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Abstract  23 

A monogenean flatworm Gyrodactylus jennyae Paetow, Cone, Huyse, McLaughlin & 24 

Marcogliese, 2009 was previously described as a pathogen on bullfrog Lithobates 25 

catesbeianus Shaw, 1802, in a Canadian captive population originating in Missouri, U.S.A. 26 

The ITS barcoding of G. jennyae showed relatedness to Asian Gyrodactylus macracanthus 27 

Hukuda 1940, a parasite of the Asian loach Misgurnus anguillicaudatus Cantor, 1842. The 28 

resulting suggestion that the globally invasive pet-trade of fish may be a mechanism for 29 

arrival of Gyrodactylus species to North America provided the framework for the current 30 

study. The present study was undertaken following the discovery of two other species of 31 

Gyrodactylus in a population of illegally introduced M. anguillicaudatus in New York State. 32 

Here the invasion hypothesis was tested via DNA sequencing of the ITS of the two 33 

Gyrodactylus species obtained from M. anguillicaudatus from New York, termed 34 

Gyrodactylus sp. A and Gyrodactylus sp. B. Both Gyrodactylus sp. A and Gyrodactylus sp. B 35 

were closely related to G. jennyae and G. macracanthus, and all belong to a molecularly well-36 

supported monophyletic Asian freshwater group. In conclusion, this invasive fish has 37 

trafficked at least three parasite species to the U.S.A., one of them also found on frog. This 38 

route from the Asian wetlands to other continents is similar to that of amphibian chytrid fungi 39 

of genus Batrachochytrium Longcore, Pessier & Nichols, 1999.  40 
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 3 

Introduction 48 

Introduced and invasive species are increasingly recognized as a threat to local ecosystems. 49 

The interactions of the invaders and the native populations are often simplified as resource 50 

competition of the organisms at the same trophic level. Perhaps biological invasions are more 51 

complicated, and the harmful effects caused by new intruders surpass simple competition. 52 

Introduced organisms may shed their native parasites and diseases and gain a competitive 53 

advantage (Enemy release hypothesis, Torchin et al. 2003) in new ecosystems. The invaders 54 

may also introduce diseases which are new to the target ecosystem, and therefore harm the 55 

native populations of interacting species (Verneau et al. 2011). Disturbed ecosystems may in 56 

turn spread pathogens to humans and livestock and increase the number of zoonoses (EIDs or 57 

emerging infectious diseases; Daszak et al. 2000). One drastic example of harmful invasion in 58 

line with the focus of this paper was the transport of Baltic strains of Atlantic salmon (Salmo 59 

salar L.) to Norway. With clinically healthy (tolerant) Baltic fish, the monogenean flatworm 60 

parasite Gyrodactylus salaris Malmberg, 1957 arrived in Norway in 1975 and destroyed 45 61 

Atlantic salmon river populations in just a few decades (Johnsen and Jensen 1991; Bakke et 62 

al. 2002, 2007). In contrast, the long-isolated Baltic salmon (Lumme et al. 2015) is tolerant 63 

and co-adapted with G. salaris, so that the spatially and genetically differentiated host-64 

parasite combinations remain stable despite the physical mobility (Lumme et al. 2016a). The 65 

parasite introduced to the susceptible Atlantic salmon populations spread rapidly, with fatal 66 

consequences. 67 

Gurevitch and Padilla (2004) asked whether species invasions are a major cause of 68 

extinctions, and claimed that data supporting this widely-accepted view often are anecdotal, 69 

speculative, and based on limited observation. A problem common with such observations 70 

about "change" is that many global changes occur in the same time axis and are temporally 71 

associated. This leads to skepticism against invoking explanations of "change". Pimentel et al. 72 
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 4 

(2005) estimated that there are 50,000 foreign plant or animal species in the United States 73 

alone, and that 42% of endemic species are endangered or threatened because of aliens. The 74 

authors concluded that the total economic damages and losses caused by invasive species add 75 

up to an estimated $120 billion per year in the U.S.A. alone. 76 

This study maps a complex case of an introduced and rapidly spreading Asian fish in 77 

North America, accompanied by East Asian parasites. The starting point of this narrative was 78 

as follows. A monogenean flatworm species Gyrodactylus jennyae Paetow, Cone, Huyse, 79 

McLaughlin and Marcogliese 2009 was described as a new pathogenic parasite on the 80 

