Skip to main content

Advertisement

Log in

Cadmium stress: an oxidative challenge

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

At the cellular level, cadmium (Cd) induces both damaging and repair processes in which the cellular redox status plays a crucial role. Being not redox-active, Cd is unable to generate reactive oxygen species (ROS) directly, but Cd-induced oxidative stress is a common phenomenon observed in multiple studies. The current review gives an overview on Cd-induced ROS production and anti-oxidative defense in organisms under different Cd regimes. Moreover, the Cd-induced oxidative challenge is discussed with a focus on damage and signaling as downstream responses. Gathering these data, it was clear that oxidative stress related responses are affected during Cd stress, but the apparent discrepancies observed in between the different studies points towards the necessity to increase our knowledge on the spatial and temporal ROS signature under Cd stress. This information is essential in order to reveal the exact role of Cd-induced oxidative stress in the modulation of downstream responses under a diverse array of conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Nasser IA (2000) Cadmium hepatotoxicity and alterations of the mitochondrial function. Clin Toxicol 38:407–413

    Article  CAS  Google Scholar 

  • ATSDR (2005) Agency for Toxic Substance and Disease Registry, U.S. Toxicological Profile for Cadmium. Department of Health and Humans Services, Public Health Service, Centers for Disease Control, Atlanta, GA

    Google Scholar 

  • Babu KR, Rajmohan HRR, Rajan BKM et al (2006) Plasma lipid peroxidation and erythrocyte antioxidant enzymes status in workers exposed to cadmium. Toxicol Ind Health 22(8):329–335

    PubMed  CAS  Google Scholar 

  • Barranco-Medina S, Lázaro J-L, Dietz K-J (2009) The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett 583:1809–1816

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva EA, Korotkov SM (2003) Mechanism of primary Cd2+-induced rat liver mitochondria dysfunction: discrete modes of Cd2+ action on calcium and thiol-dependent domains. Toxicol Appl Pharm 192:56–68

    Article  CAS  Google Scholar 

  • Belyaeva EA, Glazunov VV, Korotkov SM (2002) Cyclosporin A-sensitive permeability transition pore is involved in Cd2+-induced dysfunction of isolated rat liver mitochondria: doubts no more. Arch Biochem Biophys 405:252–264

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva EA, Glazunov VV, Korotkov SM (2004) Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: a proposed direct participation of respiratory complexes I and III. Chem Biol Interact 150:253–270

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva EA, Dymkowska D, Więckowski MR et al (2006) Reactive oxygen species produced by the mitochondrial respiratory chain are involved in Cd2+-induced injury of rat ascites hepatoma AS-30D cells. Biochim Biophys Acta Bioenerg 1757:1568–1574

    Article  CAS  Google Scholar 

  • Belyaeva EA, Dymkowska D, Więckowski MR et al (2008) Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells. Toxicol Appl Pharm 231:34–42

    Article  CAS  Google Scholar 

  • Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88:1549–1559

    Article  PubMed  CAS  Google Scholar 

  • Biteau B, Labarre J, Toledano (2003) ATP-dependent reduction of cysteine–sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984

    Article  PubMed  CAS  Google Scholar 

  • Bokoch GM, Knaus UG (2003) NADPH oxidases: not just for leukocytes anymore!. Trends Biochem Sci 28:502–508

    Article  PubMed  CAS  Google Scholar 

  • Boveris A, Cadenas E, Stoppani AO (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444

    PubMed  CAS  Google Scholar 

  • Brandao R, Weber Santos F, Oliveira R (2009) Involvement of non-enzymatic antioxidant defenses in the protective effect of diphenyl diselenide on testicular damage induced by cadmium in mice. J Trace Elem Med Biol 23:324–333

    Article  PubMed  CAS  Google Scholar 

  • Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27(9–10):951–965

    Article  PubMed  CAS  Google Scholar 

  • Cameron I, McNamee PM, Markham A et al (1986) The effects of cadmium on succinate and NADH-linked substrate oxidations in rat hepatic mitochondria. J Appl Toxicol 6:325–330

