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Abstract 19 

 20 

Estimating dynamic effects of age on the genetic and environmental variance components in twin 21 

studies may contribute to the investigation of gene-environment interactions, and may provide more 22 

insights into more accurate and powerful estimation of heritability. Existing parametric models for 23 

estimating dynamic variance components suffer from various drawbacks such as limitation of 24 

predefined functions. We present ACEt, an R package for fast estimating dynamic variance components 25 

and heritability that may change with respect to age or other moderators. Building on the twin models 26 

using penalized splines, ACEt provides a unified framework to incorporate a class of ACE models, in 27 

which each component can be modeled independently and is not limited by a linear or quadratic 28 

function. We demonstrate that ACEt is robust against misspecification of the number of spline knots, 29 

and offers a refined resolution of dynamic behavior of the genetic and environmental components and 30 

thus a detailed estimation of age-specific heritability. Moreover, we develop resampling methods for 31 

testing twin models with different variance functions including splines, log-linearity and constancy, 32 

which can be easily employed to verify various model assumptions. We evaluated the type I error rate 33 

and statistical power of the proposed procedures for hypothesis testing under various scenarios using 34 

simulated datasets. Potential numerical issues and computational cost were also assessed through 35 

simulations. We applied the ACEt package to a Finnish twin cohort to investigate age-specific heritability 36 

of body mass index and height. Our results show that the age-specific variance components of these two 37 

traits exhibited substantially different patterns despite of comparable estimates of heritability. In 38 

summary, the ACEt R package offers a useful tool for the exploration of age-dependent heritability and 39 

model comparison in twin studies. 40 
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Introduction 43 

 44 

Twin studies offer unique advantages to examine the overall impact of genes and environment 45 

on a phenotype, and hence are broadly employed in estimating heritability for many complex 46 

traits (Polderman et al. 2015). The influence of genes and environment on a specific 47 

quantitative trait, such as body mass index (BMI) may be dependent on age or other 48 

moderators (Réale et al. 1999; Jelenkovic et al. 2015). This age-dependent phenomenon has 49 

also been observed in behavioral genetics research. For example, the correlation in twins on 50 

cannabis use is higher when they are measured at the age of 18 than 16 (Distel et al. 2011). 51 

Refined estimation from twin studies of how genetic and environmental components evolve 52 

with respect to age may contribute to the exploration of gene-environmental interactions and 53 

may help elucidate the gap of estimated heritability between twin studies and genome-wide 54 

association studies (GWAS). For example, the potential missing heritability (Eichler et al. 2010) 55 

may partly attribute to effects from epigenetic markers that are not captured by general GWAS 56 

but are reflected in the estimation of twin studies. In addition, given age-specific heritability, a 57 

sample at the age when the heritability peaks can be chosen for GWAS to achieve the largest 58 

statistical power.  59 

 60 

Recent evidence suggests the important role of examining dynamic component variance; 61 

however, the existing twin models for this problem assuming a linear or quadratic form of the 62 

moderator effects (Purcell 2002) are often too restricted in reality. Moreover, the incorrect 63 

model assumptions would result in dramatically biased estimates and misleading interpretation 64 

(He et al. 2016). So far, very little attention has been paid to the estimation of dynamic 65 

heritability without a prior knowledge of its functional form, i.e., whether the genetic and 66 

environmental variance components change as a function of age or environmental exposure. 67 

Recently, (Briley et al. 2015) proposed a nonparametric method based on local structural 68 

equation modeling (LOSEM) to estimate the dynamics of variance components, which does not 69 

require a pre-specified functional form. Despite of its flexibility in model specification, this 70 



nonparametric method is sensitive to the choice of certain parameters related to a kernel 71 

function for weighting observations and is not straightforward for model comparison. In 72 

addition, (He et al. 2016) have proposed two semiparametric models, in which the ACE(t)-p 73 

model (throughout the article we use ACE(t)-p as the abbreviation) is less dependent on user-74 

defined parameters requiring prior knowledge of the component variance functions. These 75 

models allow dynamic additive genetic (A) and common environmental (C) components and a 76 

constant unique environmental (E) component (He et al. 2016). Unlike most methods based on 77 

the SEM framework (Rijsdijk and Sham 2002), these models treat variance components (A, C, E) 78 

as random effects in a linear model (as discussed in (Visscher et al. 2004)), and furthermore, the 79 

variance of the components is modeled as a function of age. The basic idea is to directly 80 

estimate the variance functions using B- or penalized B-splines (P-splines) (Eilers and Marx 81 