American bullfrog Lithobates catesbeianus Shaw, 1802 in North America. The bullfrog itself 81 

is widely trafficked (Mata-López et al.  2010). Paetow et al. (2013) also demonstrated that G. 82 

jennyae infection increased the mortality of the tadpoles associated with fungal disease 83 

Batrachochytrium dendrobatidis Longcore, Pessier & Nichols, 1999, making matters worse. 84 

This fungal disease is considered one of the main reasons for the contemporary decline of 85 

global amphibian populations (Collins and Crump 2009). The question was raised about the 86 

origin of this newly described Gyrodactylus species, which are monogenean ectoparasites of 87 

fish, seldom found on amphibians. Records on amphibians were reviewed in Paetow et al. 88 

2009. 89 

Fortunately, the formal description of G. jennyae was accompanied with the DNA 90 

sequence of complete ribosomal Internal Transcribed Spacer segments (ITS1-5.8S rDNA–91 

ITS2), hereafter ITS. This fragment of DNA is the most popular in Gyrodactylus studies (e.g., 92 

Paetow et al. 2009), and consequently the most useful DNA segment for “barcoding” in the 93 

genus (Mendoza-Palmero et al., 2019). The parasites of genus Gyrodactylus are very small 94 

(<0.5 mm), living on the surface or gills of the fish, and most often clinically more or less 95 

asymptomatic. In fact, they are seldom detected without targeted search. Emphasis of research 96 

has been on fish farms, especially those of salmonids (Paladini 2012). A minimum number of 97 
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 5 

Gyrodactylus species diversity has been estimated at 20,000 (Bakke et al. 2002), with some 98 

417 formally described (Harris et al. 2004), and only 200 barcoded by ITS.  99 

Paetow et al. (2009) conducted a BLAST search of G. jennyae among the published 100 

ITS sequences of Gyrodactylus spp., and confirmed closest matches of ITS1 and ITS2 101 

segments to species of the nominal subgenus G. (Gyrodactylus) which are mainly Eurasian 102 

parasites on cyprinids. The genetic distance of G. jennyae to G. neili LeBlanc, Hansen, Burt 103 

& Cone 2006, a North American member of the subgenus G. (Gyrodactylus) is dK2P = 0.320. 104 

However, in a small unpublished collection of ITS sequences from Far East Asia maintained 105 

by the authors, a much closer match dK2P = 0.085 was found between G. jennyae and G. 106 

macracanthus Hukuda, 1940, described in the Han River system, Korea. G. macracanthus is a 107 

parasite of the Asian pond loach (Misgurnus anguillicaudatus Cantor, 1842).  108 

Because M. anguillicaudatus is an invasive freshwater species trafficked by the 109 

aquarium pet trade (Chang et al. 2009) with established non-native populations in Australia, 110 

North and South America, and Europe (Belle et al. 2017 and references therein), we 111 

hypothesized that it might be a mechanism for transport of East Asian parasites to North 112 

America. A focused search was conducted in New York State (Wells 2014). 113 

 114 

Methods 115 

The Far East and U.S.A. samples of Gyrodactylus 116 

The new ITS sequences used here were of Gyrodactylus macracanthus taken from M. 117 

anguillicaudatus collected from the wild near Vladivostok, Russia (43.25º N, 131.98º E) by 118 

hand net. The ITS samples from Topmouth gudgeon (a.k.a. Stone moroko) Pseudorasbora 119 

parva (Cyprinidae) were from the same geographical area, from the River Bol’shaya Ussurka 120 

(45.98º N, 134.03º E), and were included in this study because of the relatedness of the ITS. 121 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 6 

The Russian fish were killed immediately by a blow to head and the fins and gills were 122 

removed and stored in 96 % ethanol.  123 

In central New York State, U.S.A., specimens of M. anguillicaudatus were collected 124 

by fish traps baited with dog food in the Manor Kill watershed near Conesville, New York 125 

(42.402 º N, -74.30 º W) on 21 October 2013 and 28 November 2015.  126 

The North American fish were maintained in aquaria for up to one month until 127 

examination for parasites. Fish were killed by cervical transection following submersion in 128 

Tricaine-S (Tricaine methanesulfonate, Western Chemical, Inc., Ferndale, Washington) in 129 

accordance with the guidelines of SUNY Oneonta (State University of New York College at 130 

Oneonta) IACUC protocol 201303. Gills were subsequently examined for monogeneans. 131 

Monogeneans encountered were preserved in 95–100% ethyl alcohol and examined with a 132 

light microscope and/or subjected to DNA sequencing (see below).  133 

 134 

Morphological recording of the parasites 135 

A subset of the monogeneans encountered in New York State were photographed with a Leica 136 