    Article  PubMed  CAS  Google Scholar 

  • Casalino E, Sblano C, Landriscina C (1997) Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Arch Biochem Biophys 346(2):171–179

    Article  PubMed  CAS  Google Scholar 

  • Casalino E, Calzaretti G, Sblano C et al (2002) Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology 179(1–2):37–50

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Kundu S, Sengupta S et al (2009) Divergence to apoptosis from ROS induced cell cycle arrest: effect of cadmium. Mutat Res 663:22–31

    PubMed  CAS  Google Scholar 

  • Chen L, Liu L, Huang S (2008) Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic Biol Med 45:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Coonse KG, Coonts AJ, Morrison EV et al (2007) Cadmium induces apoptosis in the human osteoblast-like cell line Saos-2. J Toxicol Environ Health A 70:575–581

    Article  PubMed  CAS  Google Scholar 

  • Coutant A, Lebeau J, Bidon-Wagner N et al (2006) Cadmium-induced apoptosis in lymphoblastoid cell line: involvement of caspase-dependent and -independent pathways. Biochimie 88:1815–1822

    Article  PubMed  CAS  Google Scholar 

  • Cuypers A, Smeets K, vangronsveld J (2009) Heavy metal stress in plants. In: Hirt H (ed) Plant stress biology. WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim, pp 161–178

    Chapter  Google Scholar 

  • de Haan JB, Bladier C, Griffiths P et al (1998) Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 273(35):22528–22536

    Article  PubMed  Google Scholar 

  • Dickinson DA, Forman HJ (2002) Cellular glutathione and thiols metabolism. Biochem Pharmacol 64:1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Dorta DJ, Leite S, DeMarco KC et al (2003) A proposed sequence of events for cadmium-induced mitochondrial impairment. J Inorg Biochem 97:251–257

    Article  PubMed  CAS  Google Scholar 

  • Dudley RE, Klaassen CD (1984) Changes in hepatic glutathione concentration modify cadmium-induced hepatotoxicity. Toxicol Appl Pharm 72(3):530–538

    Article  CAS  Google Scholar 

  • Early JL, Nonavinakere VK, Weaver A (1992) Effect of cadmium and/or selenium on liver mitochondria and rough endoplasmic reticulum in the rat. Toxicol Lett 62:73–83

    Article  PubMed  CAS  Google Scholar 

  • El-Demerdash FM, Yousef MI, Kedwany FS et al (2004) Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and b-carotene. Food Chem Toxicol 42:1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part 1: mechanisms involved in metal induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  PubMed  CAS  Google Scholar 

  • Erdogan Z, Erdogan S, Celik S et al (2005) Effects of ascorbic acid on cadmium-induced oxidative stress and performance of broilers. Biol Trace Elem Res 104(1):19–32

    Article  PubMed  CAS  Google Scholar 

  • Fleury C, Mignotte B, Vayssière J-L (2002) Mitochondrial reactive oxygen species in cell death signalling. Biochimie 84:131–141

    Article  PubMed  CAS  Google Scholar 

  • Fotakis G, Cemeli E, Anderson D et al (2005) Cadmium-chloride induced DNA and lysosomal damage in a hepatoma cell line. Toxicol In Vitro 19:481–489

    Article  PubMed  CAS  Google Scholar 

  • Fowler BA (2009) Monitoring human populations for early markers of cadmium toxicity: a review. Toxicol Appl Pharm 238:294–300

    Article  CAS  Google Scholar 

  • Galán A, García-Bermejo L, Troyano A et al (2001) The role of intracellular oxidation in death induction (apoptosis and necrosis) in human promonocytic cells treated with stress inducers (cadmium, heat, X-rays). Eur J Cell Biol 80:312–320

    Article  PubMed  Google Scholar 

  • Gao L, Laude K, Cai H (2008) Mitochondrial pathophysiology, reactive oxygen species, and cardiovascular diseases. Vet Clin North Am Small Anim Pract 38:137–155

