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Abstract. Graph query, pattern mining and knowledge discovery be-
come challenging on large-scale heterogeneous information networks (HINs).
State-of-the-art techniques involving path propagation mainly focus on
the inference on nodes labels and neighborhood structures. However,
entity links in the real world also contain rich hierarchical inheritance
relations. For example, the vulnerability of a product version is likely
to be inherited from its older versions. Taking advantage of the hierar-
chical inheritances can potentially improve the quality of query results.
Motivated by this, we explore hierarchical inheritance relations between
entities and formulate the problem of graph query on HINs with hierar-
chical inheritance relations. We propose a graph query search algorithm
by decomposing the original query graph into multiple star queries and
apply a star query algorithm to each star query. Further candidates from
each star query result are then constructed for final top-k query answers
to the original query. To efficiently obtain the graph query result from
a large-scale HIN, we design a bound-based pruning technique by using
uniform cost search to prune search spaces. We implement our algorithm
in GraphX to test the effectiveness and efficiency on synthetic and real-
world datasets. Compared with two common graph query algorithms, our
algorithm can effectively obtain more accurate results and competitive
performances.

Keywords: Heterogeneous information network · Graph query · Hier-
archical inheritance relations.

1 Introduction

Many real-world systems, such as enterprise networks, social networks, and bio-
logical networks, can be modeled as heterogeneous information networks (HIN)
[19]. HIN contains multiple types of objects and relations providing rich semantic
queries, knowledge discoveries, information fusions, recommendations and pre-
dictions. Graph query, as an important technique for solving these tasks, has
been extensively explored recently. It mainly explores subgraph isomorphism
algorithms to get an exact match [6], and also develop subgraph matching al-
gorithms to do an inexact/approximate match as the potential query answers
[12,10]. Current research on graph query/matching mainly focuses on two di-
mensions. The first dimension is the unary node-to-node properties mapping.
The second dimension is edge-to-edge/path similarities. Jin et al. [10] consider
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node types and closest path propagations to get scores of query answers. Some
works [12,23] consider similar nodes’ labels and their neighbors to learn the path
propagation to get ranked answers.

However, knowledge representation has hierarchical structures in the real
world system. Long et al. state that the knowledge structure representation can
be inherited with upward and downward inheritances [16]. Clauset et al. show
that the existing knowledge of hierarchical structure can be used to predict miss-
ing connections [3]. In addition, Jiang et al. construct the hierarchical structures
of entities for the large freebase knowledge base system based on real world en-
tities and relations [9]. One visible example in an enterprise’s product databases
is that product vulnerabilities can be inherited from or passed down to different
product versions. While measuring the similarity of objects for graph matching,
hierarchical inheritance relations can also play an important role for the answer
ranking. The quality of query answers is also affected by hierarchical inheritance
relations. Therefore, we consider the power of hierarchical inheritances whereby
a subclass inherits properties and constraints of its parents, and more meaningful
and accurate query answers are expected to be obtained.

Taking an example of an information network with hierarchical structure,
we consider a schema of an enterprise’s product information network shown in
Fig 1a. Every node represents a type of entity at the schema level. The product
type is connected by four property types: site, workgroup, technology and vul-
nerability. Product entities have hierarchical connections with different versions
of products shown in Fig 1b. Some properties are inherited among different ver-
sions of products, such as vulnerability and technology properties (in red bold
lines in Fig 1a).

Given the information network schema with inherited relations, we show a
user query example here. Assume a user wants to find the top-5 related products
affected with a given vulnerability V1 (Cisco WebEx meetings server informa-
tion disclosure vulnerability) and employed with a given technology T1 (voice
- communications manager additional apps and plugins), which is constructed
as a user query graph shown in Fig 1c. Fig 1d shows a possible top-5 subgraph
answers of the query in this answer graph. The given V1 and T1 node in user
query graph is exactly matched with the V1 and T1 node respectively in the
answer graph, and there are 5 product nodes which are possible answers to the
query of product node.