DM2500 equipped with a DFC295 digital camera (Leica Microsystems, Buffalo Grove, 137 

Illinois). The photos of complete live specimens are provided here to serve as photo vouchers 138 

(Supplementary material). 139 

The monogenean specimens chosen for analysis of ITS sequence were stored in 140 

ethanol and cut in two parts. The opisthaptor was placed on a microscope slide for 141 

morphological inspection. When the ethanol was evaporated, a drop of proteinase K digestion 142 

mix (see below) was added and the digestion was followed under a microscope (100x phase 143 

contrast, Zeiss Axiolab). When the hard parts of the haptor were cleared, the sample was 144 

embedded in saturated ammonium picrate in glycerol under a coverslip, and fixed with nail 145 

polish. The samples were photographed during and after the digestion process with a Nikon 146 
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 7 

Coolpix 995 digital camera at 100x and 200x magnifications with phase contrast optics. 147 

Calibration for measurements was done with photos of a 0.01 mm scale (Graticules Ltd, 148 

Tonbridge, Kent, England). The microscope slides were deposited as vouchers or 149 

hologenophores (sensu Pleijel et al., 2008) in the Finnish National collection in Helsinki 150 

(MZH118018-19 for Gyrodactylus sp. A, #8 and #4, and MZH118018-20 for Gyrodactylus 151 

sp. B, #11). 152 

 153 

DNA sequencing of the ITS segment 154 

The isolation of DNA, primary PCR and sequencing of the ITS of the anterior portions of 155 

ethanol fixed worms was conducted as described in previous Gyrodactylus studies (Ziętara 156 

and Lumme, 2002, 2003; Ziętara et al. 2006, 2008). The ethanol was evaporated. DNA was 157 

released by digesting single parasite halves in 10 μl of lysis solution consisting of 1 × PCR 158 

buffer, 0.45% (v/v) Tween 20, 0.45% (v/v) NP 40 and 60 µg/ml proteinase K. The samples 159 

were incubated at 65 °C for 25 minutes to allow proteinase K digestion, then at 95 °C for 10 160 

minutes to denature the proteinase and cooled down to 4 °C.  161 

Aliquots of 2 µl of this lysate were used as templates for PCR amplification. The 10 μl 162 

PCR mix consisted of 2 μl 5x Phusion HP buffer (7.5 mM MgCl2), 1 μl 2.0 mM dNTP, 0.5 1 163 

μl of each primer stock (20 μM), 0.2 U of Phusion DNA polymerase and 2 μl of digested 164 

parasite. The cycling profile was as follows: 98 °C for 30 sec, 35 cycles of 98 °C for 10 s, 165 

50 °C for 20 s and 72 °C 40 s, and a final extension at 72 °C for 5 min, and cooling down to 166 

4 °C. For primary PCR of whole ITS segment, the primers (Oligomer Oy, Helsinki, Finland) 167 

were ITS1F 5'- GTTTC CGTAG GTGAA CCT -3', and ITS2R 5'- GGTAA TCACG CTTGA 168 

ATC -3'.   169 
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The PCR product was checked in agarose gel. The product was purified by ExoSAP 170 

procedure: 0.8 μl Fast AP buffer, 0.5 μl Fast AP, 0.1 μl Exo I, 6.6 μl H2O, and 2 μl PCR 171 

product. 172 

The sequencing mix was 1.65 μl BigDye Terminator v 3.1 in 5x sequencing buffer, 173 

0.7 μl Big dye terminator v.3.1 Cycle in Sequencing RR-100, 0.65 μl of ITS1F, ITS2R, or the 174 

additional ITS2F or ITS1R primers, and 2 μl of Exosap purified PCR product. The internal 175 

sequencing primers were ITS2F 5'- TGGTG GATCA CTCGG CTCA -3' and ITS1R 5'- 176 

ATTTG CGTTC GAGAG AGACC -3'. Altogether, the coverage was threefold to fourfold. 177 

The sequencing reactions were purified by the Sephadex method and introduced to an 178 

ABI3730 automatic DNA reader. The ABI reads were decoded, edited and aligned by Codon 179 

