISN 10 regional Veterans 
Health Administration network and the Danville, Illinois 
facility. Participants had an inpatient or outpatient encoun-
ter and a liver disease diagnosis between 1/1/2008 and 
12/31/2014 and had an abdominal CT within 90 days of 
the diagnosis code. The cohort was restricted to include 
those with the three main liver disease diagnoses (HCV, 
NAFLD, and ETOH). HCV was defined as any positive 
HCV viral load during the study period. Patients with 
alcoholic liver disease were identified using ICD-9 codes 
for alcohol-related diseases or positive AUDIT-C scores 
(3 for female and 4 for male) in the absence HCV virus 
or ICD codes for other liver diseases (see supplementary 
tables). NAFLD was defined based on the absence of 
HCV virus, ETOH codes or positive alcohol use disorders 
identification test (AUDIT-C) and International Statisti-
cal Classification of Disease and Related Health Problem 
(ICD) codes for other liver diseases. Participants were 
excluded if mortality occurred within 180 days of the CT, 
had liver transplant or hepatocellular carcinoma at entry 
to cohort. Due to MAC score depending on the presence 
of abdominal CT scans, participants without observable 
imaging at the L3 and L4 vertebral level were removed 
from the analysis (N = 4616, n = 3604, removed 1008). 
See Fig. 1 for a flowchart describing the selection proce-
dure and study design.

Fig. 1  Flow chart for study design and stratification
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Study Measures

Cirrhosis, decompensated cirrhosis, diabetes mellitus, 
hypertension, and peripheral vascular disease was defined 
based off ICD-9 or ICD-10 codes (provided in supplemen-
tal information). Death was obtained from SPatient table 
found in the Veterans Affairs’ Corporate Data Warehouse 
(VA CDA) [37]. The “Vital Status” file was used for verifica-
tion and validation. Outcomes were conditionally dependent 
on ICD-9 or ICD-10 codes and accumulated time after the 
CT date [38]. For the outcome of hepatic decompensation, 
we utilized the codes previously described and validated in 
the VA CDA with the exclusion of the codes for esophageal 
varices without bleed (ICD 9- 456.21) [38]. Survival time 
was based on introduction to study or first diagnosed out-
come or censoring. Accumulated time was calculated for 
each specific outcome (accumulated days-to-death, hepatic 
decompensation days, cirrhosis days). Death hazard was 
modeled as presence of death outcome, and time-to-death. 
Hepatic decompensation (outcome) was defined as presence 
of decompensation and time-to-hepatic decompensation 
development. Cirrhosis (outcome) was defined as presence 
of cirrhosis and time-to-cirrhotic development. Liver-related 
death was defined as the presence of decompensated out-
come prior to time-to-death. Those with baseline cirrhosis 
or decompensation were excluded from the development of 
cirrhosis or decompensation.

Aortic calcification biomarkers were measured using 
Analytic Morphomics [21, 22, 39]. MAC score conceptual-
ization and operationalization are described elsewhere [18, 
21–23]. Briefly, the central aortic lumen zone was identified 
on each CT slice between the L1 and L4 vertebral levels. 
Dynamic thresholding was used to identify calcification 

regions and to control for measurement confounding cre-
ated by contrast phase [22]. Morphological regions with 
pixel values five standard deviations above the reference 
were classified as calcification [21, 22]. AAC was concep-
tualized as the percentage of the aortic wall obfuscated by 
calcification. A binary MAC score is useful to identify those 
with clinically elevated calcification levels: those with cal-
cification greater than 4.21% of the aortic wall relative to 
the L3 and L4 levels were considered elevated [18]. The 
threshold of 4.21% was chosen to maximize the sensitivity 
and probability of discovering those with elevated calcium 
burden [21, 23].