    Article  PubMed  Google Scholar 

  • Gong P, Chen FX, Ma GF et al (2008) Endomorphin 1 effectively protects cadmium chloride-induced hepatic damage in mice. Toxicology 251(1–3):35–44

    Article  PubMed  CAS  Google Scholar 

  • Grosicki A (2004) Influence of vitamin C on cadmium absorption and distribution in rats. J Trace Elem Med Biol 18:183–187

    Article  PubMed  CAS  Google Scholar 

  • Haberstroh KMW, Kapron CM (2006) Activation of c-Jun N-terminal kinase by cadmium in mouse embryo neural cells in vitro. Environ Toxicol Pharm 22(1):1–7

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322

    Article  PubMed  CAS  Google Scholar 

  • Hamada T, Tanimoto A, Sasaguri Y (1997) Apoptosis induced by cadmium. Apoptosis 2:359–367

    Article  PubMed  CAS  Google Scholar 

  • Hansen JM, Zhang H, Jones DP (2006) Differential oxidation of thioredoxin 1, thioredoxin 2 and glutathione by metal ions. Free Radic Biol Med 40:138–145

    Article  PubMed  CAS  Google Scholar 

  • Hart BA, Lee CH, Shukla A et al (1999) Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress. Toxicology 133:43–58

    Article  PubMed  CAS  Google Scholar 

  • Hassoun EA, Stohs SJ (1996) Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774A.1 cell cultures. Toxicology 112:219–226

    Article  PubMed  CAS  Google Scholar 

  • Hispard F, de Vaufleury A, Martin H et al (2008) Effects of subchronic digestive exposure to organic or inorganic cadmium on biomarkers in rat tissues. Ecotoxicol Environ Saf 70(3):490–498

    Article  PubMed  CAS  Google Scholar 

  • Hodkova A, Kotyzova R, Brtko J et al (2008) Influence of curcumin, resveratrol and sodium selenite on thioredoxin reductase, glutathione peroxidase and iodothyronine-5-deiodinase activity in rats—interaction with cadmium. Toxicol Lett 180S:S32–S246

    Google Scholar 

  • Hossain S, Liu H-N, Nguyen M et al (2009) Cadmium exposure induces mitochondria-dependent apoptosis in oligodendrocytes. Neurotoxicology 30:544–554

    Article  PubMed  CAS  Google Scholar 

  • Huang T-T, Carlson EJ, Raineri I et al (1999) The use of transgenic and mutant mice to study oxygen free radical metabolism. Ann N Y Acad Sci 893:95–112

    Article  PubMed  CAS  Google Scholar 

  • Hussain T, Shukla GS, Chandra GS (1987) Effects of cadmium on superoxide-dismutase and lipid-peroxidation in liver and kidney of growing rats—in vivo and in vitro studies. Pharmacol Toxicol 60(5):355–358

    Article  PubMed  CAS  Google Scholar 

  • Ishido M, Ohtsubo R, Adachi T et al (2002) Attenuation of both apoptotic and necrotic actions of cadmium by Bcl-2. Environ Health Perspect 110:37–42

    Article  PubMed  CAS  Google Scholar 

  • Jarup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharm 238(3):201–208

    Article  CAS  Google Scholar 

  • Jarup L, Berglund M, Elinder CG et al (1998) Health effects of cadmium exposure—a review on the literature and a risk estimate. Scand J Work Environ Health 24(S1):1–51

    PubMed  Google Scholar 

  • Ježek P, Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Cell Physiol Biochem 37:2478–2503

    Google Scholar 

  • Jihen EH, Imed M, Fatima H et al (2009) Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver of the rat: effects on the oxidative stress. Ecotoxicol Environ Saf 72(5):1559–1564

    Article  CAS  Google Scholar 

  • Jiménez I, Gotteland M, Zarzuelo A et al (1997) Loss of metal binding properties of metallothionein induced by hydrogen peroxide and free radicals. Toxicology 120(1):37–46