For general methods, if we consider closest node types and shortest distances
to measure the similarities of answers for matching, we get the following ranking
order of answer scores, P1 (Cisco WebEx meetings server versions 0.1.0), P2

(Cisco WebEx meetings server versions 0.2.0), P3 (Cisco WebEx meetings server
versions 1.1), P4 (Cisco WebEx meetings server versions 2.1) and P5 (Cisco
Jabber for Windows), that is, the ranking order of answer scores is s(P1) >
s(P2) = s(P3) > s(P4) > s(P5). However, the vulnerability property can be
inherited from different prior versions of products. Here P1 is the prior (parent)
version of P3, and P3 is the parent version of P4 as the arrow indicates. Hence,
P1’s vulnerabilities can pass down to product P3 or P4, and P4’s vulnerability can



come from upper P3 or P1. With the hierarchical inheritances, the answer scores
can have a more accurate ranking order s(P1) ≈ s(P3) ≈ s(P4) > s(P2) > s(P5),
which is important for engineers’ troubleshooting and customers’ queries.
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Fig. 1: A product information network schema and a query example. (a) A graph
schema of a product network (b) An example of a hierarchical connection struc-
ture for product versions (c) A user query graph of top products (d) A answer
graph with top-5 products

Due to the complexity and heterogeneousness of large networks, designing
an effective and efficient algorithm with additional hierarchical features is chal-
lenging. In this paper, we conquer this problem by modeling graph query with a
new matching score function with hierarchical inheritance relations for effective
answers, and by proposing a bound-based technique for an efficient query. The
main contributions are as follows:
– We formulate the graph query problem with hierarchical inheritance relations

to improve query quality.
– We propose a new graph query algorithm based on uniform cost search in

the context of a new matching score function.
– We design a bound-based method to prune search spaces to efficiently get

the top-k best answers.
– We implement our algorithm in the Spark GraphX distributed environment

for large-scale networks. Experiments are done to evaluate the effectiveness
and efficiency of our matching algorithm.

The rest of this paper is organized as follows. Section 2 describes the problem and
formulates graph queries with hierarchical inheritance relations. The proposed
algorithm for graph queries and its bound-based pruning technique are presented
in Section 3. Section 4 discusses the distributed implementation. In Section 5,
we present the evaluation of our algorithms. The related work and conclusion
are shown in Sections 6 and 7.

2 Problem Formulation

2.1 Data Graph, Query Graph and Matching
We consider a HIN that contains hierarchical inheritance relations among nodes
as a hierarchical heterogeneous information network (HHIN). HHIN is modeled



as a partially undirected, labeled data graph G(V,E, Lv, He) with a node set
V, edge set E, node label set Lv and hierarchical inheritance relations He with
directions, where (1) each node v ∈ V represents an entity in G, (2) each edge
e ∈ E represents the relationship between two entities, and each edge weight is
considered to be 1. Only an edge between two hierarchical entities has a direction.
(3) each node v has a label information Lv, including at least a node type and
a keyword description, (4) especially, for hierarchical entities, each edge e ∈ He

between them indicates a hierarchical inheritance relation. Each edge weight
between two hierarchical entities is |He| = 1 .

There exists upward and downward hierarchical inheritance relations in G.
We call a node with label information that is inherited among other node’s
hierarchical entities as an “attaching” node, such as a vulnerability node whose
label information that could be inherited among product nodes in Fig 1a. A
node with a node type that has hierarchical levels is called an “inherited” node,
such as a product node in Fig 1a. If an attaching node’s label information passes
down to its inherited node’s lower level entity, we call it downward inheritance.
Conversely, if an attaching node’s label information can pass up to its inherited
entity’s higher level entity, it is called upward inheritance. The attaching node
and one of its inherited nodes are formed as a “property inheritance pair”. For
example, the vulnerability’s label information in the vulnerability entity can be
downward or upward inherited from product entities in higher or lower levels as
shown in red bold line in Fig 1a. The label information of workgroup or site is
not inherited among product nodes as shown in black line in Fig 1a.

A query graph Q(VQ, EQ, Lv) is modeled as an undirected and labeled graph.
VQ contains a set of specific nodes V SQ and a set of query nodes V UQ with types

τUQ , which are provided by users. A specific node is defined as an instantiated
node in Q that has a fixed node type and node label information, and it is also
matched to a node in G. A query node is defined as a node in Q given with
node type only that we want to find its matched nodes in G. According to one
category based on query node number, if the query node number |V UQ | = 1,
we denote the query graph as a star query graph. If the query node number
|V UQ | > 1, it is called a general (non-star) query graph. According to another
category based on hierarchical inheritance relations, if each of the specific nodes
in V SQ can form a property inheritance pair with any one of query node in V UQ , we
call it a hierarchical query graph. If there exists at least one property inheritance
pair between them, we call it a mixed hierarchical query graph. Otherwise, it is
called a non-hierarchical query graph. For example, Fig 1c shows a hierarchical
star query graph where node V1 and node T1 comprise specific nodes, and the
node marked with “?” with product type represents a query node.