Descriptive statistics were performed to report differences 
among cohort participants with the three different CLD diag-
noses. Logistic regression was used to evaluate the odds of 
clinical comorbidities among all cohort participants with 
elevated and normal MAC scores. Logistic regression was 
also performed to establish an association of aortic calci-
fication with clinical comorbidities for adjustment in the 
Cox proportional hazard models. Cox proportional hazard 
was used to estimate the hazard of each clinical outcome 
among participants with elevated and normal MAC scores. 
Proportional hazards assumptions were verified through 
graphical inspection Figs. 2 and 3 displays Kaplan-Meier 
curves reflecting survival probability for each clinical out-
come. Hazard ratios for all participants are reported, as well 
as stratification by NAFLD (n = 2513) and non-NAFLD 
(n = 1091). Logistic regression models were adjusted for 
age and sex. Cox proportional hazard ratios were adjusted 
for age, sex, body mass index (BMI), peripheral vascular 
disease, congestive heart failure, hypertension, and diabetes.

A sensitivity analysis was performed to evaluate the rela-
tionship of hepatic steatosis severity on aortic calcification 

Fig. 2  Kaplan–Meier curves 
for aortic calcification and A 
overall death, B cirrhosis
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and the clinical outcomes investigated in this study. Partici-
pants with ETOH liver disease were removed from consid-
eration as ETOH would have a different causal mechanism 
of hepatic steatosis. Severity of hepatic steatosis was clas-
sified based on prior classification determined using MRI 
PDFF [40]. Those with a median value below 57 HU were 
categorized as normal levels (n = 234), a median 42–57 HU 
were mildly elevated levels (n = 618), a median 18–42 were 
moderately elevated levels (n = 378), and those under 18 
HU were severely elevated levels (n = 52) Due to sample 
size and prevalence of outcomes steatosis factors were con-
densed into those of lower (n = 852) and higher (n = 430) 
steatosis severity.

Analysis was performed with R version 4.12 [41]. Fig-
ures were generated with ggplot2 [42]. Where appropriate, 
statistical significance was set to α = 0.05.

Results

Table 1 reports baseline descriptive statistics for the three 
groups used in the analysis (NAFLD, HCV, ETOH). Mean 
patient age at CT was 62.70 (SD 12.64) for NAFLD, 57.04 
(SD 7.02) for HCV, and 57.45 (SD 11.22) for ETOH. The 
cohort was mostly white (76%) and male (93%). Mean 
BMI was 30.81 (SD 6.65) for NAFLD, 27.32 (SD 5.77) for 
HCV, and 28.38 (SD 6.48) for ETOH. Most groups were 
significantly different regarding clinical comorbidities and 
outcomes.

Mean and median aortic attenuation were not significantly 
different among the three groups. Mean total abdominal cal-
cium volume at the L3 vertebral level was 633.59  mm3 (SD 
965.16) for NAFLD participants, 691  mm3 (SD 979.12) for 

HCV, and 468.82  mm3 (SD 730) for ETOH participants. 
Mean wall percent calcification was 16.71 (SD 21.34) for 
NAFL, 13.38 (SD 17.87) for HCV, and 18.19 (SD 18.19), 
and 18.19 (SD 21.18) for ETOH participants. Elevated MAC 
scores were most prevalent in the ETOH group (~ 63%), 
followed by the NAFLD group (~ 58%) and the HCV group 
(~ 55%).

Table 2 reports odds ratios between the MAC scores and 
presence of clinical comorbidities in the full cohort. Signifi-
cant unadjusted associations were observed for all clinical 
comorbidities (Cirrhosis, Decompensated Cirrhosis, Diabe-
tes Mellitus, Hypertension, Congestive Heart Failure). After 
adjustment for age, significant associations were observed 
between MAC and the clinical comorbidities in all instances. 
After adjustment for age and sex, significant associations 
were observed between MAC and cirrhosis [OR 2.34 (95% 
CI 1.79, 3.08)], decompensated cirrhosis [OR 3.04 (1.93, 
4.94)], diabetes mellitus [OR 1.23 (95% CI 1.05, 2.14)], 
hypertension [OR 1.47 (1.03, 2.14)], peripheral vascular 
disease [OR 1.92 (95% CI 1.54, 2.52)], and congestive heart 
failure [OR 1.39 (95% CI 1.07, 1.83)].