Code Aligner, and transferred to MEGA7 for further analysis.  180 

 181 

Sequence comparisons, alignment and phylogenetic tree construction 182 

The ITS sequences vary so much within Gyrodactylus that only 5.8S RNA and the terminal 183 

parts of the ITS1 and ITS2 sequences can be reliably aligned genus-wide. We selected the set 184 

of species to be compared with G. jennyae by phylogenetic hypothesis by internal BLAST 185 

search, confirmed by secondary structure comparison of the ITS2 (Zuker 2013). We utilized 186 

the MUSCLE (Edgar 2004) program as implemented in MEGA7. The hypervariable segment 187 

in ITS1 containing a variable number of TAAAAA repeats was hand-edited. 188 

The distance method K2P (Kimura's two parameter) was chosen because it is the most 189 

simple model that can be used for this type of DNA sequence data. The sequence evolution of 190 

rDNA is strictly constrained for maintaining the secondary structure stems and hairpins, 191 

which in ITS are needed for correct splicing of the segments to be removed. The phylogenetic 192 

reconstructions were made in MEGA7 by Neighbor Joining and Maximum Likelihood 193 
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 9 

methods, both tested by 500 rounds of bootstrapping. All methods produced a robust 194 

separation between the species and branches, with the same topology. 195 

 The new ITS sequences from Far East Asia and North America were deposited in 196 

GenBank with accession numbers MH667459-MH667466 (Fig. 1). 197 

 198 

Results 199 

In New York State, M. anguillicaudatus dominated the catch in the infested headwaters in the 200 

Manor Kill watershed, living together with native amphibians, the spotted salamander 201 

(Ambystoma maculatum Shaw, 1802) and red spotted newt (Notophthalmus viridescens 202 

Rafinesque, 1820), as described by Wells (2014).  203 

A total of 48 M. anguillicaudatus specimens were caught and the gills examined for 204 

monogeneans, including 30 from the October 2013 sample and 18 from the November 2015 205 

sample. Eight of the 48 fish examined were found to have Gyrodactylus specimens, for an 206 

overall prevalence of 16.7%. The maximum number of Gyrodactylus specimens found on a 207 

single fish was six. The ITS DNA sequence was obtained from a total of seven North 208 

American specimens of Gyrodactylus, and included in the phylogeny (Fig. 1). 209 

Molecular phylogenetic position of Gyrodactylus intruders in North America 210 

The species of Gyrodactylus to be compared with G. jennyae were selected from available 211 

GenBank data by BLAST search and sequence comparison. The group is monophyletic also 212 

in the partial global phylogeny by Mendoza-Palmero et al. (2019), supported by Posterior 213 

probability/ Bootstrap values 0.93/61. An apomorphic indel influencing the secondary 214 

structure folding in ITS2 confirmed the monophyly of the group in Fig. 1. 215 

A phylogenetic hypothesis containing a total of 29 published and new ITS1-5.8S-ITS2 216 

sequences was constructed for placing G. jennyae in a plausible systematic position in a 217 

monophyletic clade supported by Posterior probability/ Bootstrap values 0.93/61 in the partial 218 
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global phylogeny by Mendoza-Palmero et al. (2019), a study which helped us guide our 219 

sampling representation here. The phylogenetic hypothesis strongly supports three sister 220 

subclades presented in Fig 1: first one from Africa on Siluriformes (Přikrylová et al. 2012), 221 

second mostly on European cyprinids described as subgenus G. (Gyrodactylus) (Malmberg 222 

1970), and the third group in focus in this study, containing the Far East Asian species on 223 

Cobitidae and P. parva, along with the three found as intruders in North America. This cluster 224 

was characterized by a  225 

The branch from Far East Asia in Fig. 1 appears to be a sister clade to the 226 

predominantly European subgenus G. (Gyrodactylus). In the tree of Mendoza-Palmero et al. 227 

(2019), G. jennyae was paired with G. granoei in this clade, which now contains eight 228 

species. The two previously unknown Gyrodactylus parasites found following examination of 229 

M. anguillicaudatus from New York State clustered with G. jennyae and G. macracanthus, 230 

but they are clearly separate species differing from one another by a dK2P = 0.085. Not 231 

presented in the tree is G. misgurni Ling, 1962, because only ITS1 sequence (AJ407887) is 232 

available. The hypervariable ITS1 of G. misgurni is closer to G. macracanthus (dK2P = 0.084) 233 

than to G. jennyae (dK2P = 0.145). Thus, it belongs to the subclade with the American G. sp. B 234 

and G. macracanthus. G. misgurni has been named and described from Misgurnus 235 

anguillicaudatus from China, but the ITS1 sequence is from European Misgurnus fossilis 236 