1996) rather than assuming them to be constants as in the classical ACE model (Zyphur et al. 82 

2013) or a known functional form.  B-splines (De Boor 1978) constructed piecewisely from 83 

polynomial functions are an appealing methods for the nonparametric function estimation. 84 

Similar to locally weighted scatterplot smoothing (LOWESS) (Cleveland 1979) in some sense, it 85 

has the overfitting problem if excessive B-spline basis functions are used (i.e., too many 86 

parameters). Nevertheless, we can smooth adjacent spline coefficients to be more alike to 87 

reduce the dimension of the curve parameters. P-splines tackle the overfitting problem by 88 

introducing a penalizing coefficient to smooth the coefficients of the B-spline basis functions 89 

(Eilers and Marx 1996). In ACE(t)-p, the penalizing coefficients for smoothing the B-spline 90 

coefficients are first estimated by an empirical Bayes method before used for estimating the 91 

variance curves for the components. A simple Markov chain Monte Carlo (MCMC) method is 92 

proposed for estimating the pointwise confidence intervals (CIs) for the estimated variance 93 

curves. The performance of the estimation procedure has been evaluated through a simulation 94 

study and its utility has been demonstrated through an application to a Finnish twin study for 95 

discovering the temporal patterns of genetic and environmental variance curves of BMI (He et 96 

al. 2016). 97 

 98 



In this work, we introduce the R package ACEt which further generalizes the previous models 99 

(He et al. 2016), and provides functions that facilitate model comparisons between twin models 100 

of different variance functional forms. First, we describe a unified framework in which the A, C 101 

and E variance components can be independently modeled by spline, log-linear or constant 102 

functions (including zero which corresponds to the elimination of a component). We show that 103 

this unified framework incorporates the classical ACE, AE and CE models as special cases. We 104 

assess the estimation accuracy and performance through simulation studies under various 105 

settings. In addition, we implement a function to estimate the dynamic heritability, the 106 

definition of which is given in the Methods section, together with its pointwise CIs based on the 107 

estimated variance curves. Once we show that these models with different components and 108 

functions can be fitted under a single framework, it is natural to ask which variance function is 109 

the best fitting for a given dataset or how to select a better model. For example, in some cases, 110 

it is desirable to test the linearity of a C component to see whether there is an accumulative 111 

environmental effect. Answering this sort of questions requires methods for comparing 112 

parametric and semiparametric models. In contrast to the LOSEM proposed by (Briley et al. 113 

2015), it is straightforward and fast to draw inference under the spline-based framework by, for 114 

example, leveraging likelihood ratio tests (LRTs) (Ruppert et al. 2003; Crainiceanu and Ruppert 115 

2004). We show in this work how the hypothesis testing for model selection can be addressed 116 

separately using different strategies for the ACE(t) and ACE(t)-p models which employ B-splines 117 

and P-splines, respectively. We perform detailed simulation studies under various settings to 118 

examine the type I error rate, statistical power and other potential numerical issues. We then 119 

investigate the dynamic heritability of BMI and height with a Finnish twin cohort, finding that 120 

they follow substantially different temporal patterns. 121 

 122 

The rest of the paper is organized as follows. In the Methods section, we first specify the 123 

generalized ACE(t) and ACE(t)-p models and briefly review the proposed estimation procedure. 124 

