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Abstract Quotients for eigenvalue problems (generalized or not) are considered. To
have a quotient optimally approximating an eigenvalue, conditions are formulated to
maximize the one-dimensional projection of the eigenvalue problem. Respective op-
timal quotient iterations are derived under the assumption that applying the inverse
is affordable. Inexact methods are also considered if applying the inverse is not af-
fordable. Then, to approximate an eigenvector, optimality conditions are formulated
to minimize linear independency over a subspace. Equivalence transformations are
performed for preconditioning iterations and steering the convergence. These ideas
extend to subspaces in a natural way. For the standard eigenvalue problem, a new
Arnoldi method arises as an alternative to the classical Arnoldi method.
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1 Introduction

Let the matrices M,N € C"*" be large and possibly sparse. Without assuming any
additional structure, a common approach to numerically compute a few eigenpairs of
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the eigenvalue problem
Mx = ANx 1.1)

consists of a computation of an approximate unit eigenvector ¢ € C”, or possibly a
few[] If g is not an eigenvector, then Mg and Ng remain linearly independent. To
determine an approximate eigenvalue, called a quotient, project the problem as

7*Mq = Az*Ng (1.2)

by appropriately constructing a unit vector z € C". For a classical option resulting
from a study of quadratic forms, choosing z = ¢ yields the Rayleigh quotient; see,
e.g., [26], [30, Chapter 4] and [9, Chapter 8]. See in particular [25] and [20, Section
8] for its history and concise descriptions of its origins in physics. (For an overview
and a wealth of references on the eigenvalue problem, see [10]], [31], [18]] and [4].)
For large scale computational aspects in finite element modelling in mechanics, see
[3]l. This paper is concerned with devising an optimal projection (I.2) and resulting
iterative methods to solve the eigenvalue problem (I.T).

To optimally construct z, consider maximizing the projection onto the elements
of the Grassmannian Gr (C") corresponding to the vectors Ng and M qE] This option
leads to choosing z yielding the quotient

q"N*Mgq ||Mq||

47 79 1740 (1.3)
lg*N*Mgq| ||Nq||

whenever ¢*N*Mg # 0. Thereafter, in terms of z and this quotient, the approximate
eigenvector g can be updated. When repeated, this two-step construction gives rise to
a back-and-forth optimal quotient iteration for solving the eigenvalue problem (T.1));
see Algorithm|[T]in Section 3] It is shown that cubic convergence is attained under the
additional assumptions that UMY ~! and UNY ~! be diagonal for a unitary U and an
invertible matrix Y. This provides an intriguing class of generalized eigenvalue prob-
lems. In particular, for the standard Hermitian eigenvalue problem, which obviously
satisfies these assumptions, this iteration can be argued (and shown by examples) to
yield more accurate approximations than the classical Rayleigh quotient iterationE]
For the Rayleigh quotient iteration, see [25]] and [26, Chapter 4].

Equivalence transformations are used for preconditioning to steer the conver-
gence of this basic algorithm to a desired part of the spectrum. When (exact) inversion
is dynamically performed from the left, the approximate eigenvector elegantly takes
the form of \

(M—1;N)~"" (M +1;N)q,
=1

J

where [; are the respective optimal quotients; see Algorithm [2| In particular, if N is
invertible, then (M —;N)""(M + [;N) = (N"'M — I;I)"' (N~ 'M + [;I), so that the

! For the standard eigenvalue problem, there is the spectacularly simple option to execute the power
method to have an approximate eigenvector g corresponding to a dominant eigenvalue.

2 Gr(C") is the set of one dimensional subspaces of C".

3 This is striking since, e.g., in [4] it is (unfoundedly) claimed that the Rayleigh quotient iteration is
“best”.
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eigenvector approximation evolves in terms of consecutive applications of Cayley
transformations. For the use of Cayley transformations and rational methods more
generally, see [[19] and [28l29] and references therein.

The convergence can further be affected by introducing an optimality criterion
for producing an approximate eigenvector. It consists of maximizing the modulus of

VEN*My

_— (1.4)
INvi[[[Mv]]

for unit vectors v restricted to the subspace generated through (possibly inaccurate)
inversion. Since this is a natural task for the eigenvalue problem in general, and for
inexact methods in particular, efficient solving is of particular interest. When repeated
to expand the subspace, we have optimal methods for numerically solving (I.I); see
Algorithms [4] and [5] This ensures that the convergence becomes monotonic. Alto-
gether, as and show, the matrix N*M plays a seemingly important role in
the construction of optimal approximations for the generalized eigenvalue problem.
Of course, accurate application of the inverse is often unrealistic. Involving inversion
and, most likely, iterative methods with preconditioning, exact updating described
can become overly expensive. Inexact methods are therefore considered.

Besides single vector projections ([.2)) and iterations, the notion of quotient has
a natural extension to involve subspaces; see [25, Chapter 11.3] how this extension
is done in the case of the Rayleigh quotient for the Hermitian eigenvalue problem.
(For the finite section, i.e., Galerkin method for eigenvalue approximations in full
generality, see [[1].) In particular, for the standard eigenvalue problem this construc-
tion implies that the Galerkin method cannot be regarded as optimalﬂ This means,
for example, that the classical Arnoldi method gets replaced with an optimal Arnoldi
method.

The paper is organized as follows. In Section |2| the notion of optimal quotient
is derived. For an eigenvalue inclusion set, their union yields the so-called field of
optimal quotients for the eigenvalue problem. Basic properties of the field of opti-
mal quotients are demonstrated. In Section [3] several optimal quotient iterations for
solving the eigenvalue problem are introduced. Optimality conditions are posed for
overcoming the possible lack of accuracy in performing the inversion with inexact
methods. In Sectiond]the idea of optimal projection is extended to involve subspaces
of dimension larger than one. Section 5 is devoted to numerical experiments.

2 Optimal quotients for approximating eigenvalues

Consider the eigenvalue problem (I.T)) under the assumption that the corresponding
matrix subspace

¥ = span{M,N} 2.1)

is nonsingular, i.e., contains invertible elements. The choice of a basis of ¥ is a very
important issue in the numerical solution of (I.I). This is due to the equivalence

4 The difference resembles that of the GMRES and FOM methods for solving linear systems.
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of solving the eigenvalue problem when M and N are replaced with any linearly
independent linear combinations

A=aM+bN and B=cM+dN (2.2)

of M and N with a,b,c,d € C. (For example, regarding the choice in the standard
Hermitian eigenvalue problem, see [26, Chapter 15.3].) Appropriate linear combina-
tions allow, e.g., making any of the eigenvalues on the outer boundary dominating,
i.e., largestin modulusE]

Proposition 2.1 Let M,N € C"™" and suppose [22) with det[¢5] 0. Then the
matrix A + BB is singular if and only if SM + YN is singular, where [‘;,] =179 [g] .

In this section we assume the basis has been fixed such that we are concerned
with the formulation (T.T).

2.1 Construction of an optimal quotient
With two unit vectors available, consider the task of approximating eigenvalues.

Definition 2.1 The complex number A satisfying (1.2) is said to be the quotient of
the eigenvalue problem (I.1) corresponding to the unit vectors z and q.

Both z and ¢ should be carefully constructed. Resulting from a study of quadratic
forms, a classical alternative consists of choosing z = ¢. Then it is common to as-
sume M to be Hermitian and N Hermitian positive definite. This choice leads to the
Rayleigh quotient and the respective notion of field of values; see [[13| Chapter 22],
[15 Chapter 1], [26, Chapter 15] and [12]. For more recent studies, see [27] and [6]
and references therein. For references on developments in Banach spaces, see [21]].