(Matĕjusová et al. 2001). 237 

Thus, the monophyletic sub-cluster including G. jennyae contains at least five parasite 238 

species from Misgurnus species. This strongly supports a fish origin of G. jennyae. The Far 239 

East Asia origin of G. jennyae and the two undescribed species A and B from New York is 240 

supported by relatedness of the sub-clade containing G. granoei on cobitids and the three 241 

unnamed species on the cyprinid Pseudorasbora parva. The combination of the two 242 

subclades is 100/100% supported and forms a novel Asian freshwater group of Gyrodactylus 243 
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species. Comparing it with the subgenus G. (Gyrodactylus) may suggest a subgeneric status. 244 

However, Malmberg's five subgenera are based on the osmoregulatory system, studied in 245 

living worms. Constructing new subgenera without this information seems unjustified.  246 

The two most basal species likely belonging to the subgenus G. (Gyrodactylus) are G. 247 

neili from chain pickerel (Esox niger Lesueur, 1818) from New Brunswick, Canada (LeBlanc 248 

et al. 2006), and G. laevisoides King, Cone, Mackley & Bentzen, 2013 from Northern 249 

redbelly dace (Chrosomus eos Cope, 1861) in Nova Scotia (King et al. 2013). Interestingly, 250 

these two are the only molecularly-identified North American members of subgenus G. 251 

(Gyrodactylus), and G. neili is the only species of this subgenus known from a non-cyprinid 252 

host. The phylogenetic analysis suggested that the inclusion of G. jennyae in subgenus G. 253 

(Gyrodactylus) is not supported.   254 

 255 

Morphological comparisons 256 

The morphological taxonomy of Gyrodactylus is based on the form and size of the sclerotized 257 

parts of the haptor (opisthaptor) organ on the posterior of the animal, containing two major 258 

hooks (hamuli) and sixteen marginal hooks. The species descriptions available in Pugachev et 259 

al. (2009) and in GyroBase (http://www.gyrodb.net/) cover the present taxonomical 260 

knowledge of Gyrodactylus species in Far East Asia. The haptoral morphology of the two 261 

potentially new North American species, Gyrodactylus sp. A and Gyrodactylus sp. B, is 262 

presented in Fig. 2.  263 

The marginal hook morphology of Gyrodactylus sp. A and Gyrodactylus sp. B is 264 

characteristic for the molecularly confirmed morpho-group including the three American 265 

species, the far East Russian G. macracanthus, and the European specimen of G. misgurni. 266 

The base is hoof-like and looks hollow in light microscopy, but this is not visible in the all-267 

black or outline profile drawings in the literature. The external part of the base is much 268 
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enlarged. The hooklet (sickle) is about the same length as the base, and rather straight until 269 

the curved tip, versus tightly curved from halfway as in G. granoei (You et al. 2010) and the 270 

unnamed species hosted by P. parva in Fig. 1. Five molecularly tagged taxa belong to this 271 

morpho-group parasitizing Cobitidae: G. jennyae, G. macracanthus and G. misgurni (ITS1 272 

only) and the two species G. sp. A and G. sp. B depicted and sequenced here. The following 273 

unsequenced species also belong to this morpho-group, characterized by specific marginal 274 

hooks, on the basis of drawings compiled in Pugachev et al. (2009) and in GyroBase 275 

(http://www.gyrodb.net/): G. micracanthus Hukuda, 1940 on M. anguillicaudatus (Korean 276 

Peninsula) and/or on Cobitis granoei Rendahl, 1935, (Russian Far East), G. molnari Ergens, 277 

1978, on Cobitis taenia L. (Hungary), G. yukhimenkoi Ergens, 1978, on Cobitis sibirica 278 

Gladkov, 1935 (Far East Asia), and G. latus Bychowsky, 1933, on Cobitis taenia (Europe). 279 

The G. macracanthus from Australian M. anguillicaudatus is also a member in this morpho-280 

group, but it is tagged not with ITS, but by 28S ribosomal RNA, Histone 3 and Elongation 281 

factor 1 α sequences (Perkins et al. 2009). 282 

Total length of the hamulus (main hook) in G. sp. A was 53.2 - 54.5 µm, within the 283 

published range of G. yukhimenkoi (53-57 µm) and G. latus (50-57 µm). In G. sp. B, the 284 

hamulus was smaller, 48.4 µm, within the range reported for G. misgurni (42-51 µm). Hamuli 285 

of both G. sp. A and G. sp. B are clearly smaller than the hamulus of G. jennyae (62 µm) or 286 