Then, we elaborately describe how hypothesis testing can be conducted using different 125 

strategies for the ACE(t) and ACE(t)-p models, during which more emphasis is placed on how to 126 



test constancy and log-linearity in ACE(t)-p. We define the dynamic heritability and provide a 127 

derivation for estimating the dynamic heritability and obtaining its CIs using a delta method. At 128 

the end of this section, we give an introduction to the functions provided in the R package ACEt 129 

and illustrate a practical application to an example dataset in a vignette. In the Results section, 130 

we assess the performance of the estimation of the variance components and the proposed 131 

hypothesis testing methods for model comparison through simulated datasets. Influence of 132 

some practical numerical issues will also be examined. As a demonstration of its utility in real 133 

data analysis, we investigate the dynamic heritability of BMI and height with a Finnish twin 134 

cohort. The results and future extension are summarized in the Discussion section.          135 

 136 



Methods 137 

 138 

Model Specification and Estimation Procedure 139 

 140 

In the classical ACE twin model, the variance of a phenotype is decomposed into the additive 141 

genetic component 𝜎𝐴
2 , the shared environmental component 𝜎𝐶

2  and the unique 142 

environmental component 𝜎𝐸
2 . Instead of being constants, now assuming that the three 143 

components are functions of a variable 𝑡 of interest such as age, we are interested in estimating 144 

the variance functions 𝜎𝐴
2(𝑡), 𝜎𝐶

2(𝑡) and 𝜎𝐸
2(𝑡). Suppose that there is no prior knowledge of the 145 

functional form, a natural approach can be to represent the functions using a set of 146 

independent basis functions 𝐵𝑘 (𝑡) (e.g., power series, Fourier series) that can approximate the 147 

functions arbitrarily well by taking a linear combination of a sufficiently large number K of these 148 

basis functions. For example, a quadratic polynomial 𝑎 + 𝑏𝑡 + 𝑐𝑡2 can be written as a linear 149 

combination of the basis functions 𝐵1 (𝑡) = 1, 𝐵2 (𝑡) = 𝑡, and 𝐵3 (𝑡) = 𝑡2 with the coefficients 150 

𝑎, 𝑏 and 𝑐. A class of commonly used basis functions is B-spline functions. To approximate an 151 

unknown function using B-splines, the interval of the estimated function is divided into 152 

subintervals by a group of 𝐿 interior knots, and over each subinterval a spline is defined as a 153 

polynomial function of a given degree 𝑑, (i.e., the highest power) (De Boor 1978; Ramsay and 154 

Silverman 2005). The kth B-spline basis function 𝐵𝑘,𝑑(𝑡) of the degree 𝑑 is defined recursively as 155 

𝐵𝑘,𝑑(𝑡) =
𝑡−𝑡𝑘

𝑡𝑘+𝑑−𝑡𝑘
𝐵𝑘,𝑑−1(𝑡) +

𝑡𝑘+𝑑+1−𝑡

𝑡𝑘+𝑑+1−𝑡𝑘+1
𝐵𝑘+1,𝑑−1(𝑡), 156 

𝐵𝑘,0(𝑡) = {
1, 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1   
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

. 157 

The ACE(t) model (throughout the article we use ACE(t) as the abbreviation) proposed by (He et 158 

al. 2016) employ B-splines with 𝑑 = 2 (De Boor 1978) for estimating the variance functions of 159 

the A and C components under the assumption of a constant E component. We now relax this 160 

assumption and allow all components to be independently modeled by different functions of 𝑡. 161 

The total variance 𝜎2(𝑡) of a quantitative trait, which is defined as the conditional variance 162 



calculated at 𝑡, can be decomposed into the A, C and E components. Let us denote by 𝜎𝐴
2(𝑡), 163 

𝜎𝐶
2(𝑡) and 𝜎𝐸

2(𝑡) the variance functions for the A, C and E components, respectively. We then 164 

represent each variance function separately using an exponential of a linear combination of B-165 

splines (De Boor 1978) 166 

 𝜎𝑖
2(𝑡) = exp (∑ 𝛽𝑘

𝑖 𝐵𝑘
𝑖 (𝑡)