    Article  PubMed  Google Scholar 

  • Jones DP, Go YM, Anderson CL et al (2004) Cysteine/cystine couple as a newly recognized node in the circuitry for biologic redox signaling and control. FASEB J 18:1246–1248

    PubMed  CAS  Google Scholar 

  • Joseph P (2009) Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharm 238(3):272–279

    Article  CAS  Google Scholar 

  • Jurczuk M, Brzoska MM, Moniuszko-Jakoniuk J et al (2004) Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol. Food Chem Toxicol 42(3):429–438

    Article  PubMed  CAS  Google Scholar 

  • Kamiyama T, Miyakawa H, Li JP et al (1995) Effects of one-year cadmium exposure on livers and kidneys and their relation to glutathione levels. Res Commun Pathol Pharmacol 88(2):177–186

    CAS  Google Scholar 

  • Kara H, Cevik A, Konar V et al (2008) Effects of selenium with vitamin E and melatonin on cadmium-induced oxidative damage in rat liver and kidneys. Biol Trace Elem Res 125(3):236–244

    Article  PubMed  CAS  Google Scholar 

  • Karabulut-Bulan O, Bolkent S, Yanardag R et al (2008) The role of vitamin C, vitamin E, and selenium on cadmium-induced renal toxicity of rats. Drug Chem Toxicol 31(4):413–426

    Article  PubMed  CAS  Google Scholar 

  • Kawata K, Shimazaki R, Okabe S (2009) Comparison of gene expression profiles in HepG2 cells exposed to arsenic, cadmium, nickel, and three model carcinogens for investigating the mechanisms of metal carcinogenesis. Environ Mol Mutagen 50:46–59

    Article  PubMed  CAS  Google Scholar 

  • Kefaloyianni E, Gourgou E, Ferle V et al (2005) Acute thermal stress and various heavy metals induce tissue-specific pro- or anti-apoptotic events via the p38-MAPK signal transduction pathway in Mytilus galloprovincialis (Lam.). J Exp Biol 208(23):4427–4436

    Article  PubMed  CAS  Google Scholar 

  • Kehrer JP (2000) The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50

    Article  PubMed  CAS  Google Scholar 

  • Kidd P (1997) Glutathione: systemic protectant against oxidative and free radical damage. Altern Med Rev 2:155–176

    Google Scholar 

  • Kim JH, Dahms HU, Rhee JS et al (2010) Expression profiles of seven glutathione S-transferase (GST) genes in cadmium-exposed river pufferfish (Takifugu obscurus). Comp Biochem Physiol C Toxicol Pharm 151(1):99–106

    Article  CAS  Google Scholar 

  • Klaassen Cd, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharm 238(3):215–220

    Article  CAS  Google Scholar 

  • Koizumi T, Yokota T, Shirakura H (1994) Potential mechanism of cadmium-induced cytotoxicity in rat hepatocytes: inhibitory action of cadmium on mitochondrial respiratory activity. Toxicology 92:115–125

    Article  PubMed  CAS  Google Scholar 

  • Koizumi S, Gong PF, Suzuki K (2007) Cadmium-responsive element of the human heme oxygenase-1 gene mediates heat shock factor 1-dependent transcriptional activation. J Biol Chem 282(12):8715–8723

    Article  PubMed  CAS  Google Scholar 

  • Kondoh M, Araragi S, Sato K et al (2002) Cadmium induces apoptosis partly via caspase-9 activation in HL-60 cells. Toxicology 170:111–117

    Article  PubMed  CAS  Google Scholar 

  • Kotelnikova SV, Sokolova NG, Kotelnikov AV (2008) Lipid peroxidation in various organs and tissues of albino rats with cadmium intoxication in winter and summer. Bull Exp Biol Med 146(3):291–292

    Article  PubMed  CAS  Google Scholar 

  • Krause KH (2004) Tissue distribution and putative physiological function of NOX family NADPH oxidases. Jpn J Infect Dis 57:S28–S29