G. molnari (63-65 µm). Both G. sp. A and G. sp. B have longer central hooks than the 287 

original Korean G. macracanthus (41-47 µm). The G. sp. B is close to the Australian sample 288 

named as G. macracanthus by Dove and Ernst (49 µm). The above species have not been 289 

molecularly confirmed, and thus may or may not be conspecific with any of the species 290 

mentioned in the phylogeny in Fig. 1.  291 

 In the description of G. granoei (You et al. 2010) the marginal hooks of several of the 292 

above species were compared in figures 4-7, and they are clearly different: the hooklet of G. 293 
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granoei is much more curved. The marginal hooks of the parasites on Pseudorasbora parva 294 

(data not shown) confirm that they are morphologically related to G. granoei, but not to the 295 

group of G. jennyae. The parasites on P. parva presented in Fig. 1 are most probably all 296 

undescribed species.  297 

 298 

Discussion 299 

 The method of this report is molecular phylogeography (Avise 2000). The species 300 

names are less important than the DNA sequences and phylogenetic hypothesis constructed 301 

and overlaid on the continents. We have decided not to describe and name the few supposedly 302 

undescribed species in this study, owing to lack of adequate material (specimens), and 303 

because doing so is beyond the scope of this study. We report here two species related to G. 304 

jennyae that were found in North America, but they evidently originated from Far East Asia, 305 

together with their invasive host fish Misgurnus anguillicaudatus. There are several other 306 

morphologically related species described in Eurasia, but without DNA barcodes they cannot 307 

be reliably compared. In addition, three undescribed species on Pseudorasbora. parva 308 

barcoded here are surely novel, because the only species described on this host (G. parvae 309 

You, Easy & Cone, 2008, EF450249) belongs to subgenus G. (Limnonephrotus). However, 310 

they help in anchoring the clade to Far East Asia.  311 

 The strong phylogenetic association of the barcoding ITS sequence of the amphibian 312 

parasite G. jennyae with G. macracanthus on the originally Asian invasive host fish lead to a 313 

hypothesis of intercontinental parasite trafficking. Autonomous dispersal is excluded as an 314 

explanation for a freshwater host and parasite. M. anguillicaudatus belongs to the family 315 

Cobitidae (~ 29 genera, ~ 110 species) which is native to freshwaters in Eurasia (> 100 316 

species) and Morocco, North Africa (only 2 species) (Kottelat 2012). Consequently, we 317 

predicted that M. anguillicaudatus may have also carried G. jennyae and perhaps other Asian 318 
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Gyrodactylus species into North America. If G. jennyae or other relative(s) of G. 319 

macracanthus could be found in established immigrant fish, they could be taken as direct 320 

evidence that the Asian loach carried them to a new continent. It was with this beginning 321 

hypothesis that we set out to investigate Gyrodactylus parasites on Oriental weatherfish in one 322 

of many feral populations now occurring in New York State (Wells 2014). 323 

Despite some gaps in the dataset, a global molecular systematic scaffold for 324 

Gyrodactylus has developed, supporting and complementing the morphological systematics of 325 

the genus based mostly on Eurasian material (Malmberg 1970; Ergens 1985). In a very 326 

important study, Boeger et al. (2003) developed a hypothesis that the viviparous genus 327 

Gyrodactylus originated in South America from an egg-laying predecessor, and later occupied 328 

the marine environments and expanded to other continents. Molecular phylogenetic 329 

investigations may support this hypothesis. Accumulating data from Europe (Matĕjusová et 330 

al. 2003; Ziętara and Lumme, 2004), North America (Gilmore et al. 2012) and Mexico 331 

(Garcia-Vasquez et al. 2015; Mendoza-Palmiero et al., 2019) help to test and further define 332 

such hypotheses. Among the marine (coastal) parasite groups, surprisingly distant samples 333 

show genetic relatedness. In the large dataset of ITS2 in GenBank, the overall genetic 334 

distance dITS2K2P = 0.449, even while deflated via comparisons within clades. Two Antarctic 335 

(Rokicka et al. 2009) and one Chilean (Ziętara et al. 2012) marine species of Gyrodactylus 336 

were phylogenetically connected with small clusters of respective Northern species groups. 337 

Representative species pairs are the Antarctic G. coriicepsi Rokicka, Lumme & Zietara. 2009,  338 

vs.G. groenlandicus Levinsen, 1881, from British Columbia (dITS2K2P = 0.046) and G. 339 

chileani Zietara, Lebedeva, Muňoz & Lumme, 2012 vs. Mediterranean G. orecchiae Paladini, 340 