𝐾𝑖

𝑘=1
) , 𝑖 ∈ {𝐴, 𝐶, 𝐸} (1) 

where 𝑩𝑖(𝑡) is a vector of the B-spline basis functions for the component 𝑖 evaluated at 𝑡 and 167 

𝜷𝑖 is a vector of the corresponding spline coefficients. 𝐾𝑖 is the number of spline coefficients 168 

(i.e., the number of interior knots 𝐿 minus one plus the degree of B-splines 𝑑, which is set at 2 169 

in the current implementation). The exponential is to ensure that the variance is non-negative, 170 

which is also proposed in (Turkheimer and Horn 2014). The knots can be evenly distributed or 171 

be placed based on the quantiles of the sample. In our implementation, we leave the number of 172 

knots defined by users. It can be seen from (1) that it simplifies to the classical ACE model 173 

(Zyphur et al. 2013) when 𝛽1
𝑖 = ⋯ = 𝛽𝐾𝑖

𝑖 = 𝛽𝑖  satisfies for each component because in this case 174 

we have 175 

𝜎𝑖
2(𝑡) = exp (∑ 𝛽𝑘

𝑖 𝐵𝑘
𝑖 (𝑡)

𝐾𝑖

𝑘=1
) = exp (𝛽𝑖 ∑ 𝐵𝑘

𝑖 (𝑡)
𝐾𝑖

𝑘=1
) = 𝑒𝛽𝑖

, 𝑖 ∈ {𝐴, 𝐶, 𝐸} 176 

which is independent of 𝑡. One practical issue of B-splines is that its performance is sensitive to 177 

the choice of the number of knots 𝐾𝑖 (illustrated in the Results section), and excessive knots 178 

would lead to overfitting the data. Thus, ACE(t)-p uses P-splines (which stands for “penalized B-179 

spline”) (O’Sullivan 1986; Eilers and Marx 1996) that are defined on evenly distributed knots 180 

and introduce a difference penalty to control the smoothness of 𝜷𝑖, so that it can address the 181 

overfitting problem (More information about the difference penalty can be found in e.g., 182 

(Wood 2006)). Specifically, the penalization for overfitting is achieved by introducing a 183 

multivariate normal prior assigned on the spline coefficients of each component. More details 184 

of the ACE(t)-p model are given in Appendix A. 185 

 186 



The estimation strategy follows the similar spirit of that described previously (He et al. 2016) 187 

with some extensions. Specifically, spectral decomposition is employed in order to test log-188 

linearity which is described in the following subsection. It also improves the performance of the 189 

MCMC sampling in constructing CIs by avoiding strong posterior correlation between spline 190 

coefficients when they are almost linear. Following the same notation in (He et al. 2016), 191 

suppose that we have zero-mean normally distributed quantitative phenotypic data 𝑌𝑀 (an 192 

𝑛𝑀 × 1 vector) and 𝑌𝐷 (an 𝑛𝐷 × 1 vector) for 𝑓𝑀(= 𝑛𝑀/2) monozygotic (MZ) and 𝑓𝐷(= 𝑛𝐷/2) 193 

dizygotic (DZ) twin pairs. Note that if the initial phenotypic data are not zero-mean, we can 194 

always centralize them, for example, by fitting a linear regression model and using residuals as 195 

the input. We also have the information of age 𝑡 at which 𝑌𝑀 and 𝑌𝐷 are measured, denoted by 196 

𝑇𝑀 (an 𝑓𝑀 × 1 vector) and 𝑇𝐷 (an 𝑓𝐷 × 1 vector) for the MZ and DZ twins. In fact, age can be 197 

replaced by any other quantitative moderator of interest of which we intend to investigate the 198 

dynamic effects on the variance components as long as it is measured at the twin level (e.g., 199 

birth year). This is also called measures of the shared environment (Turkheimer et al. 2005). 200 

 201 

Based on the general assumption in the ACE twin model (i.e., MZ and DZ twins share 100% and 202 