For the generalized eigenvalue problem the choice z = g is not arguable in general.
A minimum criterion is that if g is an eigenvector, then the quotient should always
yield the corresponding eigenvalue. The choice z = g does not satisfy this in generalE]
To have this property in terms of an optimal construction, let w; = % and wy =

Hx—ZH be nonzero. If ¢ is not an eigenvector, then w; and w, are linearly independent.
The question arises, what is the corresponding best one dimensional approximation
to wy and wy, argued by the fact that dimspan{w;,w;} = 1 if and only if ¢ is an

eigenvector. To this end, consider the optimality condition

max (|e*wi[* +["wa ) 2.3)

to generate a projection (I.2)) of the eigenvalue problem (I.1).

5 We define the outer boundary to be the boundary of the smallest convex polytope containing the
eigenvalues.

6 Suppose g is an eigenvector of such that ¢ is orthogonal against Mg (and hence against Ng as
well). Then ¢ is a disastrous alternative for z.
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Proposition 2.2 Let wi,wy € C" be non-orthogonal unit vectors. Then

wiwy

1
N V2 +2[wiw| ( [wiwa|

Z w1 +wy) 2.4)

solves ([2.3).

*

Proof Consider the matrix [X’l‘} as a linear operator from C” to C2. Then solving

2
(2.3) corresponds to finding the largest singular value of this matrix. The correspond-
ing right singular vector yields z.

Observe that if w; and w, are linearly dependent, then z = w».

As opposed to z = g of the Rayleigh quotient, with z given by (2.4) the aim is to
predict, in terms of an optimality condition, what the common image of Ngq and Mgq in
the Grassmannian Gr; (C") appears to be. Only thereafter, by inserting z into (I.2), an
approximate eigenvalue is determined. This construction can be interpreted as an op-
timal approximation to the “partial” generalized Schur decomposition with respect to
a single approximate eigenvector g. That is, in the generalized Schur decomposition

M =ZT;0" and N = ZD,0" 2.5)

with upper triangular 77 and 7> and unitary Z and Q. Now the vector g is an approxi-
mation to the first column of Q. In terms of this, our aim is to optimally predict what
the first column of Z is.

Whenever ¢*N*Mgq # 0, this choice of z yields us the quotient (T.3) which we
call, because of the construction, optimal. If Ng and Mg are nonzero and orthogonal,
then there is no arguable vector to pick and hence the quotient is not defined in a
reasonable WayE]

2.2 Field of optimal quotients

Collecting all the Rayleigh quotients yields the field of values. Analogously, collect-
ing all the optimal quotients gives rise to the following notion.

Definition 2.2 Assume the matrix subspace (2.1) is nonsingular. The set

*N*Mq |M
(TN M0 AL ey o)
[g"N*Mgq] [|Nq||
is said to be the field of optimal quotients of the eigenvalue problem (T.I)) such that,
additionally, if Mg = 0 (resp. Ngq = 0) for ¢ # 0, define the optimal quotient to have
the value O (resp. oo)ﬂ The field of optimal quotients is denoted by .% (M, N).

7 This is not a serious issue. If Ng and Mg are orthogonal, then g is an exceptionally poor approximation
to an eigenvector. It is practically hopeless to produce any useful eigenvalue approximations with such a
q.

8 If Mg = 0 (resp. Ng = 0), choose z to be a unit vector in the direction of Ng (resp. Mg).
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Consider (2.3). Inserting z given by 2.4) into |z*w1|? 4 |z*w2|? yields
1+ |wiwa| (2.6)

which is a function of g alone, defined whenever ¢g*N*M*g # 0. The maximum value

of this function is two, attained precisely at the eigenvectors of the eigenvalue prob-

lem (L.I) corresponding to the eigenvalues ¢ {0,0}. Hence, this equivalently con-

verts the eigenvalue problem into an optimization problem on the unit sphere of C”.
By construction, we have the following theorem.

Theorem 2.1 The field of optimal quotients of the eigenvalue problem (1.1)) contains
its eigenvalues.

For vectors nearby eigenvectors we have nearby eigenvalues as follows.

Proposition 2.3 Suppose g = v+ €, where v € C" is an eigenvector corresponding
to an eigenvalue A # oo of the eigenvalue problem (I.1). Then
q'N"Mq ||Mq||
el = 2+ 0(]e])).
|lg"N*Mgq] [INg||

for € € C" sufficiently small in norm.

Proof We have Mv = aw and Nv = Bw with a unit vector w and a, 8 € C. Clearly
A= % If oo =0, then ||Mq|| = O(]|e]|) and the claim follows. So let us assume
« # 0. Then (Ng)*Mq = af + Bw*Me + a(Ne)*w + (Me)*Ne = af + O(| ).

- 7 : *N*M.
Thus, since aff # 0, by Taylor expandmg we have \Z*N*MZ\ = ‘Zg‘ + O(]|g]]) for

a

¢ sufficiently small in norm. Clearly, 2. has the same argument as B Similarly,

|ap] ﬁ\
M. .
‘|‘| NZI‘I‘ “g“ +O(||€||), completing the proof.

Under stronger assumptions, O(||€]|?) estimates result; see Theorembelow.

Since our algorithms in Section [3] for approximating eigenpairs rely on using
vectors (2.4) and respective optimal quotients, let us make some preliminary remarks
on the location and properties of .# (M, N).

Theorem 2.2 There holds
1

FNM) = S0

and ' ' .
F (UM, e2N) = =% 7 (M,N)
for 01,6, € R.

Proof The first claim follows from the identity

g'M*Nq ||Ng|| _¢'N°'Mg 1 _ 1
“M*Nq| | M N Mg el [T
lg ql IMql g q| I la*N*Mq] |[Nq||

for any g € C". The latter claim is obvious.
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The following observation is of particular significance.
Theorem 2.3 Suppose U € C"™" is unitary and Y € C"™*" invertible. Then
F(M,N)=Z(UMY ' UNY™").
Proof For any g € C", set w =Yq. Then we have

¢'N'Mg Mgl _ w (NY ) MY~ My ~lw]
[g"N"Ma] [Nqll ~ Tw (NY)"MY~Tw] [NY T

w (UNY DY UMY~ 'w UMY~ 'w||
lw*(UNY-1)*UMY ~w| |[UNY 1w

yielding the claim.

Typically, whenever realistic, generalized eigenvalue problems are transformed
into standard problems. Because of the invariance under a change of basis in the
domain, for the field of optimal quotients this takes place implicitly in the following
way.

Corollary 2.1 Suppose N is invertible. Then F (M,N) = .F (MN~'.I).

In the standard eigenvalue problem N = I. Then we have a spectral mapping
theorem for the inversion as follows.

Corollary 2.2 Suppose M is invertible. Then .F(M~',I) = f‘(/lVl-l)'

Proof By Theorem F(M,I) = W holds. Since .7 (I,M) = % (M~',1) the
claim follows.

We are not aware of any other inclusion sets for the eigenvalues satisfying a rela-
tionship like this under inversion. This means that, in general, % (M, ) differs from
F (M), the field of values of the matrix M.

Example 2.1 Suppose M € C"*" is unitary. Then % (M,I) is a subset of the unit
circle and thereby a non-convex set in general. Recall that .% (M) is always convex.