Table 3 reports the relevant clinical events and contrib-
uted days for each CLD group observed during the study 
period. Significant differences were observed for all groups 
across observed events and contributed time. The maximum 
contributed study days for any participant was 4015. Overall 
death was observed at the highest proportion for the ETOH 
group (37.9%) and the least for the NAFLD group (29.6%). 
Decompensation was the most prevalent in the HCV group 
(16.4%) and least prevalent in the NAFLD group (3.5%). 
Cirrhosis was the most prevalent in the HCV group (43.1%) 
and lowest in the NAFLD group (9.8%). Liver-related death 
was most prevalent in the HCV group (13.2%) and lowest 

Fig. 3  Kaplan–Meier curves 
for aortic calcification and A 
decompensation, B liver-related 
death
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in the NAFLD group (2.4%). Median contribution days 
were highest for the HCV group for death [median 2232 
IQR (1583, 3320)] and hepatic decompensation [median 
2160 IQR (1526, 3183)], while the NAFLD group had 
the most contributed days the cirrhosis [median 1922 IQR 

(1367, 2617)] and liver-related death [median 1250 IQR 
(448,1945)].

Table 4 reports hazards ratios of elevated MAC score and 
clinical outcomes stratified by chronic liver disease status in 
the CLD Cohort. Cirrhosis development was significantly 

Table 1  Descriptive statistics 
for CLD cohort at baseline

NAFLD HCV ETOH p

n 2513 476 615 –
Age (mean (SD)) 62.70 (12.64) 57.04 (7.02) 57.45 (11.07) < 0.001
Male (%) 2331 (92.8) 466 (97.9) 597 (97.1) < 0.001
Race (%) < 0.001
 Black 371 (14.8) 187 (39.3) 107 (17.4)
 White 1908 (75.9) 242 (50.8) 454 (73.8)
 Other 36 (1.4) 4 (0.8) 17 (2.8)
 Unknown 198 (7.9) 43 (9.0) 37 (6.0)

Elixhauser Index Score (mean (SD)) 3.42 (2.45) 3.13 (1.99) 4.38 (2.34) < 0.001
BMI (mean (SD)) 30.81 (6.65) 27.32 (5.77) 28.38 (6.48) < 0.001
Cirrhosis (%) 146 (5.8) 83 (17.4) 129 (21.0) < 0.001
Liver decompensation (%) 35 (1.4) 26 (5.5) 63 (10.2) < 0.001
Hypertension (%) 1231 (48.6) 271 (56.9) 427 (69.4) < 0.001
Diabetes (%) 1147 (45.6) 132 (27.7) 181 (29.4) < 0.001
Peripheral vascular disease (%) 392 (15.6) 28 (5.9) 72 (11.7) < 0.001
Congestive heart failure (%) 255 (10.1) 20 (4.2) 60 (9.8) < 0.001
L3 calcification volume (mean (SD)) 633.59 (965.16) 468.82 (730.00) 691.62 (979.12) < 0.001
Aortic mean HU (mean (SD)) 97.18 (71.17) 101.54 (81.26) 98.96 (73.72) 0.464
L3 area calcification  mm2 (mean (SD)) 341.36 (466.56) 253.37 (343.83) 366.85 (499.62) < 0.001
L3 wall % calcification (mean (SD)) 16.71 (21.34) 13.38 (17.87) 18.19 (21.18) 0.001
Elevated MAC Score (%)" 1454 (57.9) 262 (55.0) 386 (62.8) 0.026

Table 2  Odds ratios of MAC 
and clinical comorbidities for 
CLD cohort

Unadjusted Age Age + sex

Cirrhosis 2.11 (1.66, 2.72) 2.41 (1.84, 3.17) 2.34 (1.79, 3.08)
Decompensated cirrhosis 2.19 (1.47, 3.67) 3.19 (2.03, 5.17) 3.04 (1.93, 4.94)
Diabetes mellitus 1.64 (1.42, 1.90) 1.26 (1.08, 1.42) 1.23 (1.05, 1.45)
Hypertension 2.27 (1.98, 2.61) 1.54 (1.32, 1.80) 1.47 (1.03, 2.14)
Peripheral vascular disease 3.35 (2.67, 4.25) 2.00 (1.57, 2.57) 1.92 (1.54, 2.52)
Congestive heart failure 2.21 (1.72, 2.87) 1.42 (1.09, 1.87) 1.39 (1.07, 1.83)