Given a query graph Q and a data graph G, we need to map each query
node to a data node. This transfers to a subgraph matching problem. We denote
as M an already matched subgraph in G to Q. Then a subgraph matching is a
many/one-to-one mapping function φ: VQ → V , such that, for each query node
v ∈ VQ, φ(v) ∈ M . The problem here is to find such top-k potential mapping
functions given a query graph Q and a data graph G.



2.2 Matching Score

If nodes are close in a query graph, their mapping nodes in a data graph are
also close based on node neighbors and hierarchical inheritance relations. Given
a query graph Q containing a node pair (u, v) ∈ VQ that is connected, a matched
subgraph M in G has mapped nodes (φ(u), φ(v)).

Node closeness score: We define node closeness score based on whether hier-
archical inheritances exist in Q.

(1) When u and v do not form a property inheritance pair, the closeness
score of (φ(u), φ(v)) is defined as:

r(φ(u), φ(u)) =

{
1 if φ(u) = φ(v)

αl(φ(u),φ(v)) otherwise
(1)

where l(φ(u), φ(v) is the shortest distance from φ(u) to φ(v). α is a constant
propagation factor that controls the decreasing rate of node closeness within the
value in [0, 1].

(2) When u and v can form a property inheritance pair, the closeness score
of (φ(u), φ(v)) is defined as:

r(φ(u), φ(v)) =

{
1 if φ(u) = φ(v)

αl(φ(u),φ(v)−β∗|h(φ(u),φ(v)| otherwise
(2)

where l(φ(u), φ(v) is the shortest distance from φ(u) to φ(v). α is a constant
propagation factor in [0, 1] that controls the decreasing rate of node closeness. β
is defined as the hierarchical level propagation factor in (0, 1), which indicates
the importance of hierarchical level propagation when an attaching node’s label
information inherits between different hierarchical levels of an inherited node. β
is expected to be smaller than α because hierarchical inheritance is more reliable
than shortest distances when traversing long hops. h(φ(u), φ(v)) indicates the
hierarchical level difference from φ(u) to φ(v). Vice versa, the hierarchical level
difference from φ(v) to φ(u) is indicated as h(φ(v), φ(u)), and h(φ(v), φ(u)) =
−h(φ(u), φ(v)).

Based on the node closeness score, the matching score of M is defined as the
summation of mapping nodes (φ(u), φ(v)) for all connected edges (u, v) in Q.

F (φ) =
∑

(u,v)∈EQ

r(φ(u), φ(v)) (3)

2.3 Problem statement:

Given a query graph Q and a data graph G, we want to find the top-k subgraph
answers inG, that is, to find a set of k subgraphsMk inG, such that for any nodes
φ(VQ) ∈ Mk and for all nodes φ′(VQ) /∈ Mk, the matching score F (φ) > F (φ′).
Specific nodes V SQ in Q are identified to exactly one-to-one mapping to matched

nodes φ(V SQ ) in G (we call them anchor nodes V AG ), which are easily to be found.



Therefore, we consider the top-k sets of candidate nodes in Mk for a set of query
nodes based on hierarchical inheritance relations and graph structures.

Formally, given a query graphQ(VQ, EQ, Lv), the top-k subgraphsMk(V ′, E′, L′)
have the following mapping function with Q. For each v ∈ VQ, there is a one-to-
one mapping φ(v) ∈ V ′: v → φ(v) based on the matching score F . Because our
problem considers exact and approximate matches to output the top-k matching
answers, the edge of e ∈ EQ does not need to have a one-to-one mapping to the
edge e′ ∈ E′.

3 Graph Query Algorithm with Hierarchical Inheritance
Relations

It is time-consuming to get all potential subgraphs from a large-scale data graph
with a big query graph. Also, for a general query graph with multiple query
nodes, it is proved to be an NP-hard problem even for subgraph isomorphism
[14]. Yang et al. [22] divide a query graph into star query and then utilize the top-
k star-join method, using the similar relational database HRJN [8]. Inspired by
the structure of our general query graph with multiple query nodes, we propose
a general graph query algorithm comprising three phases as follows:

Phase 1 (Query Decomposition): A general query graph contains some
specific nodes and one or more query nodes. Considering the characteristics of
our query graph, the decomposing policy of a general query graph is not as
complex as the decomposing method considered in [22], as we don’t use the join
for final combinations of star queries. Therefore, a simple and effective policy
is to use the number of query nodes as the number of star query graphs. Each
query node is the center query node for each star query, every specific node that
is connected to the center query node is a specific node for its star query.

