Skip to main content

Advertisement

Log in

Dinoflagellate diversity and distribution

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Dinoflagellates are common to abundant in both marine and freshwater environments. They are particularly diverse in the marine plankton where some cause “red tides” and other harmful blooms. More than 2,000 extant species have been described, only half of which are photosynthetic. They include autotrophs, mixotrophs and grazers. They are biochemically diverse, varying in photosynthetic pigments and toxin production ability. Some are important sources of bioluminescence in the ocean. They can host intracellular symbionts or be endosymbionts themselves. Most of the photosynthetic “zooxanthellae” of invertebrate hosts are mutualistic dinoflagellate symbionts, including all those essential to reef-building corals. Roughly 5% are parasitic on aquatic organisms. The fossil record, consisting of more than 2,500 species, shows a rapid radiation of cysts, starting in the Triassic, peaking in the Cretaceous, and declining throughout the Cenozoic. Marine species with a benthic, dormant cyst stage are confined to the continental shelf and fossil cysts can be used as markers of ancient coastlines. Northern and southern hemispheres contain virtually identical communities within similar latitudes, separated by a belt of circumtropical species. A few endemics are present in tropical and polar waters. Some benthic dinoflagellates are exclusively tropical, including a distinct phycophilic community, some of which are responsible for ciguatera fish poisoning. In lakes chemical and grazing effects can be important. Predatory dinoflagellates co-occur with their prey, often diatoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baldauf SL, Roger AJ, Wenk-Siefert I et al (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    Article  PubMed  CAS  Google Scholar 

  • Bourrelly P (1970) Les algues d’eau douce. Initiation à la systématique. Tome III: Les algues bleues et rouges. Les Eugléniens, Peridiniens et Cryptomonadines. Éditions N. Boubée and Cie, Paris

  • Bujak JP, Williams GL (1981) The evolution of dinoflagellates. Can J Bot 59:2077–2087

    Article  Google Scholar 

  • Cachon J, Cachon M (1987) Parasitic dinoflagellates. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:571–610

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366

    Article  PubMed  CAS  Google Scholar 

  • Cembella AD, Taylor FJR (1985) Biochemical variability within the Protogonyaulax tamarensis/catenella species complex. In: Anderson DM, White AW, Baden DG (eds) Toxic dinoflagellates. Elsevier, Holland, pp 55–60

    Google Scholar 

  • Cembella AD, Taylor FJR (1986) Electrophoretic variability within the Protogonyaulax tamarensis/catenella species complex: pyridine linked dehydrogenases. Biochem System Ecol 14:311–323

    Article  CAS  Google Scholar 

  • Cembella AD, Sullivan JJ, Boyer GG, Taylor FJR, Andersen RJ (1987) Variation in paralytic shellfish toxin within the Protogonyaulax tamarensis/catenella species complex; red tide dinoflagellates. Biochem System Ecol 15:171–186

    Article  CAS  Google Scholar 

  • Dolan J (2005) An introduction to the biogeography of aquatic microbes. Aquat Microb Ecol 41:30–48

    Article  Google Scholar 

  • Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams DL (1993) A classification of living and fossil dinoflagellates. Am Mus Nat Hist, Micropal Spec Publ 7

  • Fensome RA, MacRae RA, Moldowan JM, Taylor FJR, Williams GL (1996) The early Mesozoic radiation of dinoflagellates. Paleobiol 22:329–338

    Google Scholar 

  • Fensome RA, Saldarriaga JF, Taylor FJR (1999) Dinoflagellate phylogeny revisited: reconciling morphological and molecular-based phylogenies. Grana 38:66–80

    Google Scholar 

  • Foissner W (1999) Protist diversity: estimates of the near-imponderable. Protist 150:363–368

    Article  PubMed  CAS  Google Scholar 

  • Gaines G, Elbrächter M (1987) Heterotrophic nutrition. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:224–268

  • Gómez F (2005) A list of dinoflagellates in the world oceans. Acta Bot Croatica 84:129–212

    Google Scholar 

  • Gómez F (2006) Endemic and Indo-Pacific plankton in the Mediterranean Sea: a study based on dinoflagellate records. J Biogr 33:261–270