Example 2.2 Tn this small numerical experiment we had a normal M € C!00%100
while N = I. The eigenvalues of M were randomly generated. Then the field of values
Z (M) is well-understood by being a polygon with the vertices consisting of eigen-
values of M. (Take the convex hull of the eigenvalues.) Since M is invertible, we can
expect by Corollary that Z (M,]I) has hole in the middle. This can be seen in our
numerical computations with a very preliminary algorithm. For the size of this hole,
see Proposition [2.3]

Hence, the field of optimal quotients cannot be expected to be convex. Closedness
cannot be assured either.
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Fig. 2.1 Numerically computed .% (M,I) and .% (M) for Example The eigenvalues of M are denoted
by o’s. Observe that .% (M, I) is not simply connected.

01

Example 2.3 Consider the standard eigenvalue problem with M = [O 0

] and N =1.

Ifg= [g} is a unit vector, then (T.3) equals %| B| whenever &f3 # 0. Moreover,
Mg =0 for f =0. Consequently, % (M, N) equals the open unit disk. For comparison,
F (M) is the closed disk of radius % centered at the origin.

Closedness can be guaranteed in the following case.
Proposition 2.4 [f0 ¢ .7 (N*M), then % (M,N) is closed.
Proof Since 0 € .7 (N*M), the map
q¢'N*Mq ||Mq|
lg"N*Mq| ||[Nq]|
is continuous. By the compactness of the set of unit vectors, the claim follows.

By Theorem[2.1] the matrix N*M determines, through its field of values, the pos-
sible arguments of the eigenvalues of the eigenvalue problem (I.I). The following
includes the standard Hermitian eigenvalue problem as a special case, allowing us to
conclude when the eigenvalues are located on a line through the origin.

Theorem 2.4 Suppose N*M = ¢!%H for 6 ¢ 0,27) and a Hermitian matrix H €
C"™ ", Then F (M,N) is a subset of the line {re’® : r € R}.

For the location of the field of optimal quotients more generally, consider a closed
annulus centered at the origin with the radii
M M
r(M,N) = min Mg and R(M,N) = max M
lal=1 [|Ng]| lal=1 [[Ngll

If N is invertible, then r(M,N) equals the smallest and R(M,N) the largest singular

value of the matrix MN~'. Now the following inclusion region yields, in a sense, an
analogue for .% (M, N) of the Bendixson-Hirsch theorem [13] p.115].

2.7)
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Proposition 2.5 .7 (M,N) is contained in that sector of the annulus centered at the
origin with the radii (2.7) whose elements have the arguments of the field of values of
N*M.

Proof If A = ‘ZI%I%Z‘ %, then it has the argument of ¢g*N*Mgq which, obviously,
belongs to the field of values of N*M. The modulus of A is bounded from below by
r(M,N) and from above by R(M,N). The exceptional case Mg = 0 (resp. Nq = 0) is

covered similarly.

If N is singular, then there is an eigenvalue at infinity which is somewhat dis-
comforting. To avoid this, solve the eigenvalue problem for some linear combina-
tions instead. Altogether, it is of interest to determine an annulus containing the
eigenvalues which is tight in terms of the field of optimal quotients.

Example 2.4 Consider the standard eigenvalue problem with N = I and M indefinite
Hermitian and unitary. Thus, the spectrum of M consists of the points —1 and 1. Now
F(M,N) is as tight as possible by equaling the spectrum of M. In particular, it is a
non-convex set. If we take the linear combinations A = M +bN withb >1and B=N,
then . (A, B) equals the convex hull of the spectrum of A, i.e., the interval from b — 1
to2+b.

For the tightest possible structure we have the following.

Example 2.5 Assume Y € C"™" can be found such that MY ~! and NY ! are linearly
independent unitary matrices. By Theorem and Example then & (M,N) is a
subset of the unit circle.

With the help of this example it is easy to show that, in general, & (M*,N*) does
not equal .% (M, N) conjugated.

Equivalence transformations are of major importance for the numerical solution
of the eigenvalue problem. Matrix subspaces ¥ and #  are said to be equivalent if

W =Xvy! (2.8)

holds for invertible matrices X,Y € C"*", Recall that, by Theorem the field of
optimal quotients is preserved under an equivalence if X is unitary. Regarding di-
agonalizability, such a transformation is of importance by the fact that it yields the
following improvement on Proposition [2.3]

Theorem 2.5 In the eigenvalue problem (1.1)), assume UMY ~' and UNY " are diag-
onal for a unitary U and an invertible Y. Let Mg, = LNgqy; with dimker(M — 4N) =
L. If|lg — gkl = € and Ay & {0,00}, then

qg'N'Mq |Mq|

_ 2
N Mg [Ng] | T O
q q q
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Proof Since the estimates are unitarily invariant, we may assume that M = DY and
N = DY for diagonal matrices

D = diag(dy,ds, ... ,d,) and D = diag(dy,d>, ... ,d,).

Therefore Y gy is a standard basis vector, let us say e;. Since ||g — gx|| = €, we have
IIY (g —qx)|| < ||Y||€. Therefore Yq = aex + bv with a unit vector v orthogonal to e
such that a = 1 — ¢ with |¢| < ||Y||e and |b| < ||Y] €.
Then R
q*N*Mq  (ae;+bv)*D*D(aey +bv)
|g*N*Mgq| — |(ae; + bv)*D*D(ae; + bv)]
)
)

= 2.9

dudy |1 — ¢ + 0(e? did
kdi|1 —c| ( _ kk+0(82):7+0(82)

|dedi|1 =2+ O(€2)]  |didy|

and

+0(€%) = || +0(€?)

1
Mgl _ (Iﬂlk2|16|2+0(€2)>2 _ ldi]
[Ng|| |di[*[1 —c[>+O(e?) |di|

I—

=1+0(€?). Then use i il _ 5,

by usin kl —
y & |djd| ‘dk‘

m =140(e?) and (14 0(€?))
to have the claim.

The standard Hermitian eigenvalue problem is covered as a special case. How-
ever, the set of problems satisfying these assumptions is clearly much larger.

Non-unitary transformations X and Y appear in preconditioning large scale prob-
lems, i.e., when the aim is to steer the convergence of iterative methods for approx-
imating eigenvalues to a particular part of the spectrum. (In practice this is always
needed.) Then (T.I)) gets transformed into an equivalent eigenvalue problem

XMY 'x = AXNY 'x. (2.10)

For a model problem on how this affects convergence, see Example below. In
particular, a non-unitary X can change the field of optimal quotients of the eigen-
value problem, i.e., possible approximations the optimal quotients can yield. Observe
though that this is not a standard approach to preconditioning eigenvalue problems.
(For standard approaches, see [30, Chapter 8] and [4] For a concise description, see
[10 p. 57].) In an equivalence the spectrum remains intact. This is clearly positive.
However, an equivalence changes any standard eigenvalue problem into a general-
ized one. This is not a serious issue since, to our mind, no distinction should be made
between these two problems.