Phase 2 (Star query): We propose to use uniform cost search and bound-
based pruning to derive top ks candidates for each star query. Selecting the top
ks candidates for each star query can effectively serve the final top-k candidate
results for a general graph query (Section 3.1 – 3.5).

Phase 3 (Candidates selection): We consider the top ks star query can-
didates together and get the optimum edge/path matching scores for query node
combinations. Different from top-k join strategy with a common node, without
a common node for joining, query node candidates can be 1 or more hops con-
nected in G. Therefore, graph traversals are needed among these star query node
candidates to find the final top-k candidate sets for query nodes. When there
are |V UQ | query nodes, this involves exponential |V UQ |ks computations, which is

highly expensive if |V UQ | and ks are large. We propose to use a branch and bound
technique to greatly reduce search spaces by filtering out unexpected candidate
sets (Section 3.6).

If the input query graph Q is a star query graph, then we only do phase 2 (star
query) to get the answer. If the input query graph Q is a general query graph,
it will involve the three phases. As query decomposition is easy to accomplish,
we will mainly discuss star query algorithm and candidate selection for general
query graph algorithm.



3.1 Matching Score for Star Query

Given a star query graph Q with a set of specific nodes V SQ and a query node

v, specific nodes V SQ have mapped to anchor nodes V AG in G, so we only need
to find the top-k mapping nodes φ(v) for v. We denote S(φ(v)) as the matching
score of φ(v) based on the aggregated results of node closeness scores from all
nodes in φ(V SQ ):

S(φ(v)) =
∑
vs∈V S

Q

r(φ(vs), φ(v)) (4)

3.2 Bound-based Pruning for Star Query

For each different anchor node, there is a propagation path to each candidate
node in G. It is time-consuming to do all the node traversals if G is very large.
We use bound-based pruning technique to effectively reduce search spaces for
star queries. We trace the lower bound in the top-k answers and infer the upper
bound of unseen nodes to effectively filter these nodes while traversing.

Bounds of Matching Score In the top-k answer list of query nodes, every
node is maintained with a upper bound of matching score and a lower bound of
matching score for a query node. We refine the upper bound S(φ(v)) and lower
bounds S(φ(v)).

S(u) =
∑
vs∈V S

Q

r(φ(vs), φ(v)) (5)

S(u) =
∑
vs∈V S

Q

r(φ(vs), φ(v)) (6)

The matching score bound is dependent on the upper bound of node closeness
score r and lower bound of closeness score r. Next, we show how to get these
bounds of node closeness score.

Bounds of Node Closeness Score The lower bound and upper bound are
obtained online while the graph traversal is operated. We show the lower and
upper bound refinement in the different iterations of graph traversal. We denote
t as the iteration number of uniform cost search from an anchor node s to a
candidate node u.

(1) The initial bounds is set as r0(s, u) = 1 and r0(s, u) = 0. (2) In
each of next iterations, every node u is updated with its lower bound using the
information from its previous iteration result when it is not visited yet. The
lower bound is computed as follows:

rt(s, u) =

{
rt−1(s, u) rt−1(s, u) > 0

α1−β·|h(uprev,u)| · rt−1(s, uprev) otherwise
(7)

The upper bound in iteration t is computed as follows:

rt(s, u) =

{
rt(s, u) rt(s, u) > 0

αt−β·|h(s,u)| otherwise
(8)

where uprev is the parent node of u when traversing from s along a path to u.



3.3 Top-k Selection with Bounds

How to effectively update potential candidate results and select the final top-k
results during the iterations is crucial for computation performances. Here we
use a top-k selection policy based on the upper and lower bounds of matching
scores referred as the top-k emergence test in [13]. We maintain a top-k candidate
result in a priority queue P . Each candidate node u contains its lower bound
SG(u), and upper bound SG(u). We define Skth as the smallest lower bound in
P . The process for selecting and updating P during the iterations is shown as
follows:

(1) Find the top-k potential answer nodes and put in P . (2) Calculate the kth
smallest lower bounds Skth in P . (3) If the upper bound SG(u) of an incoming
node n is less than the Skth, we prune the node u and the nodes with bigger
distance than u from the starting source. Because these nodes’ matching scores
are lower than any node’s matching score in P , they are not qualified for top-k
final results. (5) Continue the previous steps until the convergence condition is
reached shown in Section 3.4.