50% of the A component, respectively, and 100% of the C component.), the covariance matrices 203 

of 𝑌𝑀 and 𝑌𝐷 are 204 

𝜮𝑀 = diag (𝑒𝑩𝑇𝑀
𝐴 𝜷𝐴

) ⊗ 𝟏2 + diag (𝑒𝑩𝑇𝑀
𝐶 𝜷𝐶

) ⊗ 𝟏2 + diag (𝑒𝑩𝑇𝑀
𝐸 𝜷𝐸

) ⊗ 𝐈2, 205 

𝜮𝐷 = diag (𝑒𝑩𝑇𝐷
𝐴 𝜷𝐴

) ⊗ 𝑨2 + diag (𝑒𝑩𝑇𝐷
𝐶 𝜷𝐶

) ⊗ 𝟏2 + diag (𝑒𝑩𝑇𝐷
𝐸 𝜷𝐸

) ⊗ 𝐈2, 206 

where 𝟏2 = (
1 1
1 1

), 𝑨2 = (
1 0.5

0.5 1
), 𝐈2 = (

1 0
0 1

), ⊗ denotes the Kronecker product and 207 

diag(. ) converts a vector to a diagonal matrix with the vector entries as its diagonal elements. 208 

Thus, provided that there is no between-pair correlation among the twins, the phenotype 209 

vector follows a zero-mean multivariate normal distribution, 210 

 
𝒀 = (𝒀𝑀

𝒀𝐷
) ~𝒩(0, 𝜮),   𝜮 = (

𝜮𝑀 𝟎
𝟎 𝜮𝐷

). 
(2) 



To estimate the spline coefficients 𝜷𝐴,𝐶,𝐸 = (𝜷𝐴′
, 𝜷𝐶′

, 𝜷𝐸′
)

′
 , where the prime represents 211 

transpose, the maximum likelihood estimation (MLE) finds the solutions that maximize the 212 

following log-likelihood, i.e., 213 

𝜷̂𝐴,𝐶,𝐸 = argmax
𝜷𝐴,𝐶,𝐸

 𝑙(𝜷𝐴,𝐶,𝐸) = argmax
𝜷𝐴,𝐶,𝐸

 (−
1

2
)(log|𝜮𝑀| + 𝒀𝑀

′  𝜮𝑀
−𝟏𝒀𝑀 + log|𝜮𝐷| + 𝒀𝐷

′ 𝜮𝐷
−1𝒀𝐷). 214 

As it is difficult to express the solutions analytically, numerical algorithms such as the Newton’s 215 

method are needed to find 𝜷̂𝐴,𝐶,𝐸. The Newton's method requires further calculating the second 216 

derivative of the likelihood, so we instead employ the L-BFGS algorithm (Byrd et al. 1995) which 217 

is computationally faster (e.g., implemented in the 'optim' R function). The L-BFGS algorithm is 218 

a fast Quasi-Newton algorithm that does not involve calculating the Hessian matrix analytically. 219 

The performance of the approximation of the Hessian matrix by the L-BFGS algorithm is 220 

assessed in the Results section. The variance of the estimates and thus the pointwise CIs of the 221 

estimated variance curves can be obtained by either a delta method based on the asymptotic 222 

normal consistency of MLE or a bootstrap method. The delta method provides a first order 223 

approximation for the distribution of a function of MLE by utilizing Taylor’s theorem. The two 224 

methods have comparable results in general (He et al. 2016); however, we find in our simulation 225 

study that despite the high computational intensity, the bootstrap method is more robust when 226 

the true values of the spline coefficients are on their boundary in which case the normality of 227 

the MLE does not hold. The estimation algorithm in this extended ACE(t)-p model is similar to 228 

that in (He et al. 2016). Spectral decomposition of the penalty matrix is adopted in the MCMC 229 

method for estimating the CIs. More details are given in Appendix A. 230 

 231 

Note that it is possible to incorporate a mean function 𝑚(𝑡) under a unified framework with 232 

the variance components. One of the major benefits of including the mean function is that we 233 

can pursue an unbiased estimate of the variance components by instead using the restricted 234 

maximum likelihood (REML) that accounts for the loss in degrees of freedom for estimating the 235 

parameters in the mean. The REML estimation provides more accurate estimates if the number 236 

of the covariates in the mean function is large or even comparable to the sample size (Harville 237 