3 Optimal quotient iterations for the generalized eigenvalue problem

Optimal quotient iterations are derived relying either on exact or inexact inversion.
Algorithm I]is the most basic method and Algorithm [2)is supplemented with precon-
ditioning. Algorithm [3] then aims to improve these by smartly taking linear combi-
nations (Z.2). When inexact inversion is used, an optimality construction is devised
to guarantee a monotonic convergence behavior. This transforms Algorithms [T|and 2]
into Algorithms [ and [5]
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Algorithm 1 Optimal quotient iteration for (T.I))

1: Read n-by-n matrices M and N and an approximate unit eigenvector g and a tolerance €
2: while 0,([MgqNg]) > ¢ do

N
3: Compute wy = 19 and wy = xd-
PULe W= oz A0C W2 = g
4. Setz= ——b (2 4y
< 1/2+2\w’l‘w2\(‘W?WZ‘ 1+ w2)
. _ 4'N*Mq |IMq|
5: Compute I = fayzyzy g

6: Solve (M —IN)§ = z and set ¢ = ¢/||g||
7: end while

3.1 Optimal quotient iterations with accurate inversion

Given a unit vector ¢ € C", the formula (2.4) yields a unit vector z € C" satisfying
the optimality condition (2.3)). To reverse the process, with z now available, it is a
challenging problem to update g to have an improved approximation to an eigenvector
of (I.I). As an extreme, suppose that g actually is an eigenvector of (I.T). Then it is
not clear whether knowing z = Mq/||M¢|| alone is of any direct use.

If it is affordable to apply the inverse using, e.g., sparse direct solvers, then there
is a natural operation on z. Since z is our best prediction of what the common one
dimensional image of ¢ under M and N appears to be, it can be used to update g. This
means solving

(M—AN)§=z (3.1)
with A = ‘Zix:%g‘ %. Thereafter set ¢ = §/||§||- In particular, repeating this back
and forth gives rise to an optimal quotient iteration; see Algorithm[I] There we denote
by 02([Mgq Nq|) the smallest singular value of the n-by-2 matrix [Mg Ng], measuring
how near the vectors Mg and Ng are to being linearly dependent. Of course, exact
linear dependency corresponds to g being an eigenvector

We regard the generalized eigenvalue problem de facto as a linear indepen-
dency problem. Algorithm|T]transforms this into finding singularities of the resolvent
operator

A (M —AN)!

by revealing its growth through the power method whenever is solved. In partic-
ular, consider the standard eigenvalue problem, i.e., suppose N = I. Then Algorithm
[[] notably differs from the Rayleigh quotient iteration by the fact that there holds
‘Z:%Z‘ ||Mgq|| # q*Mgq as well as z # ¢ in general. (For the Rayleigh quotient itera-
tion, see [23]], [26} pp. 75-85] and [9} p. 457]. For the matters of implementation and
software, see [114].)

Example 3.1 To compare Algorithm 1 against the Rayleigh quotient iteration, we
took a standard eigenvalue problem with M € C'%9*19 having eigenvalues circling
the origin; see the right panel of Figure[3.1] We experimented by running twenty times
Algorithm 1 versus the Rayleigh quotient iteration. Convergence with Algorithm 1
was distinctly faster.
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Fig. 3.1 For Example convergence speeds with Algorithm 1 versus the Rayleigh quotient iteration.

On the left panel we have convergence histories of the relative error M“‘;‘M in the log; scale. (Early
termination means an eigenvalue has been found.) On the right panel we have the exact eigenvalues and

the found eigenvalues.

Under additional assumptions we can expect the convergence of Algorithm [I] to
be extraordinarily rapid, i.e., cubic.

Theorem 3.1 Under the assumptions of Theorem there holds H IIZH — qu =0(&%),
where G denotes the solution of (3.1).

Proof To have z of Proposition[2.2] we need

H Mq)*N A
WiW2 _ ( (’I)* q =7k+0(82)
wiwa|  [(Mq)*Nq|  |Al

by using (2.9). Then

adk ad:k

1 T fape+0(er)  jugen+O(eL)

—_— -
ot 2wl \ Il (10T (1+0(e2) 72

with boldfaced O(e, ) denoting vectors orthogonal to e;. This yields

=

+0(&?)

7= const.(ex+0(g, ) +O(g?)).
Then, by using Theorem [2.3] solving for § yields

14+0(&?)

(M — (A4 O(€2))N) 1z = const.Y 1( 00

ex+0(eL)) =

const. (Y e, +0(e})).

1
0O(€2)

9 Prof. B. Parlett suggests using the optimal quotient as soon as |¢*N*Mg| > 0.95||Mq]| || Nq|| [24].
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J=0 | j=1 j=2
5.06... | 5.21413... | 5.21431974337712...
5 5.2131... 5.21431974318...

Table 3.1 For Example 3.2} on the second row the performance of Algorithm [1|and on the third row
the Rayleigh quotient iteration. Here j denotes the number of linear system solves. The corresponding
numerically computed eigenvalue is A = 5.21431974337753... (Computed with Matlab.)

From this it follows (after possibly multiplying g by ¢/® for 8 € R) that || IIZH —qll=

o(&).

Suppose one is interested in eigenvalues only (and not in eigenvectors). If the
assumptions of Theorem hold for the adjoint of ¥, i.e., for span{M* ,N*}, then
eigenvalues should be approximated with help of the adjoint. Then, of course, by
conjugating one obtains approximations to eigenvalues of the original problem (I.T).

For bench-marking, it is certainly of interest to compare Algorithm [T| against the
Rayleigh quotient iteration in the case of standard Hermitian eigenvalue problem. (By
Theorem the approximations are then real.) As is well known, then the Rayleigh
quotient iteration also converges cubically; see [25L30]].

Example 3.2 To see how Algorithm [T] fares against the Rayleigh quotient iteration,
let us take the tiny but educative Hermitian example carefully treated in [32, Example
27.1]. That is
211
M=]131
114

and N = I while the starting vector is g = [ 111 ] g /3. Algorithmprovides more
accurate approximations by yielding three correct digits more after two inversion
steps; see Table 3.1} This is particularly startling by the fact that we approximate
Hermitian problems “non-symmetrically” by choosing z # q.

This is actually no accident. Both of these iterations rely on the power method
combined with applying the inverse. Better results with Algorithm [T]are, aside from
using z # ¢, due to considerably greedier approximations towards the dominating
eigenvalue with the optimal quotient compared with the Rayleigh quotient. This
can be made quantitative in terms of the following proposition

Proposition 3.1 Assume M is Hermitian and N = I. Then the optimal quotient (1.3)
equals ||Mgq|| for ¢*Mgq > 0 and —||Mq|| for ¢*Mq < 0.

It is noteworthy that, because of this difference, the same (not so good) starting
vector can converge to different eigenvalues depending on whether Algorithm [I{ or
the Rayleigh quotient iteration is executed; see Example [3.1] Hence the difference is
genuine not just in terms of the speed.

10 For a Hermitian matrix M with the dominating eigenvalue A; holds |¢*Mq| < ||Mq|| < |M|| = |A] for
any unit vector ¢. The inequalities are strict unless ¢ is an eigenvector related with A;.
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Algorithm 2 Optimal quotient iteration for (T.I) with an initial guess /

1: Read n-by-n matrices M and N and an approximate unit eigenvector ¢ and a tolerance €. Set X =
(M —IN)~!
while 0>([MqgNg]) > ¢ do

— 4'N'X*XMq || XMq]|
Compute [ = 1/eNwX=Xg] XN

Form § = (M —IN)~"(M +IN)q and set ¢ = §/|q||
Set X = (M —IN)~!
end while

AR

In practice the convergence needs to be steered to a desired part of the spectrum
which means we have to modify Algorithm[T|accordingly. This is achieved by precon-
ditioning the eigenvalue problem by performing equivalence transformations (2.10).
To this end, consider the following simple model problem.