3.4 Convergence of Iteration Propagation

Two types of iteration conditions are identified to terminate the graph propaga-
tion to obtain the final top-k answers.

(1) When all the nodes with designated query node types have been explored
or pruned by the bound-based pruning technique (Section 3.3), all the visited
candidate nodes have obtained the necessary matching scores.

(2) When no message updated for the next propagation, that is, all the
candidate nodes’ matching scores keep the same as the last iteration.

3.5 Star Query Algorithm

According to the proposed star query matching score and bounding-based prun-
ing, we show our star query with hierarchical inheritance relations algorithm

(SQH) in algorithm 1. First, we get anchor nodes φ(V SQ ) in G for each V SQ in
Q, which are specific one-to-one mappings in G (in Line 1). Then we aggregate
node messages to do propagation simultaneously from each anchor nodes with
uniform cost search (in Line 8). Search cost of each node in uniform cost search
is indicated by the inverse of its matching score here. In each iteration of prop-
agation, the candidate node closeness and matching score, lower bounds and
upper bounds are updated (in Lines 9–10). Candidate nodes and the queue are
continuously updated (in Lines 11–15). The specific top-k selection and update
are shown (in lines 17–28). Iterations continue until we found the final top-k
candidate result. The worst time complexity is O(|V | ∗ |V SQ |), where |V | is the
node number of G. With the pruning of potential unmatched nodes, the average
time complexity is reduced to O(M ∗ |V SQ |), where M is the number of visited
nodes with type τ and M � |V |.

Algorithm 1 Top-k star query (SQH)

Require: : Data graph G(V,E, Lv, He), Query Graph Q(V SQ , τ), Matching num-
ber k



Ensure: Top-k match set Pk
1: Get anchor nodes set φ(V SQ ) for V SQ
2: Initialize empty match set Pk (size k)
3: Initialize node closeness score r(s, u), r(s, u) and r(s, u)
4: Initialize matching score (SG(u), SG(u), SG(u))
5: Initialize L← {v|type(v) = τ & v ∈ V }
6: t← 0
7: while L not empty and message exists do
8: Aggregate node u from each anchor nodes with uniform cost search
9: Update (r(s, u), r(s, u), r(s, u)) by equation 7 and 8

10: Update (SG(u), SG(u), SG(u)) by equations 5 and 6
11: if SG(u)− SG(u)) <= 0 then
12: L← L− u
13: else
14: Pk = Pk + u

15: Pk, L← TOPKUPDATEBOUNDPRUNE
16: t← t+ 1

17: procedure TOPKUPDATEBOUNDPRUNE
18: Skth ← kth smallest SG(u) for u ∈ Pk
19: node n, Skth ← kth smallest SG(u) for u ∈ Pk
20: for all u ∈ Pk do
21: if size(Pk) < k then
22: Pk ← Pk + u
23: else if SG(u) > Skth(n) and SG(u) > Skth then
24: Pk ← Pk − n
25: Pk ← Pk + u
26: else if SG(u) < Skth(n) then
27: L← L− u
28: return Pk, L

3.6 General Graph Query Algorithm

The general graph query problem involves three phases described in the earlier
part of Section 3: decomposing query (phase 1), star query (phase 2) and can-
didates selection (phase 3). The previous 2 phases has been described before.
For phase 3, how to effectively and efficiently select the top matching candidate
sets from star query results involves effective candidate selections. We propose
to find the top matching scores of query node combinations by propagations.
First, we define the matching score of query nodes for general graph query.

Matching Score of Query Nodes Based on the definition of matching score
for star query in Section 3.1, we define the matching score for a set of query
nodes V UQ as:

FG(V UQ ) =
∑

v∈φ(V U
Q )

SG(v) +
∑

(vi,vj)∈E(V U
Q )

EG(φ(vi), φ(vj)) (9)



The summation comprises of two parts. The first part is the summation of
matching scores of decomposed star queries. The second part is the summation
of matching scores of edges/paths among the candidates of query nodes.