Table 3  Clinical events and 
contributed days for CLD 
cohort

NAFLD HCV ETOH p

n 2513 476 615
Death (%) 744 (29.6) 169 (35.5) 233 (37.9) < 0.001
 Days (median [IQR] 1979 [1537, 2686] 2232 [1583, 3220] 1938 [1348, 2794] < 0.001

Hepatic decompensation (%) 88 (3.5) 78 (16.4) 80 (13.0) < 0.001
 Days (median [IQR] 1958 [1516, 2666] 2160 [1526, 3183] 1879 [988, 2727 < 0.001

Cirrhosis (%) 247 (9.8) 205 (43.1) 175 (28.5) < 0.001
 Days (median [IQR] 1922 [1367, 2617] 1782 [436, 2824] 1664 [202, 2472] < 0.001

Liver-related death (%) 60 (2.4) 63 (13.2) 53 (8.6) < 0.001
 Days (median [IQR] 1250 [448, 1945] 1195 [777, 1865] 639 [290, 1488] < 0.001
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associated with MAC across the different strata, except for 
HCV status. Associations remained statistically significant 
after adjustment in the full cohort, the NAFLD and non-
NAFLD (HCV+ETOH) groups (See Fig. 4), HRs 2.13 (1.63, 
2.78), 2.19 (95% CI 1.41, 3.41), 2.05 (95% CI 1.28, 3.28), 
respectively. Hepatic decompensation development signifi-
cantly increased with elevated MAC in the fulld cohort, HR 
2.19 (95% CI 1.60, 3.02). This relationship seemed driven by 
the non-NAFLD group, (HCV + ETOH) HR 2.80 (95% CI 
1.52, 5.17), more than the NAFLD group HR 1.32 (95% CI 
0.79, 2.20). Similar findings were observed with liver-related 
death and MAC, HR 2.13 (95% CI 1.46, 3.11) for the full 
cohort, and for HCV + ETOH, HR 2.34 (95% CI 1.14, 4.83). 
Overall death was associated with MAC in the full cohort, 
HR 1.47 (95% CI 1.27, 1.71), for NAFLD HR 1.34 (95% 
CI 1.11, 1.61) and HCV + ETOH 1.67 (95% CI 1.19, 2.36).

Table 5 reports hazard ratios for MAC score and clinical 
outcomes stratified by hepatic steatosis severity. Among par-
ticipants with lower steatosis severity (normal or mild rated 
liver density) having elevated aortic calcification resulted 
in increased hazard regarding cirrhosis HR 2.01 (95% CI 
1.13, 3.53) and overall death HR 2.41 (95% CI 1.79, 3.23). 

Table 4  Hazard ratios of MAC and outcomes in CLD cohort

Multiple adjustments include Age, BMI, Sex, PVD, CHF hypertension and diabetes

Cirrhosis Full Cohort NAFLD HCV ETOH HCV + ETOH

Age + sex adjusted 2.15 (1.65, 2.80) 2.32 (1.51, 3.58) 1.38 (0.86, 2.22) 1.99 (1.25, 3.18) 1.68 (1.21, 2.33)
Multiple adjusted 2.13 (1.63, 2.78) 2.19 (1.41, 3.41) 1.39 (0.86, 2.23) 1.69 (1.22, 2.36) 2.05 (1.28, 3.28)
Decompensation
 Age + sex adjusted 2.25 (1.64, 3.07) 1.56 (0.94, 2.59) 2.16 (1.27, 3.65) 2.27 (1.52, 3.37) 2.44 (1.33, 4.45)
 Multiple adjusted 2.19 (1.60, 3.02) 1.32 (0.79, 2.20) 2.21 (1.31, 3.76) 2.39 (1.60, 3.56) 2.80 (1.52, 5.17)