Example 3.3 Take two real diagonal matrices M = diag(a,b) and N = diag(c,d) such
that

a b
—~1land - > 1.
c an d

Suppose we are interested in locating the eigenvalue near one, i.e., the smaller in
magnitude. This forces ac > bd but we want to have a better understanding of the rel-
ative sizes of the entries. To simplify computations, let the starting vector be equally

supported, i.e., g = [ % % } . (This is a fairly realistic assumption.) Then in the first

iteration of Algorithmwe have [ = 4/ z‘iiz; ~ 41+ %)(1 - %) assuming a > b
and ¢ >d. Then M —IN =~ diag(% ,b— %) This is guaranteed to yield a small
(1,1)-entry if @ > b? and ¢ > d?. If this is not the case, then this can be achieved by
preconditioning (2.10) with X being an approximation to the inverse of M — N. Also

Y can be taken to be an approximation to M — N.

Indeed, consider (2.10) by taking X = (M —IoN)~! for some Iy € C nearby which
we look for eigenvalues. We consider only preconditioning from the left, so let us put

Y = I. Then Algorithm|l|yields after one iteration § = const. (M —IN)~' (M +IN)q,

_ gNX'xMg [Xitg]
where ['= rgivx=xag] Txvg

X = (M —IN)~!, to dynamically change the preconditioner; see Algorithm [2} Then
the evolution of the approximate eigenvector can be elegantly expressed in terms of
consecutive applications of “generalized” Cayley transformations of very particular
type. That is, after k iterations the approximate eigenvector is given by

This can be repeated by using / computed in forming

(M—IN) " (M+LN)---(M—LN) ' (M+LN)(M—ULN)"{(M+1,N)g, (3.2)

where [; are the respective optimal quotients. Hence we take k consecutive applica-
tions of Cayley transformations.

There is one additional ingredient to speed-up iterations. That is, taking linear
combinations (2.2)) can improve convergence. To weight the effects of inverse itera-
tion, at each step consider

(M— le)x = ABX
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Algorithm 3 Optimal quotient iteration for (I.I) with an initial guess /

1: Read n-by-n matrices M and N and an approximate unit eigenvector ¢ and a tolerance €. Set X =
(M —IN)~!
2: while 0>([MqNgl]) > ¢ do

_ (XNg)*q _lqll
Compute k = 1y TxXngT

3

4 Form § = (M — (k+1)N)~\ (M + (k—I)N)q and set ¢ = G/4]|
5: Setl=k-+1
6

7:

Set X = (M —IN)~!
end while

with the preconditioning X = (M —[;N)~!. Here B is some linear combination of
M and N which should be as well-conditioned as possible; see [16} Section 4.1]. If
finding such a B is, e.g., too costly, simply put B = N. This is done in Algorithm 3]

3.2 Optimal quotient iterations with approximate inversion

It is not realistic to apply the inverse very accurately. That is, for very large problems
one almost certainly needs to invoke iterative methods for solving linear systems
(3:T) with an acceptable number of flops. Also each appearance of X requires solving
a linear system. It is very likely that at this point preconditioning becomes necessary.
Conceptually this makes preconditioning eigenproblems simple.

This is not a trivial matter, though. In practice (3.1 can be expected to be indef-
inite, i.e., not easy to precondition successfully. Therefore iterative methods may en-
counter notable difficulties such that solving these linear systems to the full machine
precision poses, in general, an insurmountable challenge. So the question arises, how
to proceed when only approximate solving is affordable?

We suggest the following. Suppose having somehow generated

Oc=[q1 9 q] e C™*

with orthonormal columns. Then, to have a best approximate eigenvector, find the
least linearly independent element for the eigenvalue problem (I.I)) from the column
space of Q. That is, from the span of the columns of Oy, find

|v*N*Mv|?

Mmax e 3.3)
veCk, [v=t [Nv|[?[|Mv]|?

where M = MQy and N = NQy are of size n-by-k with k < n. Solving this is of
particular significance for the numerical solution of eigenvalue problems. See
in particular. Numerical methods to solve (3.3) are devised in Section[3]

Definition 3.1 The set
{ v N*My

—— :veCk ||v||:1}
[Nv][[[My]

is said to be the scaled field of values of the pair M,N € C™** corresponding to
Oy € C™k with orthonormal columns.
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The scaled field of values belongs to the unit disk. For a qualitative interpreta-
tion, the points closest to the unit circle correspond to best approximate eigenvectors
available from the span of the columns of Q.

Proposition 3.2 Under the assumptions of Definition let M = Q\R; and N =
02R; be the QR decompositions of M and N which are assumed to be of rank k both.
Then (3.3) is bounded above by the largest singular value of Q5Q\ squared.

Proof We have

|V*N*MV|2 ‘(sz)*QZQIRlvF . )
\ T2 < max |v u
A2 v RoZ[RVE = HMH:LHV“:lI 05014

proving the claim.

This means that the optimal quotient (3.3) is bounded above by one which is
attained if and only if the span of the columns of Oy contains an eigenvector corre-
sponding to an eigenvalue ¢ {0,}.

Example 3.4 Assume M and N are unitary. Then the scaled field of values is simply
F(N*M). Clearly, N*M is a contraction.

Example 3.5 For the standard eigenvalue problem we have N = I, so that we are

concerned with oM
% v
{Qka cve Ck v = 1}
MO ||
then.

To turn this into an algorithm, suppose v solves (3.3). This yields a maximal linear
dependency method for approximating eigenvalues in the sense that ¢ = Qv can be
regarded as a best eigenvector approximation available from the span of the columns
of Q. With this vector g, take one step of Algorithm[I]or[2] possibly combined with
approximate solving of the appearing linear systems. With the updated g, after or-
thonormalizing, augment O with this new column vector. Repeating this transforms
Algorithm [T]into Algorithm[d] Similarly, Algorithm 2]becomes Algorithm 5

Algorithms [] and [5] perform optimally as follows. When we augment Oy with a
column gy to have

Okt = [a1 @2+ qi g1 ] € CEFY, (3.4)

then with this the corresponding maximum (3.3]) obviously cannot decrease. Thereby
optimal eigenvector approximations are necessarily generated yielding a monotonic
convergence behavior with respect to (3:3). Thereby, methodologically, this belongs
to the same category as the GMRES method for solving linear systems.

In practice k + 1, the number of stored columns in (3.4) cannot get too large.
Like in solving large and sparse linear systems with algorithms such as the GMRES
method, restarting provides a way to save storage. Then only the so far best approxi-
mate eigenvector ¢ is kept stored and the process is restarted with Q) = [q] .



Optimal quotients for solving large eigenvalue problems 17

Algorithm 4 Maximal linear dependency method for (T.1))

1: Read n-by-n matrices M and N and an approximate unit eigenvector ¢

2: Set O =[q]
3: for j:1,2,...d0M N
. _ Mg — Ng_
4: Compute wy = TMal and wy, = Iz
. _ 1 wiwy
5: Setz= e (—‘WTWZ‘ wi+ws)
6: Compute [ = LN"Mq [Mdq]|
: [g"N*Mq] [[Nq]|
7: Possibly approximately, solve (M —IN)G =z
8: Orthonormalize § against the columns of Q to have ¢

9:  SetQ=[0q]
10:  Solve and set g = Qv
11: end for

Algorithm 5 Maximal linear dependency method for (T.1)) with an initial guess /

1: Read n-by-n matrices M and N and an approximate unit eigenvector g and a tolerance €.
2: Set O =[q]
3: while 0,([MqgNg]) > ¢ do

wiwi] vzl

Possibly approximately, solve (M —IN)§ = (M +1IN)q
Orthonormalize § against the columns of Q to have ¢
9:  SetQ=[0q]

10:  Solve and set g = Qv

11: end while

4: Possibly approximately, solve (M — IN)y; = Mq and (M —IN)y, = Ng
5: Set w; = 2l and wp = 22,
Tyl [yl
6: Compute [ = wpwi o |
7:
8:

VN MvE . .
TRV = 1 — & with € > 0.