Algorithm Flow We show our general query with hierarchical inheritance
relations (GQH) in algorithm 2. Phase 1 for decomposing query is shown in line
3. Phase 2 for star query is shown in line 5–7. The candidate selection (in lines
8–12) continues propagating by uniform cost search from top candidates nodes
and pruning with branch and bound until the top-k candidate node set is found.
The worst time complexity is O(|V | ∗ |V SQ | + |V | ∗ |V UQ |ks), where |V SQ | is the
maximum number of specific nodes for each query node in a query graph, and
ks is the number of top-ks candidate results from each star query result. In our
experiment, ks ∈ [k, 2k] is a good trade-off for efficiency and effectiveness. |V | is
the number of nodes in G. With the pruning of potential unmatched nodes for
phase 2 and phase 3, the worst time complexity is reduced to O(M ∗ |V SQ |+N ∗
|V UQ |ks), where M and N are the numbers of visited nodes with type τ for phase
2 and phase 3, respectively.

Algorithm 2 Top-k general query (GQH)

Require: : Data graph G(V,E, Lv, He), Query Graph Q(V SQ , τ), Matching final
number k

Ensure: Top-k matched candidate sets Mt
1: Initialize top-k matched candidate sets Mt ← φ (size k)
2: Initialize star query result list stResList ← φ
3: Star query graph set StarGraphSet ← Query Graph Q
4: ks ← [k, 2k]
5: for all starGraph ∈ StarGraphSet do
6: Top ks candidate result starCand← SQH (Algorithm 1)
7: stResList← stResList+ starCand

8: i← 0
9: while i < len(stResList)− 1 do

10: Traverse from stResList[i]→ stResList[i+ 1]
11: Pruning nodes and path with bounds until top-k candidate node sets

found
12: i← i+ 1

Candidate Selections with Branch and Bound Pruning The output for
a star query graph is top-ks candidate nodes for each query node. The problem
is how to efficiently connect the candidate nodes of star query results and pick
the top-k answers. If all the candidate nodes are explored for each candidate
combination, the time complexity would be exponential. We consider the branch
and bound pruning technique [2] while traversing among these candidate nodes.
To ensure the best quality of candidate selections, we sort each top-ks result
of star query in Phase 2 in a non-descending order in separate lists. Then we
search through each list from the top to do uniform cost search and construct a
search tree. Each path along the root to the leaf node is a matched candidate



set for query nodes. While searching from root to leaf, we check aggregated
matching scores, lower and upper bounds along the path. Assume there are top-
k candidate node sets with the smallest lower bound score F kth , by searching
the next candidate node and getting its upper bound lower than F kth , the node
candidate and all the nodes of its subtree can be pruned.

4 Distributed Implementation

To support large information networks, we implement our graph query algorithm
in the framework GraphX, which is a distributed graph analytics platform built
on Apache Spark [21]. We define a global data structure Global Vertex State
Table (GT ) for each vertex stored in the Spark RDD data structure. GT is
a user-defined class type which can store the following hash mapping for each
anchor nodes va: node type τ , shortest distance sd, hierarchical level difference
hd, node closeness score r, closeness score lower bound r, closeness score upper
bound r, etc.GT values are updated in each iteration of propagation to efficiently
decide the bounds for effective pruning of many useless node propagations.

5 Experimental Evaluation

The experiments are designed to answer the questions as follows: (1) Effective-
ness: How is the quality of our query algorithm for hierarchical query graph
or mixed query graph? how is the query with hierarchical inheritance relations
compared with state-of-the-art methods? (2) Efficiency: How is the efficiency
and scalability of our algorithm on one machine and multiple machines?

5.1 Datasets

We use synthetic data graph, Cisco product data graph and extended DBLP
data graph. Table 1 shows the data statistics for our experiments. (1) Synthetic

Table 1: Data set statistics
Dataset |V| |E| Avg.

degree
No. of Vertex Types (Attach-
ing + Inherited + Other)

Synthetic Graph Data (Synthetic) 10M 6.54M 10 2+2+3

Cisco Product Data (Cisco) 111347 666992 12 2+1+4

Extended DBLP Data (DBLP) 1.28M 35.1M 58 1+2+9

data graph: we randomly generate data graph and create 7 types of nodes.
There are 2 attaching node types, 2 inherited node types and 3 other node
types. (2) Cisco data graph: we extract the data from its official and related
support websites about devices and device properties, etc. The constructed graph
schema is shown in Fig 1a. Vulnerability and Technology are the attaching node
types, Product is the inherited node type. (3) Extended DBLP data graph: it is
the DBLP database [15] extending the topics extracted from lists of computer
science conferences and journal websites. Topic is the attaching node type that
is inherited among the conference/journal, paper and people node types.