Liver-related death
 Age + sex adjusted 2.25 (1.53, 3.23) 1.77 (0.94, 3.34) 1.87 (1.06, 3.31) 2.00 (1.27, 3.13) 2.21 (1.08, 4.53)
 Multiple adjusted 2.13 (1.46, 3.11) 1.46 (0.76, 2.78) 1.86 (1.04, 3.31) 2.03 (1.28, 3.20) 2.34 (1.14, 4.83)

Death
 Age + sex adjusted 1.56 (1.35, 1.80) 1.45 (1.22, 1.75) 1.65 (1.16, 2.27) 1.70 (1.34, 2.14) 1.72 (1.23, 2.40)
 Multiple adjusted 1.47 (1.27, 1.71) 1.34 (1.11, 1.61) 1.57 (1.11, 2.21) 1.66 (1.30,2.11) 1.67 (1.19, 2.36)

Fig. 4  Hazard ratios of elevated 
MAC Score and clinical out-
comes in the CLD cohort

Table 5  Hazard ratios of aortic calcification and clinical outcomes 
stratified by hepatic steatosis severity

Lower Higher

Cirrhosis 2.01 (1.13, 3.53) 3.04 (1.33, 6.93)
Decompensation 1.37 (0.68, 2.78) 3.67 (1.40, 9.61)
Liver-related death 1.71 (0.70, 4.14) 6.88 (1.59, 29.67)
Death 2.41 (1.79, 3.23) 3.28 (1.93, 5.57)
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Those with higher steatosis severity and elevated aortic cal-
cification had higher hazards for all clinical outcomes: cir-
rhosis HR 3.04 (95% CI 1.33, 6.93), decompensation HR 
3.67 (95% CI 1.40, 9.61), liver-related death HR 6.88 (1.59, 
29.67) and HR 3.28 (95% CI 1.93, 5.57).

Discussion

We evaluated the relationship of a novel aortic wall percent 
calcification score (MAC), with comorbidities and chronic 
liver disease-related outcomes in a cohort of veterans. MAC 
was found to be independently associated with cirrhosis, 
decompensation, liver-related death, and overall death after 
adjustment for age, sex, and common clinical comorbidi-
ties. After stratification by NAFLD status, the relationship 
of MAC with decompensation and liver-related death in 
patients with NAFLD was attenuated, while the relation-
ship of MAC with cirrhosis and overall death remained 
significant. In those with HCV and ETOH, associations of 
elevated MAC with cirrhosis, decompensation, liver-related 
death, and overall death remained after multiple adjustment, 
although this appears to be driven by ETOH. After limit-
ing to those without ETOH, elevated steatosis severity had 
greater hazard magnitude for cirrhosis, decompensation, 
liver-related death, and overall death.

The consistent association of NAFLD with subclinical 
atherosclerosis and prevalent CVD is well established [7, 
43–46]. While the findings of this study do support the 
relationship between NAFLD and atherosclerosis, it is 
surprising to see stronger hazard ratios among MAC and 
some clinical outcomes for the HCV and ETOH strata. Liver 
fibrosis has previously been associated with aortic calcifica-
tion while cirrhosis has been reported to increase the risk 
of cardiovascular death regardless of etiology and stage of 
disease [47–53]. Both aortic calcification and liver fibrosis 
are causally influenced by inflammation, elevated oxidative 
stress, and accumulation of pro-inflammatory macrophages 
[47, 54, 55]. Vascular calcification approximates prolonged 
disease states of the medial or intimal wall and may explain 
the overarching relationship [14, 56, 57]. Further, inorganic 
pyrophosphate deficiencies are associated with pathologic 
calcification, dysregulation provides a potential encompass-
ing mechanism for arterial calcification promotion [47, 58, 
59]. An observational study of hepatic pyrophosphate defi-
ciency reported inorganic pyrophosphate before and after 
liver transplantation; authors determined that promotion of 
arterial calcification in several arterial beds were attributed 
to inorganic pyrophosphate dysregulation via liver disease 
[47].