    Article  Google Scholar 

  • Goodman DK (1987) Dinoflagellate cysts in ancient and modern sediments. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:649–722

  • Greuet C (1987) Complex organelles. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:119–142

  • Hallegraeff GM, Bolch CJ (1991) Transport of diatom and dinoflagellate resting cysts via ship’s ballast water. Mar Pollut Bull 22:27–30

    Article  Google Scholar 

  • Hallegraeff GM, Bolch CJ (1992) Transport of diatom and dinoflagellate resting spores in ships ballast water: implications for plankton biogeography and aquaculture. J Plankton Res 14:1067–1084

    Article  Google Scholar 

  • Head M (1996) Modern dinoflagellate cysts and their biological affinities. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications. Dallas, USA, pp 1197–1248

    Google Scholar 

  • Hoppenrath M, Leander BS (2007a) Character evolution in polykrikoid dinoflagellates. J Phycol 43:366–377

    Article  Google Scholar 

  • Hoppenrath M, Leander BS (2007b) Morphology and phylogeny of the pseudocolonial dinoflagellates Polykrikos lebourae and Polykrikos herdmanae n. sp. Protist 158:209–227

    Article  PubMed  CAS  Google Scholar 

  • John U, Fensome RA, Medlin LK (2003) The application of a molecular clock based on molecular sequences and the fossil record to explain biogeographic distribution within the Alexandrium tamarense “species complex” (Dinophyceae). Mol Biol Evol 20:1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Lilly E, Kulis D, Gentien P et al (2002) Paralytic shellfish poisoning in France linked to a human-introduced strain of Alexandrium catenella from the western Pacific: evidence from DNA and toxin analysis. J Plankt Res 24:443–452

    Article  CAS  Google Scholar 

  • López-García P, Rodríguez-Valera F, Pedrós-Alió C et al (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic phytoplankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • Lundholm N, Moestrop Ø (2006) The biogeography of harmful algae. In: Granelli E, Turner JT (eds) Ecology of harmful algae. Ecol Stud 189:23–35

  • Massana R, Guillou L, Díez B et al (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the Ocean. Appl Environ Microbiol 68:4554–4558

    Article  PubMed  CAS  Google Scholar 

  • McMinn A, Scot FJ (2005) 3. Dinoflagellates. In: Scott FJ, Marchant HW (eds) Antarctic marine protists. Austral Biol Res Study, Canberra, pp 202–250

    Google Scholar 

  • Moldowan JM, Terazina NM (1998) Biogeochemical evidence for dinoflagellate ancestors in the Early Cambrian. Science 281:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Montresor M, Lovejoy C, Orsini L et al (2003) Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biol 26:186–194

    Google Scholar 

  • Moon van-der-Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  PubMed  CAS  Google Scholar 

  • Okolodkov YB (1999) An ice-bound planktonic dinoflagellate Peridiniella catenata (Levander) Balech: morphology, ecology and distribution. Bot Mar 42:333–341

    Article  Google Scholar 

  • Pollingher U (1987) Freshwater ecosystems. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:502–529

  • Pross J, Kotthof U, Zonnefeld K (2004) Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Meso- and Cenozoic: potential and limits. Palaentol Zeitschr 78:5–39

    Google Scholar 

  • Rossignol M (1962) Analyse pollenique de sediments Quaternaires en Israël. II. Sédiments Pleistocénes. Pollen et Spores 4:121–148

    Google Scholar 

  • Saldarriaga JF, Taylor FJR, Keeling P et al (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol 53:204–213

    Article  PubMed  CAS  Google Scholar 

  • Saldarriaga JF, Taylor FJR, Cavalier-Smith T et al (2004) Molecular data and the evolutionary history of dinoflagellates. Eur J Protistol 40:85–111

    Article  Google Scholar 

  • Sarjeant WAS (1974) Fossil and living dinoflagellates. Academic Press, London

    Google Scholar 

  • Schnepf E, Elbrächter M (1992) Nutritional strategies in dinoflagellates. A review with emphasis on cell biological aspects. Eur J Protistol 28:3–24