1977). In the current implementation, however, we do not include the mean function in the 238 

estimation procedure to diminish the computational burden especially in ACE(t)-p where 239 

resampling methods are used for model comparisons as discussed later. Fortunately, twin 240 

studies typically require large sample size, and thus the gain from REML is very limited. 241 

Therefore, the phenotype should be centered before treated as an input. For example, the 242 

residuals from a regression model in which an appropriate mean function is specified can be 243 

used. The dynamic variance components 𝜎𝑖
2(𝑡) and heritability considered in this study are age-244 

specific, which means that the variance 𝜎2(𝑡) is computed conditionally at each age (i.e., 245 

𝜎2(𝑡) = 𝐸(𝑦(𝑡) − 𝑚(𝑡))2). It should be noted that here we are interested in the modulating 246 

effect of age on the shared environmental variance component, that is, how age affects the 247 

contribution of other shared-environmental factors to the C component. If age is a major 248 

shared-environmental measurement per se, it should be included in 𝑚(𝑡) and be properly 249 

regressed, so that its modulating but not direct effect is reflected in 𝜎𝐶
2(𝑡); otherwise, the 250 

estimate for the modulating effect would be inflated or incorrectly estimated. Let us consider a 251 

situation where the age of a sample has a normal distribution 𝑡 ∼ 𝒩(𝑡0, 𝜎𝑡
2) and has a linear 252 

effect on the phenotype (i.e., 𝑚(𝑡) = 𝛾𝑡). It follows for a DZ twin pair of the age 𝑡 that 253 

(
𝑌1(𝑡)

𝑌2(𝑡)
) = (

𝑡

𝑡
) 𝛾 + 𝜺 = (

1

1
) 𝑡0𝛾 + 𝜺∗,   254 

𝜺~𝒩(0, 𝜮𝑀(𝒕)), 𝜺∗~𝒩(0, 𝜮𝑀
∗(𝒕)), 255 

𝜮𝑀
∗(𝒕) = 𝜮𝑀(𝒕) + 𝛾2𝜎𝑡

2𝟏2 256 

= exp(𝑩𝐴 (𝑡)𝜷𝐴)𝑨2 + exp(𝑩𝐶 (𝑡)𝜷𝐶)𝟏2 + exp(𝑩𝐸 (𝑡)𝜷𝐸)𝑰2 + 𝛾2𝜎𝑡
2𝟏2 258 

= exp(𝑩𝐴 (𝑡)𝜷𝐴)𝑨2 + (exp(𝑩𝐶 (𝑡)𝜷𝐶) + 𝛾2𝜎𝑡
2)𝟏2 + exp(𝑩𝑇𝑀

𝐸 (𝑡)𝜷𝐸)𝑰2. 257 

If we omit age from 𝑚(𝑡), the contribution of age to the shared-environmental variance would 259 

be included in the estimate of the C component, which would be 𝜎̂𝐶
2(𝑡) = exp(𝑩𝐶 (𝑡)𝜷𝐶) +260 

𝛾2𝜎𝑡
2.    261 

 262 

Hypothesis testing for comparison of Twin Models  263 

  264 



In many cases, it is useful to model some components with splines and others with a constant 265 

that can be zero. For example, we show in a following real data analysis that two components 266 

of height are almost constant after some age, and thus, modeling them with constants can 267 

reduce the estimation uncertainty. When fitting a given twin dataset using more complex 268 

models, it may also be of primary concern to select the best twin model by comparison. In the 269 

case of ACE(t), it is straightforward to test a constant or log-linear component by using the LRT 270 

as they are nested models of the spline model. A constant variance for component 𝑖 is 271 

equivalent to a spline model with homogeneous spline coefficients, i.e., 𝛽1
𝑖 = ⋯ = 𝛽𝐾𝑖