    PubMed  Google Scholar 

  • Lasfer M, Vadrot N, Aoudjehane L et al (2008) Cadmium induces mitochondria-dependent apoptosis of normal human hepatocytes. Cell Biol Toxicol 24:55–62

    Article  PubMed  CAS  Google Scholar 

  • Lee W-K, Bork U, Thévenod F (2004) Mitochondria as a target of cadmium nephrotoxicity: induction of swelling and cytochrome c release. Toxicol Mech Methods 14:67–71

    Article  PubMed  CAS  Google Scholar 

  • Lee W-K, Abouhamed M, Thévenod F (2006) Caspase-dependent and -independent pathways for cadmium-induced apoptosis in cultured kidney proximal tubule cells. Am J Physiol Renal Physiol 291:F823–F832

    Article  PubMed  CAS  Google Scholar 

  • Lemarié A, Lagadic-Gossmann D, Morzadec C et al (2004) Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. Free Radic Biol Med 36:1517–1531

    Article  PubMed  CAS  Google Scholar 

  • Li JM, Shah AM (2003) ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol 14:S221–S226

    Article  PubMed  CAS  Google Scholar 

  • Li M, Kondo T, Zhao Q-L et al (2000) Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria-dependent pathways. J Biol Chem 275:39702–39709

    Article  PubMed  CAS  Google Scholar 

  • Li GY, Kim M, Kim JH et al (2008) Gene expression profiling in human lung fibroblast following cadmium exposure. Food Chem Toxicol 46:1131–1137

    PubMed  CAS  Google Scholar 

  • Linster CL, Van Schaftingen E (2007) Vitamin C. Biosynthesis, recycling, degradation in mammals. FEBS J 274(1):1–22

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Corton C, Dix DJ et al (2001) Genetic background, but not metallothionein phenotype dictates sensitivity to cadmium–induced testicular injury in mice. Toxicol Appl Pharm 176(1):1–9

    Article  CAS  Google Scholar 

  • Liu J, Kadiiska MB, Corton JC et al (2002) Acute cadmium exposure induces stress-related gene expression in wild-type and metallothionein-I/II null mice. Free Radic Biol Med 32:525–535

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharm 238(3):209–214

    Article  CAS  Google Scholar 

  • Lopez E, Arce C, Oset-Gasque MJ et al (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 40:940–951

    Article  PubMed  CAS  Google Scholar 

  • Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95:3478–3482

    Article  PubMed  CAS  Google Scholar 

  • Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Biog Amines 16(1):53–62

    CAS  Google Scholar 

  • Matsuoka M, Igisu H (1998) Activation of c-Jun NH2-terminal kinase (JNK/SAPK) in LLC-PK1 cells by cadmium. Biochem Biophys Res Commun 251(2):527–532

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Siala W, Bashandy T et al (2008) Glutaredoxins and thioredoxins in plants. Biochim Biophys Acta 1783:589–600

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M et al (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  PubMed  CAS  Google Scholar 

  • Müller L (1986) Consequences of cadmium toxicity in rat hepatocytes: mitochondrial dysfunction and lipid peroxidation. Toxicology 40:285–295

    Article  PubMed  Google Scholar 

  • Mustafa MG, Cross CE (1971) Pulmonary alveolar macrophage. Oxidative metabolism of isolated cells and mitochondria and effect of cadmium ion on electron- and energy-transfer reactions. Biochemistry 10:4176–4185

    Article  PubMed  CAS  Google Scholar 

  • Nawrot TS, Van Hecke E, Thijs L et al (2008) Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ Health Perspect 116(12):1620–1628

    Article  PubMed  CAS  Google Scholar 

  • Neumann C, Krause D, Carman C et al (2003) Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424(6948):561–565

    Article  PubMed  CAS  Google Scholar 

  • Newairy AA, Ei-Sharaky AS, Badreldeen MM et al (2007) The hepatoprotective effects of selenium against cadmium toxicity in rats. Toxicology 242(1–3):23–30