Cable, Fioravanti, Faria, Cave & Shinn, 2009 (dITS2K2P = 0.158) A surprising coincidence 341 

was that two species collected on Mexican freshwater poecilids, G. takoke Garcia-Vásquez, 342 

Razo-Mendivil & Rubio-Godoy, 2015 (KM514457; dITS2K2P = 0.031) and G. xalapensis 343 
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 15 

Rubio-Godoy, Paladini, Garcia-Vásquez & Shinn, 2010 (KJ621985; dITS2K2P = 0.018) were 344 

the nearest relatives of G. arcuatus Bychowsky, 1933 (AF328865), a circumpolar parasite on 345 

three-spined stickleback Gasterosteus aculeatus L. (Lumme et al., 2016b). At this scale, the 346 

differences between G. jennyae and its invasion partners are moderate (G. sp. A; 347 

dITS2K2P = 0.035; G. sp. B; dITS2K2P = 0.039).  348 

Monogenean parasites are only dispersed by the fish host. They have no known means 349 

of independent long-distance dispersal, and they are not known to use vectors; hence such 350 

cases of long-distance transfer are assumed to be anthropogenic. The invasive fishes may 351 

transport their own parasites to new areas, as shown here for M. anguillicaudatus. Some other 352 

examples are Gyrodactylus perccotti Ergens, Yukhimenko & Yukhimenko, 1973 on Amur 353 

sleeper Perccottus glennii Dybowski, 1877 from Russia to Eastern Europe (Ondračková et al.  354 

2012); Gyrodactylus proterohini Ergens, 1967 on Western tubenose goby Proterorhinus 355 

semilunaris (Heckel, 1837) from the Ponto-Caspian region to Western Europe, Belgium 356 

(Huyse et al. 2015) and G. salmonis (Yin & Sproston, 1948) on rainbow trout from boreal 357 

North America to Mexico (Rubio-Godoy et al. 2012). In these cases, subsequent spread of 358 

Gyrodactylus to any new fish (or amphibian) species of the new homeland was not reported, 359 

either due to limited examination or because the parasite failed to relocate. In another example 360 

of parasite trafficking, the topmouth gudgeon (P. parva) has introduced a protistan disease 361 

rosette agent (Sphaerothecum destruens) to the U.S.A., U.K. and the Netherlands (Ragan et 362 

al. 1996; Pinder et al. 2005; Spikmans et al. 2013), but no Gyrodactylus, as far as we know.  363 

Conversely, invasive fishes can adopt local parasites in their new localities, e.g. the 364 

unnamed Gyrodactylus (Limnonephrotus) sp. on round goby Neogobius melanostomus 365 

(Pallas, 1814) in Europe (Huyse et al. 2015). The rainbow trout (Oncorhynchus mykiss 366 

[Walbaum, 1792]), a global resident now (Fausch 2007) has adopted numerous European 367 

parasites, often via hybridization of two strains of Gyrodactylus (Lindenstrøm et al. 2003; 368 
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Rokicka et al. 2007, Kuusela et al. 2008, Ziętara et al. 2010, Ieshko et al. 2015). As a widely-369 

cultured species, rainbow trout serves as an optimal platform to receive and subsequently 370 

serve as a vector for the introduction of opportunistic parasites to new locations. 371 

Of course, both scenarios can be combined. Introduced and local parasites may breed 372 

and produce novel combinations and perhaps transfer further, into new hosts and localities. 373 

Human trafficking has replaced the geological perturbations as a source of novelty by 374 

recombination. 375 

 The conclusion based on the phylogenetic comparison in this work is that the clade of 376 

parasites related to G. jennyae on Pseudorasbora and Misgurnus appears to be a 377 

monophyletic branch originating from Asia. All native loach in the family Cobitidae are 378 

freshwater forms in Eurasia and in Morocco, Africa (Kottelat 2012). Consequently, the 379 

monogenean parasite species of this evolutionary clade are not expected to be endemic to any 380 

North American freshwater fishes, let alone frogs. 381 

 382 

Similar invasion histories of Misgurnus, Gyrodactylus and chytridiomycosis.  383 

In the amphibian facet of the story, G. jennyae forms an intriguing coincidence with the 384 

fungal disease chytridiomycosis, caused by pathogenic fungi of genus Batrachochytrium, 385 

which have apparently invaded global amphibian populations. The global decline of 386 

amphibian populations is a major concern for scientists (Storfer 2003). The causes of this 387 

decline are diverse, complex, and still under much study and debate (e.g., Collins and Crump 388 