𝑖 = 𝛽𝑖. In 272 

the log-linear case, we have 𝛽2
𝑖 − 𝛽1

𝑖 = ⋯ = 𝛽𝐾𝑖

𝑖 − 𝛽𝐾𝑖−1
𝑖  when the knots are evenly distributed. 273 

It is noted that the correct distribution should be used when testing the variance component in 274 

the twin models (Visscher 2006). In general cases, when the constancy of the tested component 275 

is true, the LRT statistic asymptotically follows a 𝜒2 distribution with 𝐾𝑖 − 1 (𝐾𝑖 − 2 in the log-276 

linear case) degrees of freedom according to Wilks' theorem (Wilks 1938) provided that the 277 

true variance functions of the other components belong to the functional space spanned by the 278 

basis functions. If the variance functions of the other components are misspecified or are not in 279 

the functional space spanned by the basis functions, the LRT test does not work properly. In a 280 

special case, testing a zero variance component corresponds to testing the null hypothesis of 281 

𝛽1
𝑖 = ⋯ = 𝛽𝐾𝑖

𝑖 = −∞, which lies in the boundary of the parameter space. The asymptotic 282 

distribution of this LRT statistic under such non-regular conditions has been investigated under 283 

various scenarios (Chernoff 1954; Self and Liang 1987). Under a unified framework, it has 284 

been shown that the LRT statistic follows a 𝜒
2

 (chi-bar-square) distribution when some 285 

regularity conditions hold (Shapiro 1988). For a simple situation where there is only one 286 

variance component of interest and the true values of the parameters for the other 287 

components are not on the boundary of the parameter space, the LRT statistic for comparing a 288 

zero component (the null hypothesis) and a constant component asymptotically follows a 289 

mixture of two 𝜒2 distributions with 0 and 1 degree of freedom (this is the case 5 in (Self and 290 

Liang 1987)). Our simulation results (not shown here) confirm that the empirical distribution 291 

of the LRT statistic in the above situation is in accordance with its theoretical asymptotic 𝜒2 292 

distribution under the null hypothesis. More complicated situations are discussed in details by 293 



(Dominicus et al. 2006). Alternatively, simulation-based methods can be employed to acquire 294 

the empirical null distribution of the statistic numerically in the case of more complex models. 295 

 296 

Unlike ACE(t), testing constancy or log-linearity in ACE(t)-p is more complicated. Testing the log-297 

linearity of a component 𝑖 in ACE(t)-p is equivalent to testing the following hypothesis,  298 

𝐻0:  𝜎
𝜷𝒊
2 = 0  𝑣𝑠.  𝐻1:  𝜎

𝜷𝒊
2 > 0, 𝑖 ∈ {𝐴, 𝐶, 𝐸}. 299 

If the LRT is used, the major challenge is to obtain the null distribution because the asymptotic 300 

distribution (a mixture of two 𝜒2 distributions) is not valid in this case (Ruppert et al. 2003). We 301 

thus propose a parametric bootstrap method which is shown to work properly in the simulation 302 

study. Detailed information of the method is given in Appendix B.  303 

 304 

Testing the constancy against log-linearity is relatively straightforward in ACE(t)-p. The 305 

inference can be made based on the estimated coefficients and their variance estimated from 306 

the MCMC method. One problem to be solved is that the variance obtained in the previous 307 

work (He et al. 2016) is underestimated because it does not take into account the uncertainty 308 

of 𝜎̂
𝜷{𝐴,𝐶,𝐸}\{𝑖}
2  for the other spline components. We propose a resampling method to correct for 309 

the underestimation of the variance, and provide a detailed description of the method for 310 

testing constancy in Appendix C. 311 

 312 

 313 

Estimation of Dynamic Heritability 314 

 315 

Other than the absolute values of variance, we are interested in the proportion of age-specific 316 

variation that is explained by the A, C and E components, respectively. In particular, the 317 

heritability, which is the proportion of the total variance attributed to the genetic differences 318 

between individuals, is an important concept in quantitative genetics. Given the estimates of 319 



the dynamic variance components, we are ready to further estimate the dynamic heritability 320 

curve. We define the age-specific (or other moderators) heritability 𝐻2(𝑡) for the ACE model as 321 