    Article  PubMed  CAS  Google Scholar 

  • Nishitai G, Matsuoka M (2008) Differential regulation of HSP70 expression by the JNK kinases SEK1 and MKK7 in mouse embryonic stem cells treated with cadmium. J Cell Biochem 104(5):1771–1780

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Nriagu J (1988) A silent killer of environmental metal poisoning. Environ Pollut 50(1–2):139–161

    Article  PubMed  CAS  Google Scholar 

  • Ognjanovic BI, Pavlovic SZ, Maletic SD (2003) Protective influence of vitamin E on antioxidant defense system in the blood of rats treated with cadmium. Physiol Res 52(5):563–570

    PubMed  CAS  Google Scholar 

  • Ognjanovic BI, Markovic SD, Pavlovic SZ et al (2008) Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: protective effect of selenium. Physiol Res 57(3):403–411

    PubMed  CAS  Google Scholar 

  • Oh SH, Lim S-C (2006) A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol Appl Pharm 212:212–223

    Article  CAS  Google Scholar 

  • Oh MJ, Chae GY, Ahn KH (2009) Involvement of oxidised Peroxiredoxin-3 in cadmium- and ceramide-induced apoptosis of human neuroblastoma cells. J Health Sci 55(5):739–749

    Article  CAS  Google Scholar 

  • Packer L, Weber SU, Rimbach G (2001) Molecular aspects of alpha-tocotrienol antioxidant action and cell signalling. J Nutr 131(2):369S–373S

    PubMed  CAS  Google Scholar 

  • Papadakis ES, Finegan KG, Wang X et al (2006) The regulation of Bax by c-Jun N-terminal protein kinase (JNK) is a prerequisite to the mitochondrial-induced apoptotic pathway. FEBS Lett 580(5):1320–1326

    Article  PubMed  CAS  Google Scholar 

  • Pathak N, Khandelwal S (2006) Oxidative stress and apoptotic changes in murine splenocytes exposed to cadmium. Toxicology 220(1):26–36

    Article  PubMed  CAS  Google Scholar 

  • Picaud T, Desbois A (2006) Interaction of glutathione reductase with heavy metal: the binding of Hg(II) or Cd(II) to the reduced enzyme affects both the redox dithiol pair and the flavin. Biochemistry 45:15829–15837

    Article  PubMed  CAS  Google Scholar 

  • Poliandri AHB, Machiavelli LI, Quinteros AF et al (2006) Nitric oxide protects the mitochondria of anterior pituitary cells and prevents cadmium-induced cell death by reducing oxidative stress. Free Radic Biol Med 40:679–688

    Article  PubMed  CAS  Google Scholar 

  • Qu W, Diwan BA, Reece JM et al (2005) Cadmium-induced malignant transformation in rat liver cells: role of aberrant oncogene expression and minimal role of oxidative stress. Int J Cancer 114(3):346–355

    Article  PubMed  CAS  Google Scholar 

  • Qu W, Fuquay R, Sakurai T et al (2006) Acquisition of apoptotic resistance in cadmium-induced malignant transformation: specific perturbation of JNK signal transduction pathway and associated metallothionein overexpression. Mol Carcinog 45:561–571

    Article  PubMed  CAS  Google Scholar 

  • Quinn MT, Ammons MCB, DeLeo FR (2006) The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin Sci 111:1–20

    Article  PubMed  CAS  Google Scholar 

  • Rana SV, Verma S (1996) Protective effects of GSH, vitamin E, and selenium on lipid peroxidation in cadmium fed rats. Biol Trace Elem Res 51(2):161–168

    Article  PubMed  CAS  Google Scholar 

  • RC IA (1993) Cadmium and cadmium compounds. IARC Monographs. International Agency for research on Cancer, Lyon, France

    Google Scholar 

  • Renugadevi J, Prabu SM (2009) Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology 256(1–2):128–134

    Article  PubMed  CAS  Google Scholar 

  • Rhee S, Chae H, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signalling. Free Radic Biol Med 38(12):1543–1552