While studies examining the relationship of NAFLD and 
atherosclerosis are prevalent, relatively few studies examine 
this relationship in those with ETOH-related CLD [60]. A 

coronary imaging study of patients with end-stage renal dis-
ease (due to ETOH) demonstrated higher total prevalence of 
coronary calcification when compared to the prevalence of 
a matched cohort without CLD [61]. Further, higher risk of 
CVD-related mortality has been noted in those with ETOH 
related CLD than with NAFLD [62]. While stronger risk of 
atherosclerosis was reported for the ETOH than NAFLD 
strata, the authors thoughtfully point out that the ETOH 
group had more advanced states liver disease compared to 
NAFLD group [60]. Regardless, large cross-sectional study 
estimated that 10-year Framingham Risk Scores were similar 
in those with ETOH and NAFLD compared to those without 
liver disease [63].

Strong associations between HCV and atherosclerosis 
are reported in all outcomes but cirrhosis, even with adjust-
ment for cardiovascular risk factors [33–35, 64]. Those 
with chronic HCV infection are susceptible to cardiovas-
cular morbidities through inflammatory and lipid processes 
[65]. In large cohort studies, those with diagnosed HCV 
had higher all-cause mortality and diagnostic status was an 
independently associated with cerebrovascular death [33, 
65–68]. However, this could be due to the high co-occur-
rence of type 2 diabetes, insulin resistance, and steatosis 
among those with chronic HCV infection and will require 
further evaluation [69–72].

Consistent associations between vitamin K deficiency and 
vascular calcification are reported in the literature [73–76]. 
Vitamin K deficiency is also commonly observed in patients 
with CLD, and some suggest a protective effect of vitamin K 
on CLD, particularly metabolic dysfunction-associated fatty 
liver disease [77–81]. The overlying relationship between 
vitamin K, atherosclerosis, and CLD may be due to shared 
risk factors, heterostasis, physical function, or indicative of 
disease state. Further epidemiologic and causal studies will 
be necessary to evaluate a common mechanism.

Despite the study population being scanned for indica-
tions outside of cardiovascular disease, we detected elevated 
atherosclerotic burden in more than 55% of the study popu-
lation. For reference, AAC prevalence has been estimated 
at 29% in NHANES [82]. Previous studies have associated 
aortic calcification with cardiovascular disease, overall mor-
tality, incident coronary heart disease, myocardial infarction, 
diabetes mellitus, and stroke [13, 16, 82, 82–88]. Unsurpris-
ingly, the logistic regression results of this study indicated 
strong associations of MAC with diabetes mellitus, hyper-
tension, peripheral vascular disease, and congestive heart 
failure.

This work has limitations. The cohort is limited to vet-
erans, who have been noted to have higher rates of chronic 
liver disease relative to the general population [1, 89]. There 
may an additional selection bias as this cohort is limited to 
those with abdominal CT scan. Therefore, the results may 
not be generalizable, and magnitude of effect estimates could 
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be biased away from the null. As the secondary data used 
in this study leverages patient encounters rather than the 
recruitment of participants, it is difficult to ascertain whether 
the patient was lost to follow-up before the study ended. 
As such, informative biases may exist inflating contribution 
time in non-censored observations. Finally, as this analysis 
is cross-sectional, causal inference is limited.

Nevertheless, this work highlights the comorbidity of ele-
vated aortic calcification with NAFLD, HCV, and alcohol-
related liver diseases in a large clinically relevant cohort. 
Future work should validate the direction and magnitude 
of the relationship between aortic calcification and non-
NAFLD liver diseases. Such validation will contextualize 
comorbidity between atherosclerotic cardiovascular disease 
and chronic liver diseases and may be useful for the mitiga-
tion of cirrhosis, decompensation, liver-related death, and 
overall death in the clinical setting.
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