    Google Scholar 

  • Schnepf E, Elbrächter M (1999) Dinophyte chloroplasts and phylogeny —a review. Grana 38:81–97

    Google Scholar 

  • Scholin CA (1998) Morphological, genetic, and biogeographic relationships of the toxic dinoflagellates Alexandrium tamarense, A. catenella, and A. fundyense. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. NATO ASI Ser G: Ecol Sci 41:13–27

  • Skovgaard A, Massana R, Balagué V, Saiz E (2005) Phylogenetic position of the copepod-infesting parasite Syndinium turbo (Dinoflagellata, Syndinea). Protist 156:413–423

    Article  PubMed  CAS  Google Scholar 

  • Spector D (1984) Dinoflagellates. Academic Press, Orlando

    Google Scholar 

  • Steidinger KA, Burkholder JM, Glasgow HB et al (1996) Pfiesteria piscicida gen. et sp. nov. (Pfiesteriaceae), a new toxic dinoflagellate with a complex life cycle and behavior. J Phycol 32:157–164

    Article  Google Scholar 

  • Taylor FJR (1976) Dinoflagellates from the International Indian Ocean Expedition. Biblthca Bot 132:1–222 + 46 plates

    Google Scholar 

  • Taylor FJR (1984) Toxic dinoflagellates: taxonomic and biogeographic aspects with emphasis on Protogonyaulax. In: Ragelis E (ed) Seafood toxins. Am Chem Soc Symp Ser 262:77–97

  • Taylor FJR (1985) The taxonomy and relationships of red tide flagellates. In: Anderson DM, White AW, Baden DG (eds) Toxic dinoflagellates. Elsevier, Holland, pp 11–26

    Google Scholar 

  • Taylor FJR (ed) (1987a) The Biology of Dinoflagellates. Bot Monogr 21:i–xii, 1–785

  • Taylor FJR (1987b) General group characteristics, special features of interest; and a short history of dinoflagellate study. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:1–23

  • Taylor FJR (1987c) Dinoflagellate morphology. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:24–91

  • Taylor FJR (1987d) Dinoflagellate ecology: general and marine ecosystems. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:398–502

  • Taylor FJR (1992) The species problem and its impact on harmful phytoplankton studies, with emphasis on dinoflagellate morphology. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, New York, pp 81–86

    Google Scholar 

  • Taylor FJR (2001) Conference overview: harmful algal bloom studies enter the new millenium. In: Hallegraeff GM, Blackburn SI, Bolch CJ et al (eds) Harmful algal blooms 2000. Proc 9th Int Conf Harmful Algal Blooms, IOC, UNESCO, Paris, pp 3–5

  • Taylor FJR (2004) Harmful dinoflagellate species in space and time and the value of morphospecies. In: Steidinger KA, Landsberg JH, Tomas CR et al (eds) Harmful algae 2002. Fla Fish Wildl. Cons Comm, Fla Inst Ocean, IOC UNESCO, St. Petersburg, Fla, pp 555–559

  • Trench RK (1987) Dinoflagellates in non-parasitic symbioses. In: Taylor FJR (ed) The biology of dinoflagellates. Bot Monogr 21:530–570

  • Wyatt T (1995) Global spreading, time series, models and monitoring. In: Lassus P, Arzul G, Erard-LeDenn F et al (eds) Harmful marine algal blooms. Lavoisier, Paris, pp 755–764

    Google Scholar 

  • Zeitzschel B (1990) Zoogeography of marine protozoa: an overview emphasizing distribution of planktonic forms. In: Capriulo GM (ed) Ecology of marine protozoa. Oxford University Press, Oxford, pp 139–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. R. Taylor.

Additional information

Special Issue: Protist diversity and geographic distribution. Guest editor: W. Foissner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, F.J.R., Hoppenrath, M. & Saldarriaga, J.F. Dinoflagellate diversity and distribution. Biodivers Conserv 17, 407–418 (2008). https://doi.org/10.1007/s10531-007-9258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-007-9258-3

Keywords

Navigation