    Article  PubMed  CAS  Google Scholar 

  • Rockwell P, Martinez J, Papa L et al (2004) Redox regulates COX-2 upregulation and cell death in the neuronal response to cadmium. Cell Signal 16:343–353

    Article  PubMed  CAS  Google Scholar 

  • Salmeen A, Andersen JN, Myers MP et al (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423:769–773

    Article  PubMed  CAS  Google Scholar 

  • Sancho P, Fernández C, Yuste VJ et al (2006) Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under different forms of oxidative stress. Apoptosis 11:673–686

    Article  PubMed  CAS  Google Scholar 

  • Schrader M, Fahimi HD (2004) Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 122(4):383–393

    Article  PubMed  CAS  Google Scholar 

  • Seifried HE, Anderson DE, Fisher EI et al (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. Nutr Biochem 18:567–579

    Article  CAS  Google Scholar 

  • Sen Gupta R, Kim J, Gomes C et al (2004) Effect of ascorbic acid supplementation on testicular steroidogenesis and germ cell death in cadmium-treated male rats. Mol Cell Endocrinol 221(1–2):57–66

    Article  PubMed  CAS  Google Scholar 

  • Sheader DL, Williams TD, Lyons BP et al (2006) Oxidative stress response of European flounder (Platichthys flesus) to cadmium determined by a custom cDNA microarray. Mar Environ Res 62:33–44

    Article  PubMed  CAS  Google Scholar 

  • Shih C-M, Ko W-C, Wu J-S et al (2004) Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts. J Cell Biochem 91:384–397

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1997) Impaired endothelial and smooth muscle cell function in oxidative stress. Exp Physiol 82:291–295

    PubMed  CAS  Google Scholar 

  • Slyuzova OV, Stepanova EV, Temraleeva AD et al (2008) Effects of prenatal and neonatal cadmium intoxication on the intensity of lipid peroxidation and activity of glutathione system in progeny of albino rats. Bull Exp Biol Med 146(1):41–44

    Article  PubMed  CAS  Google Scholar 

  • Souza V, Escobar MD, Gomez-Quiroz L et al (2004) Acute cadmium exposure enhances AP-1 DNA binding and induces cytokines expression and heat shock protein 70 in HepG2 cells. Toxicology 197(3):213–228

    Article  PubMed  CAS  Google Scholar 

  • Souza V, Escobar M, Bucio L et al (2009) NADPH oxidase and ERK1/2 are involved in cadmium induced STAT3 activation in HepG2 cells. Toxicol Lett 187:180–186

    Article  PubMed  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JS, Kodama N, Molotkov A et al (1998) Isolation and identification of metallothionein isoforms (MT-1 and MT-2) in the rat testis. Biochem J 334:695–701

    PubMed  CAS  Google Scholar 

  • Szuster-Ciesielska A, Stachura A, Slotwinska M et al (2000) The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology 145:159–171

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Masuda A, Sun M et al (2004) Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm). Brain Res Bull 62:497–504

    Article  PubMed  CAS  Google Scholar 

  • Takeshige K, Minakami S (1979) NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Biochem J 180:129–135

    PubMed  CAS  Google Scholar 

  • Tandon SK, Singh S, Prasad S (2003) Reversal of cadmium induced oxidative stress by chelating agent, antioxidant or their combination in rat. Toxicol Lett 145(3):211–217

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Shaikh ZA (2001) Renal cortical mitochondrial dysfunction upon cadmium metallothionein administration to Sprague-Dawley rats. J Toxicol Environ Health A 63:221–235

    Article  PubMed  CAS  Google Scholar 

  • Thévenod F (2003) Nephrotoxicity and the proximal tubule: insights from cadmium. Nephron Physiol 93:87–93

    Article  CAS  Google Scholar 

  • Thévenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharm 238(3):221–239

    Article  CAS  Google Scholar 

  • Thévenod F, Friedmann JM, Katsen AD et al (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappa B activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Appl Biol Chem 275:1887–1896