2009 vs. Pounds and Masters 2009). 389 

The enzymatic digestion and the hooked haptors of Gyrodactylus damage the frog’s 390 

epidermis (Nieto et al. 2007; Paetow et al. 2009, 2013). Epidermal damage on tadpole lips 391 

caused by G. jennyae (figs. 4A and 1A in Paetow et al. 2009 and 2013, respectively) appears 392 

similar to erosion caused by fungus Batrachochytrium dendrobatidis (fig. 6.10 in Collins and 393 
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Crump 2009). Such epidermal damage on frogs may facilitate opportunistic fungal infections 394 

which can result in osmoregulation failure and even death via heart failure (Voyles et al. 395 

2009; Paetow et al. 2013).  396 

Recently, a molecular phylogenetic framework for the chytrid fungi killing 397 

amphibians was generated, first in The Netherlands (Martel et al. 2013), describing a novel 398 

species, Batrachochytrium salamandrivorans Martel et al., 2013. The globally more widely 399 

spread B. dendrobatidis was extensively studied (Fisher et al. 2018; O'Hanlon et al. 2018). It 400 

was demonstrated that the worldwide pathogenic strains of the fungus originated in the 401 

Korean Peninsula and were subsequently spread most probably by the general pet trade, since 402 

1975. The pet trade routinely traffics both amphibians and fishes from areas where the 403 

collecting might be an important cottage industry. The worldwide industry is largely 404 

unregulated and lacks a central database to assess its impact upon the environment (Lee 405 

2014). The distribution history of M. anguillicaudatus demonstrates that it is commonly 406 

shipped live worldwide and may be included among the potential vectors of aquatic diseases.  407 

Here we raise the possibility that in their new environment, invasive parasites can 408 

move from invading fish to native amphibian hosts during the aquatic phases of their life 409 

cycle. By extension, we suggest that such novel/unknown parasites like Gyrodactylus spp. 410 

may be contributing to the global decline of amphibians. 411 

 412 

Conclusions 413 

 The phylogenetic position of North American bullfrog parasite G. jennyae and two 414 

additional Gyrodactylus species demonstrate that they are not native to North America but 415 

instead likely originated from Asia, by invasive fish.  416 

 M. anguillicaudatus is a recent invader to several continents, and continues to spread 417 

into new/adjacent fresh waters. This Asian loach species carried G. jennyae from Asia to 418 
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North America and introduced it to bullfrog. We predict that M. anguillicaudatus has likely 419 

spread several other Gyrodactylus species or strains worldwide. 420 

 We support previously stated concerns (Paetow et al. 2013) that M. anguillicaudatus 421 

and its Gyrodactylus parasites may contribute to the global spread of chytrid fungi, as vectors 422 

via both legal and illegal trafficking routes. 423 

 Molecular phylogeography of Gyrodactylus (and Misgurnus) might well detect the 424 

routes of the insane trafficking of aquatic biota, and help to control it. 425 
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 630 

Figure. 1. The phylogenetic hypothesis of G. jennyae and the Gyrodactylus spp. on 631 

Misgurnus anguillicaudatus and Pseudorasbora parva, compared with subgenus G. 632 

(Gyrodactylus) sensu Malmberg (1970) and rooted with a sister clade of three species from 633 

East Africa (Přikrylová et al. 2012). Respective Bootstrap values (500 replicates) are 634 

indicated for both Neighbor-Joining and Maximum Likelihood. The evolutionary distances 635 

were computed using the Kimura 2-parameter method and are in the units of the number of 636 

base substitutions per site. The analysis involved 29 nucleotide sequences varying in length 637 

from 881-896 bp. All gaps were removed, leaving a total of 665 positions in the final dataset. 638 

Evolutionary analyses were conducted in MEGA7. 639 
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 663 

 664 

Figure. 2. Hamuli and marginal hooks of the Gyrodactylus sp. A (Figs. 2A,B; GenBank 665 

MH667465) and G. sp. B (Figs. 2C,D; GenBank MH667466) on Misgurnus anguillicaudatus in 666 

New York State, U.S.A. The hoof-like morphology of the base of marginal hooks is group-specific 667 

and is indistinguishable from G. jennyae, but separates the group clearly from the other frog 668 

parasites mentioned by Paetow et al. (2009).  669 
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