5.2 Quality of Graph Query

As mentioned earlier, a query graph can be classified as a hierarchical, mixed
hierarchical or non-hierarchical query graph considering inheritance relations,
and be a star query or general query graph based on query node numbers. We
show the results of hierarchical star query graphs and mixed general query graphs
here. In each real dataset, one star query example and non-star query example
results are shown in Fig 2. Fig 2a shows the hierarchical star query with all
specific nodes as attaching nodes and the query node as an inherited node, and
the top-5 query results are found in Cisco data. As seen in the results, different
inherited versions of Cisco WebEx meeting server products are queried with
higher matching scores. Fig 2b displays different authors with publication papers
in a journal and working on the same topic, which is verified to be reasonable
online. As more complex non-star queries shown in Fig 2c and 2d with each top-1
result, our algorithm GQH can also provide the top relevant query answers.
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Fig. 2: Graph queries and their results (a) Hierarchical star query graph in Cisco
– Query the products with Vulnerability V1 and used Technology T1, and its
top-5 results in order. (b) Mixed star query graph in Dblp – Query authors that
work on Topic T1 and cooperate with Person Pp1, and its top-5 results in order.
(c) Mixed general query graph in Cisco – Query a product that has Vulnerability
V1 and V2, another product that belongs to a workgroup W1, and their common
technology also used in a product P1, and the top-1 result. (d) Mixed general
query graph in Dblp – Query an author that works on Topic T1 and T2 , and
cooperates with another query person that works on Topic T3, and published a
paper coauthored with Person Pp1 in year Di1, and its top-1 result.



5.3 Comparisons of Query Quality

Existing state-of-the-art algorithms for graph query generally do not consider
the hierarchical inheritance relations for querying. It is not meaningful to com-
pare the results of query algorithm with different problem formulations directly.
However, our paper proposes the query with hierarchical inheritance relations
extending the query algorithm from the Jin et al. [10] (GraB Query), which does
not utilize hierarchical inheritance relations. NeMa [12] is a recent and classi-
cal method for neighborhood-based query also without considering hierarchical
inheritance relations. Therefore, we compare the effectiveness of our query algo-
rithm with the graph query based on GraB query and NeMa query algorithms.

Comparison with GraB Query Algorithm First, we show the quality of
GraB’s query result on the database with hierarchical inheritance relations on
Cisco data and Extended Dblp data. We compare with our algorithm GQH based
on the example of the query in Fig 2a and show the result. Table 2 shows top-5
results of comparison with GraB’s Query algorithm. GQH shows the possible
“Cisco WebEx meeting server version” inheritances as more potential candi-
dates than GraB’s query algorithm, with three different number of matched
candidates. This is because GraB’s Query algorithm only considers the node
types and shortest distances as metrics for ranking.

Comparison with NeMa Query Algorithm NeMa in [12] uses nodes’ label
and neighborhood similarity in small hops to find the top matched subgraphs.
We compare the query quality with our algorithm GHQ for the query in Fig 2a,
and shows the result in Table 3. It shows top-5 results of comparison with GraB
Query algorithm. NeMa uses matching cost which measures the cost of matched
subgraph with the query graph. The smaller the cost, the better the matching.
“—” indicates no matching result found, only top-3 results are returned. It also
does not return the hierarchical “Ciso WebEx meeting server” answers. Because
it limits the maximum hops of its visits and does not consider the hierarchical
inheritance, which leads to a smaller structural difference but fewer potential
matches.

5.4 Efficiency of Graph Query

Our GQH algorithm mainly focuses on improving the quality of query and we
also use a different implementing platform and programming language from
GraB and NeMa algorithms, thus comparing the running time directly to them
is not meaningful. Therefore, we test the efficiency of our GQH algorithm itself.
We evaluate the efficiency with different top-k values, query graph size and data
graph size. For each different test, we keep the one testing parameter varied and
the other unchanged. Each experiment is done 20 times and we get the average
runtime with different parameters.