Then for the amount of linear dependency of the corresponding vectors, consider the

matrix
M Ay
[W HNLII } : (3.5)

One should be aware of the following. Suppose

Its second singular value is /€. Hence inspecting (3:3) leads to a loss of accuracy
when looking at how small the respective residual vector is. This means, in particular,
that when € is near the machine precision, then no improved accuracy can be expected
with Algorithms [ [5} Should this not suffice, we recommend executing Algorithm
[T] thereon by using the approximate eigenvector computed as an initial guess. This
strategy is used in the numerical experiments in Section [5]

4 Optimal projection of the eigenvalue problem

So far we have been concerned with single vector projections and respective iter-
ations. Single vector methods are fundamental since they typically pave way to more
general methods involving subspaces. This is of importance since subspaces provide
more options for restarting and hence ways to affect and speed up the convergence;
see [5] and [7] and references therein. Subspaces arise also in model reduction so it is
of interest to cleverly choose them more generally. Regarding the Rayleigh quotient,
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see [25) Chapter 11.3] how the extension is done for the standard Hermitian eigen-
value problem. In the non-Hermitian case one deals with the Arnoldi method [30].
For the finite section (or Galerkin) method in general, see [1] and references therein.

The notion of optimal quotient also has a natural extension to involve subspaces.
To this end, consider projecting the eigenvalue problem assuming Qy € C"™* with
orthonormal columns has been generated. The task is now to find in some sense
optimal Z; € C™** with orthonormal columns so as to have

ZiMQy = AZ;NQ, 4.1)

i.e., an optimally projected eigenvalue problem of size k-by-k. With this one aims to
approximate the following structure.

Definition 4.1 Subspaces 2, % C C" are said to provide an invariant structure for
the eigenvalue problem (I.1) if

M-AN)2 =%
for all but finite A € C.

Clearly, 2 and & are necessarily of the same dimension. The one dimensional
case corresponds to a solution of the eigenvalue problem (L.T).

Invariance corresponds to having (partially) solved the eigenvalue problem. In
lack of this, by considering the column spaces, regard

MQy and NQOi 4.2)

as elements of the Grassmannian Gry(C") of k dimensional subspaces of C". Denote
by Zi and Z; matrices having orthonormal columns spanning the column spaces of
(#.2). Analogously to the one dimensional case, consider finding their best approxi-
mation from Gry(C"). By using the Frobenius norm, then a multidimensional version
of the optimality condition can be formulated as

max (12217 +1ZeZidlF) 43
Z,.€Gri (CM) (H k kHF H k k”F) ( )

where Z; € Gry(C") is represented by an n-by-k matrix having orthonormal columns.
For the eigenvalue problem this means finding a partial equivalence transformation
which maximizes the attainable projection onto the column spaces of (.2). The task
appears approximation theoretically natural and is well-defined in Gr;(C"), i.e., it
does not depend on the choice of the representing matrices Z, Z and Z.

To solve ([@.3)), let us assume that Z; and Z; have been chosen in such a way that
Z,j‘Zk = X is diagonal with non-negative entries. More precisely, compute the SVD

2k 7y =UXV* (4.4)

of Z,’:Zk with unitary U,V € C*** and a diagonal matrix X with non-negative entries.
Then take ZyU and Z;V to replace the original Zx and Z. Denote now by Z; and Z;
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Algorithm 6 Computing Z; satisfying {@.3)
: Read n-by-n matrices M and N and n-by-k matrix Qy with orthonormal columns
: Compute the QR factorizations MOy = Q1R; and NQ; = Q2R»
: Compute the SVD 070, =UZXV*
SetZ= QU and Z = Q,V
: With the columns 2; and Z; of Z and Z
fori=1,....kdo
Compute a = £}z and b = arga
Setz; = (e®2;+2;)/1/2+2[d]
: end for
DSetZy =z - )

So® NoUEDYD

—_

the columns of Z; and Z;. With these vectors as w; and ws, form the columns of Z
according to Proposition This yields

k
1Zi 2|7 + 1227 = Y 1+ 05, (4.5)

J=1

where o; are the diagonal entries of X. Hence, the value of @.3) is bounded by
2k such that if 2k is attained, then one has computed an invariant structure for the
eigenvalue problem (I.T).

Theorem 4.1 Assume Zi,7;, € C™** have orthonormal columns. Then a solution Z;,

to @3) satisfies @.3).

Proof By dropping indices, consider the linear map

z 7'z

from C"k to C?**k. By the construction in connection with [@.4), we may assume
that Z and Z are such that Z*Z = X is diagonal with non-negative entries. By regarding
as acting columnwise on Z, in terms of the Kronecker product we may consider

1Q7*

vec(Z) — Mvec(Z) = [I@Z*

}%d@ (4.7)

with the identity I being of size k-by-k, so that M is of size 2k>-by-nk. We have

|- 1ol o2
T lIeziel |

I1Q7*

MM = [1@2*

}U@Z!@Z
Hence, the nonzero singular values of this map are determined by taking k times the
1

j=1,....k. Because of (4.7)), the problem separates and becomes that of how to
position k orthonormal vectors with respect to the 2k singular values /14 0; for

o . I X .
positive square root of the eigenvalues of [ ] . These eigenvalues are 1 & o for

A

j=1,...,k for the matrix {é ] . This is the dual problem of approximating with the

singular value decomposition with the optimal solution satisfying (4.5)).
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To see how this works in the most familiar case, consider projecting the standard
eigenvalue problem, i.e., assume having N = I. Then the Arnoldi method constitutes
a basic scheme to produce approximations for large scale problems [30.31l]. The
idea is, in a nutshell, to better exploit the information provided by the power method
combined with extending the notion of Rayleigh quotient to involve subspaces. This
means that Qy results from orthonormalizing the sequence

q,Mq,M*q,....M" g (4.8)

by executing the Arnoldi method with a starting vector g € C"; see, e.g., [30, Chapter
6]. From this point on our optimal scheme proceeds differently as follows. Clearly,
7 = Oy holds. Then Z; is obtained by orthonormalizing the columns of Z | Hj,
where

MZ; = Zeo B, 4.9)

with A € Ck+)xk being of upper-Hessenberg type. By using Z; and Z, compute
Zy. to satisfy ({@.5). Because of the construction, the columns of Z are linear combi-
nations of the columns of Z; and thereby we are dealing with a Krylov subspace
methodE] It is noteworthy that the projected eigenvalue problem is now likely to be
generalized. This very much underscores that it is artificial to make any distinction
between standard and generalized eigenvalue problems. The following numerical ex-
ample illustrates this.