    Google Scholar 

  • Thijssen S, Cuypers A, Maringwa J et al (2007) Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys. Toxicology 236(1–2):29–41

    Article  PubMed  CAS  Google Scholar 

  • Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    Article  PubMed  CAS  Google Scholar 

  • Vairavamurthy MA, Goldenber WS, Ouyang S et al (2000) The interaction of hydrophilic thiols with cadmium: investigation with a simple model, 3-mercaptopropionic acid. Mar Chem 70:181–189

    Article  CAS  Google Scholar 

  • Valbonesi P, Ricci L, Franzellitti S et al (2008) Effects of cadmium on MAPK signalling pathways and HSP70 expression in a human trophoblast cell line. Placenta 29(8):725–733

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  PubMed  CAS  Google Scholar 

  • van Montfort RLM, Congreve M, Tisi D et al (2003) Oxidation state of the active-site cyteine in protein tyrosine phosphatase 1B. Nature 423:773–777

    Article  PubMed  CAS  Google Scholar 

  • Vangronsveld J, Van Assche F, Clijsters H (1995) Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environ Pollut 87:51–59

    Article  PubMed  CAS  Google Scholar 

  • Waisberg M, Joseph P, Hale B et al (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192(2–3):95–117

    Article  PubMed  CAS  Google Scholar 

  • Wang YD, Fang J, Leonard SS et al (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36(11):1434–1443

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Cao J, Chen D et al (2009) Role of oxidative stress, apoptosis and intracellular homeostasis in primary cultures of rat proximal tubular cells exposed to cadmium. Biol Trace Elem Res 127:53–68

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn CC (1979) Comparison of superoxide with other reducing agents in the biological production of hydroxyl radicals. Biochem J 182:625–628

    PubMed  CAS  Google Scholar 

  • Wronska-Nofer T, Wisniewska-Knypl J, Dziubaltowska E et al (1999) Prooxidative and genotoxic effect of transition metals (cadmium, nickel, chromium, and vanadium) in mice. Trace Elem Electrol 16(2):87–92

    CAS  Google Scholar 

  • Yalin S, Comelekoglu U, Bagis S et al (2006) Acute effect of single-dose cadmium treatment on lipid peroxidation and antioxidant enzymes in ovariectomized rats. Ecotoxicol Environ Saf 65(1):140–144

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Uenishi R, Suzuki K et al (2009) Cadmium-induced alterations of gene expression in human cells. Environ Toxicol Pharm 28(1):61–69

    Article  CAS  Google Scholar 

  • Yang PM, Chen HC, Tsai JS et al (2007) Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-kappa B activity. Chem Res Toxicol 20:406–415

    Article  PubMed  CAS  Google Scholar 

  • Yeh J-H, Huang C-C, Yeh M-Y et al (2009) Cadmium-induced cytosolic Ca2+ elevation and subsequent apoptosis in renal tubular cells. Basic Clin Pharmacol Toxicol 104:345–351

    Article  PubMed  CAS  Google Scholar 

  • Yiin SJ, Sheu JY, Lin TH (2000) Lipid peroxidation in rat adrenal glands after administration cadmium and role of essential metals. J Toxicol Environ Health A 62(1):47–56

    Article  Google Scholar 

  • Yokouchi M, Hiramatsu N, Hayakawa H et al (2008) Involvement of selective reactive oxygen species upstream of proapoptotic branches of unfolded protein response. J Biol Chem 283:4252–4260

    Article  PubMed  CAS  Google Scholar 

  • Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharm 186:163–188

    Article  CAS  Google Scholar 

  • Zhou YJ, Zhang SP, Liu CW et al (2009) The protection of selenium on ROS-mediated apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK1 cells. Toxicol In Vitro 23(2):288–294

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Cuypers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuypers, A., Plusquin, M., Remans, T. et al. Cadmium stress: an oxidative challenge. Biometals 23, 927–940 (2010). https://doi.org/10.1007/s10534-010-9329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9329-x

Keywords

Navigation