Varying k: To check how our algorithm scales with different querying k, we
examine the average runtime for the different top-k from 1, 2, 5 to 30 in Fig 3a–c.
Three different query sizes [2,1], [4,2], and [6,3] are fixed. It shows the runtime is
basically sublinear no matter the k value. This is because the complexity degrees



Table 2: Comparison with GraB algorithm in Cisco
Query result in GQH Query result in GraB

Rank Node Score Node Score

1 Cisco WebEx meetings server
versions 0.2

1.7906 Cisco WebEx meetings server
versions 1.x

1.7186

2 Cisco WebEx meetings server
versions 1.x

1.7100 Cisco WebEx meetings server
versions 2.x

1.7186

3 Cisco WebEx meetings server
versions 2.x

1.7100 Easy vpn 1.7186

4 Cisco 12000 series spa inter-
face processors running Cisco
ios software

1.7015 Cisco unified ip phone 1.7015

5 Cisco xr 12000 series engine 3
line cards

1.7015 Catalyst 6000 supervisor
module

1.7015

Table 3: Comparison with NeMa algorithm in Cisco
Query result in GQH Query result in NeMa

Rank Node Score Node Cost

1 Cisco WebEx meetings server
versions 0.2 1.7906

Cisco WebEx meetings server
version 0.2

2.0

2 Cisco WebEx meetings server
versions 1.x

1.7100 Cisco ASA Series show
running-config prior to 7.2.1 2.95833

3 Cisco WebEx meetings server
versions 2.x

1.7100 Cisco ASA Series show
running-config between 7.2.1
and 8.4

2.95833

4 Cisco 12000 series spa inter-
face processors running Cisco
ios software

1.7015
— —

5 Cisco xr 12000 series engine 3
line cards 1.7015

— —

of graphs lead to more than designated top-k answered before the termination of
iterations. We only fetch the top-k candidates from all the obtained candidates.

Varying Query Graph Size To check how our algorithm scales with dif-
ferent query graph size, we examine the average runtime for the different query
sizes. The query size is defined as a tuple(specific node number, query node
number). We select (2,1), (4,2) to (10,10) shown in Fig 3d-f with top 2, 5, and
10 used. It shows the running time is basically sublinear with the increasing of
query size.

Varying Data Graph size: We test the query time with varying data graph
size. We randomly and accumulatively extract subgraph from the original data
graph for different nodes number, covering 10%, 20%, 50%, 80%, and 100%. We
measure 3 different query sizes in this scene to show the trend of query time for
different graph data size. As shown in Fig 3g-i, the query time also increases
sublinearly with the increasing of graph data size.
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Fig. 3: Efficiency and scalability

Scalability on Multiple Machines: To test the scalability of our algorithm
on multiple machines, we test it on Google Cloud Platform to see the average
runtime trends with increasing worker machines deployed. We use 3 different
query size, with one master and increased worker machines from 2,4,...,32. Fig
3j shows that the running average time decreases sublinearly with numbers of
workers.

6 Related Work

There exist several classification categories for graph query. Based on user in-
puts, it can be classified as keywords query and structured query [12,18]. Based
on query answers, it includes exact match and inexact match [11,14,17]. Based
on matching techniques, it mainly contains indexing-based query and graph-
traversal-based query for distance, neighbor and random walk [6,24]. Our algo-
rithm focuses on the top-k inexact match for structured graph query with hierar-
chical inheritance relations. (1) Structured Graph Query: Various techniques
have been proposed for structured graph query. Recent works allow users to ex-
press their own input query as a structured query graph and do the graph traver-
sal based on node and path similarity for matching. For example, NeMa [12] and
SLQ [23] consider different similarity transformations for node to match query
graph and subgraphs in a data graph. Su et al. [20] consider the graph query
based on user relevances to further improve the query quality. Some works [18,4]
consider the multiple attributes of nodes for graph query. Jin et al. [10] propose
a specified ranking function for structured graph query with specific nodes to
find answer nodes. Most of them use indexing which takes large spaces, or graph
traversal with only two dimensions of node and edge similarities. We consider
one more dimension of hierarchical inheritance relations for effective queries. (2)



Top-k Graph Query: Top-k graph query tries to get top-k matched answers
for the graph query. The common practice for top-k search is to use threshold
algorithms to find the top matches by traversing sorted node/edge list [5]. They
require precomputed and sorted lists to derive the bounds. Recent top-k query
have been studied in [1,7]. Yang et al. [22] consider the STAR-query structure
and top-k ranked join for general graph query, but the matches are limited to
answer subgraphs with paths of bounded length. Our algorithm considers top-k
general graph with an efficient ranking and bounded-based solution without the
limitation of path lengths for hierarchical relation inheritance.

7 Conclusion

We consider an additional dimension of hierarchical inheritance relations on
real-world heterogeneous information networks for graph query. The problem
is reformulated with hierarchical inheritance relations, and we propose a graph
query algorithm based on that for star-query and general graph query. With
the bounding-based techniques, our algorithm can effectively capture hierarchi-
cal inheritance relations on information networks for better query answers and
competitive performances are also achieved.
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