Example 4.1 A Markov model of a random walk on a triangular grid [30, Section
2.5.1] is a well-documented test for basic iterative eigensolvers; see [30, Example
4.1] and [30, Example 6.1] The problem is standard such that the eigenvalues at
the right end of the spectrum are of interest. Here the Matlab script of [30} p. 44] is
used to generate M € R"*" while N = I. We took n = 5050. The starting vector was
randn(n, 1) divided by its norm. In Figure 4] we have compared the classical Arnoldi
method against the optimal Arnoldi method, drawn vertically while the iteration num-
ber runs horizontally. Whenever the optimal Arnoldi method yields an extreme Ritz
value appearing as a pair (i.e., two genuinely complex extreme Ritz values), the ap-
proximation is of the same order as given by the classical Arnoldi method. Whenever
the optimal Arnoldi method yields is single real extreme Ritz value, the approxima-
tion is better than that given by the classical Arnoldi method.

5 Numerical experiments

In what follows, numerical experiments on an eigenvalue problem in magnetohydro-
dynamics are presented to illustrate the convergence and computational cost of the
algorithms devised in Section [3] For Algorithms 4] and [5] we first need to devise a

11 By a Krylov subspace method in meant that all the basis vectors computed are expressible by polyno-
mials in M of degree at most the number of iterates applied to g.

12" Also to be found from the matrix market at http: //math.nist.gov/MatrixMarket,/
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Eigenvalues
°
7
7

1k 4

15 L L L L L L
0 2 4 6 8 10 12 14

Iteration number

Fig. 4.1 For Example El the convergence of the classical Arnoldi method (depicted with "0’) and the
optimal Arnoldi method (depicted with *+°), drawn vertically. The first 12 steps are shown. Numerically
computed eigenvalues of M are all real, drawn vertically on the right.

method to solve the optimization problem (3.3). Regarding computational complex-
ity, this constitutes a critical part of the iteration, aside form solving (3.T).
To numerically solve (3.3), consider minimizing the function

) |v*N*Mv|?
T = i

where M € C"™*, N € C"™* and v € C*. Relaxing the constraint ||v|| = 1 allows using
descend methods as well as the Newton method. This is certainly attractive. How-
ever, then there is no decrease in “radial directions”, a fact which must be taken into
account in devising a method to minimize f.

In practice the number of columns in M and N is very small compared with n.
Then the additional cost of computing the Hessian matrix in the Newton method is
not excessive. The indefiniteness of the Hessian calls for special attention, though,
as does its singularity in the proximity of the local minima. These issues will be
addressed after investigating the actual calculation of the gradient and the Hessian of
f.

To differentiate the real valued function f with respect to complex variable v,
it is convenient to use the so-called Wirtinger calculus; see the highly accessible
presentation [[17]. Regarding f for a moment as a function of two separate vectors v
and v, the gradient with respect to v is

(570)

(v*N*Mv)M*Nv + (v M*Nv)N* My ) N*Nv n M*Mv 5.1)
- A, ~ - v A A A A
[NV M2 N[> [|pv]?

& (v)
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and, since f(v) is real valued, the gradient with respect to ¥ is gy(v) = g,(v). The
second order derivatives with respect to v and v are, accordingly,

o (df\"
A =2 (Y
" 3v<3v>
_ MNw*N*M +v-N*MvM*N  N*Mw*M*N +vM*NvN*M
[ 8v]2 | M2 182 ]| mv]|2
(v*N*Mv)M*Nv + (v M*Nv)N*Mv (v*N*N N v*M*M)
[80v]12(|a2v ]2 V]2 (M)
N*Nv — M*Mv
e e ) [g ()]
L
NN N*NWN*N MM M Mw* MM
W) ( oy — e e (5.2)
[NVl [NVl [Mv]] [[Mv]]

2 :i (8]‘) * _ _Mi‘vaTZEAdTﬁ B N*AMWT]AVTE
Iv \ dv INVIZIMl> ([N M)
(V' N*Mv)M*Nv + (v M*Nv)N* My (vTNTN n vTMTM>
1Av]|2 [ a2v > IAv]2 2w

(N*Nv N M*Mv> O + ) N*vaTNTﬁJrM*MwTMTﬁ
N = T T 5 |8 < =
1NV [1pvi I [Mv*

(5.3)

and Ay = o, sy = ,,. Using this notation, the Taylor expansion of f(v+ Av)
with respect to [y] around v up to second order is given by

Fv+Av)=H(v+Av) = f(v)+ [gﬁ 5*] [3:} +% [Av* Tv*] [ﬁ: ﬁzj [3:} )

Rez

Rez] for any z € C*, and note

To transform the problem from C* to R*, denote z, = |
that
7] Crr
s =]
With somewhat abusive convention f(v) = f(v,), the above Taylor expansion reads

1
(v, +Av,) = f(v,) + g, (V)T Av, + EAV,TL%’@,AW7

where the real gradient g,, and the real Hessian % are readily obtained as

. [Reg, NI ANEE AN
R | !
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Newton’s method The Newton direction p = —%r’lgvr is guaranteed to be a de-
scend direction whenever the Hessian .77;, is positive definite. Because this is not
to be expected, the method needs to be modified. Keeping in mind that the size of
the Newton iteration equation is small, an eigendecomposition .77, = Z?’;l djx jxf;
is computationally affordable, where x; denotes an eigenvector corresponding to the
eigenvalue d;. Assuming that the eigenvalues are in ascending order, we can make
the following observations.
First, for € > 0 a positive definite modification of .77;, is available by

2k
A, =Y cijxjxj withd; = {d] dj > €
=1 max{£7—dj}7 djSE.
(For this and other modifications see, e.g., [8].) This modification guarantees that the
Newton direction p = — 251;1 d}-*l (8v,,Xj)x; is a descend direction. If the unit step of
Newton method satisfies the so-called strong Wolfe conditions, it should be accepted;
otherwise a line search in the direction of p is to be conducted [23]].
Second, if the eigenvalues dy,...,d; are negative, a positive linear combination
d of the corresponding eigenvectors gives a direction of negative curvature. A line
search in this direction may then result in more descent than the Newton direction.
One can try to predict this by comparing, say, unit-step descent in both directions
[LL1].
Finally, the radial direction relates to two eigenvalues closest to zero in absolute
value, say d+ and dj+. Then one can remove this direction by setting

p=- Z dj_l(ngxj)xj'
J#IT 0

Collecting these conditions yields Algorithm

This allows us to perform numerical experiments with Algorithms [1| and 4} (We
always monitor the relative error log; M")L;M.)
Example 5.1 The performance of Algorithms[T]and[d was tested using data for calcu-
lation of Alfven spectra in magnetohydrodynamics from the NEP collection [2]. Real
M and N of size 4800 x 4800 are nonsymmetric and positive definite, respectively.
A random unit starting vector ¢ was used. The computations were conducted with
MATLAB (version R2016a), and the iterates were compared to the nearest eigen-
value obtained by MATLAB’s built-in solver for eigenproblems. For the line search,
the algorithm of Moré and Thuente as implemented by Sandia National Laborato-
ries in Poblano Toolbox v. 1.0 was used. The progress of the iterations are shown
in Figure 5.1} The iteration converged to —2035.6 — i6283.3, which is the second
largest eigenvalue in modulus. Observe that once Algorithm 4| attains accuracy /€
with € near the machine precision, we switch to Algorithm |1} see the discussion in
connection with (3.3).

In Example the iterations tended to converge to some “isolated” eigenvalues.
To steer the iteration to a specific eigenvalue near an initial guess, choose either Al-
gorithms [2] 3] or [5] In the following example we experiment with Algorithms [2] and
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Algorithm 7 Minimization of f(v).

: Choose positive quantities €7, & and &5 with & < &3.

: Append M by Mg, N by Ng, and v by zero.

Set foia = —1 and calculate f(v).

: while |f(v) *fold‘ > g1, do

Calculate g,, and J7%, .

Find the eigendecomposition 77, = 231;1 djx jxf; withd; <dp <--- <dy.

7 setd;= 1% dj > e
J max{ez,fdj}, di<e.

SR ol ey

8: Calculate the Newton direction p = =}, i+ . d}" (v, Xj)x;.
9: if d| < —&;3 then
10: Form a direction d of negative curvature.
1: it 75 (v-+ p/lpll) < Ta(v-+d/||d]) then
12: Perform a line search in direction p starting with step size 1.
13: else
14: Perform a line search in direction d.
15: end if
16: else
17: Perform a line search in direction p starting with step size 1.
18: end if

19: Set foa = f(v) and calculate new f(v).
20: end while

10° — - - - - 8000
Alg. 4 6000 | +  Spectrum| +
****A"-ll’-ll O Ag4&tl
only Alg. 1| | 2000 | 0 Alg. 1
+
2000
5 ' ~<
= , 0 +
5 \ E
\
\ -2000 |
\ +
\-\ 1 -4000
|
\ -6000 2]
: : : : : -8000 : : :
2 4 6 8 10 12 -8000 -4000 0
iteration number Re A\

Fig. 5.1 For Example on the left the relative error produced with a combination of Algorithmand
compared against Algorithm The eigenvalues of the Alfven spectrum problem of size 4800 x 4800 are
depicted on the right together with the eigenvalue of convergence.

Example 5.2 To calculate eigenvalues in the top branch of the Alfven spectrum, an
initial guess A = —175+i1965 was made in Algorithmsand To statistically study
the convergence, a set of 20 normally distributed unit starting vectors was generated.
Algorithm[2]converged to A; = —180.8 +i1963.3 on all but one occasion, on which it
converged to A, = —181.0+i1961.7. Algorithmconverged to A; on four occasions
and to A3 = —180.6+i1964.9 on three occasions. On thirteen occasions it converged
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Fig. 5.2 For Example on the left the relative error of Algorithms 2 and 5 with initial guess —175 +
i1965. Depending on the starting vector, the convergence rate of Algorithm[5]is comparable to Algorithm
[ or it may converge to a different eigenvalue. The figure on the right provides a closer look into the
Alfven spectrum in the area of interest together with computed approximations.

to Ay = —184.8 +i1995.7. In the cases of A; and Az, Algorithm [5| performed like
Algorithm In the case of A4, the convergence was slow until the algorithm started
finding an eigenvalue farther away, after which the decay of the error was rapid.
Convergence histories representing the different cases are depicted in Figure[5.2]

Finite precision analysis is beyond the scope of this paper. However, based on
numerical experiments, Algorithm [T appears to yield numerically the most accurate
results, attaining the relative error of the order of machine precision in case of con-
vergence. It may be advisable, by using an appropriate switching criterion, to switch
to Algorithm [T) after the convergence appears to start accelerate.

Example 5.3 To compare Algorithm [2] with Algorithm 3] another set of 20 normally
distributed unit starting vectors were generated. With Algorithm [3| o> ([Mg Nq]) at-
tained the machine precision consistently. Algorithm 2 was run until ,([Mq Ng|)
reached the square root of the machine precision and then switching was performed
so that Algorithm [T| was executed thereon by using the best eigenvector approxima-
tion computed so far as an initial guess. A Rayleigh quotient variant for generalized
eigenvalue problems [26, Chapter 15] was run to compare the performance.

With Algorithm [2| we converged to A; in 17 occasions and to A3 in three occa-
sion. With Algorithmwe converged to A; in 18 occasions and to A, in 2 occasions.
The Rayleigh quotient iteration converged to A; in 16 occasions and to A3 in 4 occa-
sions. For all three methods, the loss of linear independency of Mg and Ng, measured
in terms of 6, ([Mg Nq]), consistently reached the same magnitude as o, ([Mg Ng),
where ¢ was computed with MATLABs eigs-function (which was also used as a refer-
ence). On the average, Algorithm 3] was about 1-2 iterations faster than Algorithms 2]
and|l|combined. Algorithms|2|and|l|combined was, in turn, about one iteration faster
than the Rayleigh quotient iteration. See the left panel of Figure[5.3|for a typical case.
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Fig. 5.3 For Example|5.3| on the left typical convergence histories of Algorithmsandcompared against
the Rayleigh quotient iteration. The reference eigenvalue, generated by MATLAB’s eigs-function, was
found within the machine precision. The corresponding eigenvalues and approximations are depicted on
the right.

In very large eigenvalue problems applying the inverse of M — I[N in these algo-
rithms may only be feasible by executing iterative methods. (The inverse appears in
these algorithms either in solving (3.I) or in applying X.) Then the linear systems
cannot be expected to be solved to the full machine precision. The accuracy reached
is determined by the quality of preconditioning. The following example is meant to
illustrate how this affects the convergence of iterations.

Example 5.4 In this experiment Algorithms [2]and 5] were modified by replacing each
appearance of a linear system with a preconditioned iterative solver. The respective
linear systems were solved until the relative residual attained the tolerance 1079.
This was done by executing the GMRES method using the row-sum modified Crout
version of ILU as a preconditioner with the droptolerance 10~ 10E|The outer iteration
was terminated if 6,([Mq Ngq|) reached € = 2726, the square root of the machine
precision, or if it ceased to decrease. A set of 20 starting vectors were generated
with 10 ones at random positions, divided by the norm. In all but one occasions the
algorithms yielded convergence to the same eigenvalue with the relative error varying
between 1070 and 102, In these occasions, Algorithm |5| reached the relative error
10 approximately two iterations earlier on the average. In Figure a typical
convergence history for both algorithms using the same starting vector is presented.
In this case Algorithm [5|seems to be more robust to errors in computations.

13 We do not claim this to be a realistic preconditioning strategy.
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Fig. 5.4 For Example on the left an illustration of the convergence histories for Algorithms and
when the linear systems are approximately solved with the GMRES method. On the right the spread of
convergence points with the initial guess A = —175+i1965.

Conclusions

A notion of quotient was introduced for the eigenvalue problem (I.I)), be it general-
ized or not. A criterion was formulated to compute the quotient by optimally approx-
imating the associated vectors Mg and Ng for g € C" given. (The Rayleigh quotient,
on the contrary, is based on optimally approximating an eigenvalue, i.e., a scalar.) The
choice gives rise to a spectral inclusion set which appears to have strikingly different
properties from the field of values. The construction extends to subspaces and allows,
for example, optimally performing model reduction.

The optimal quotient and the associated projector vector z were used in deriving
an iterative method for approximating eigenpairs. This method can be argued to yield
more accurate results than the Rayleigh quotient iteration, without any additional
cost. At the limit a partial generalized Schur decomposition corresponding to a single
eigenvector is attained. All in all, the set-up is such that there is no need to transform
generalized eigenvalue problems into standard problems. This means, in particular,
that replacing exact inversions with inaccurate solvers causes no problems. This is
due to an optimality criterion for extending subspaces which guarantees improved
approximations at every step.

In terms of equivalence transformations, preconditioning can be incorporated into
this set-up in a natural way. This allows steering the convergence to desired parts of
the spectrum. Numerical experiments were performed to illustrate all these aspects
of the method proposed.
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