𝐻2(𝑡) =
𝜎𝐴

2(𝑡)

𝜎𝐴
2(𝑡)+𝜎𝐶

2(𝑡)+𝜎𝐸
2(𝑡)

. 322 

The following derivation is based on the ACE model, and if the AE model is adopted, 𝜎𝐶
2(𝑡) in 323 

the denominator of the right-hand side is eliminated. By substituting with (1), the estimated 324 

dynamic heritability follows 325 

 𝐻̂2(𝑡) =
𝜎̂𝐴

2(𝑡)

𝜎̂𝐴
2(𝑡)+𝜎̂𝐶

2(𝑡)+𝜎̂𝐸
2(𝑡)

=
exp (𝑩𝐴 (𝑡)𝜷̂𝐴)

exp(𝑩𝐴 (𝑡)𝜷̂𝐴)+exp(𝑩𝐶 (𝑡)𝜷̂𝐶)+exp (𝑩𝐸 (𝑡)𝜷̂𝐸)
, (3) 

where 𝑩𝑖(𝑡) is a vector of the B-spline basis functions evaluated at 𝑡. The variance of the 326 

estimated heritability at 𝑡 can be obtained either from a delta method or a bootstrap method. 327 

Denote by 𝜷̂ = (𝜷̂𝐴′
, 𝜷̂𝐶′

, 𝜷̂𝐸′
)′ the estimated spline coefficients from either ACE(t) or ACE(t)-p, 328 

and by 𝑉̂(𝜷̂) the covariance matrix of 𝜷̂, which is estimated from the MLE in the case of the 329 

ACE(t) model and from the posterior distribution in the case of ACE(t)-p. We notice that the 330 

estimated heritability equals 331 

𝐻̂2(𝑡) =
1

1+exp(𝑩𝐶 (𝑡)𝜷̂𝐶−𝑩𝐴 (𝑡)𝜷̂𝐴)+exp (𝑩𝐸 (𝑡)𝜷̂𝐸−𝑩𝐴 (𝑡)𝜷̂𝐴)
=

1

1+exp(𝑴1)+exp (𝑴2)
, 332 

where 333 

(
𝑀1

𝑀2
) = (

−𝑩𝐴 (𝑡) 𝑩𝐶 (𝑡) 0

−𝑩𝐴 (𝑡) 0 𝑩𝐸 (𝑡)
) 𝜷̂ = 𝑷′𝜷̂, 𝑷′ = (

−𝑩𝐴 (𝑡) 𝑩𝐶 (𝑡) 0

−𝑩𝐴 (𝑡) 0 𝑩𝐸 (𝑡)
). 334 

As 𝑀1 and 𝑀2 are affine transformations of 𝜷̂, we have 335 

(
𝑀1

𝑀2
) ~𝒩 (𝑷′𝜷, 𝑉̂(𝑀1, 𝑀2)) , 𝑉̂(𝑀1, 𝑀2) = 𝑷′𝑉̂(𝜷̂)𝑷. 336 

By applying the delta method and substituting 𝑷′𝜷 with its estimate (𝑀1 𝑀2), it follows that 337 

𝑉̂(𝐻̂2(𝑡)) = ∇𝑀1,𝑀2
𝐻̂2(𝑡)′𝑉̂(𝑀1, 𝑀2)∇𝑀1,𝑀2

𝐻̂2(𝑡) =338 

(
𝜕𝐻̂2(𝑡)

𝜕𝑀1
,

𝜕𝐻̂2(𝑡)

𝜕𝑀2
) 𝑷′𝑉̂(𝜷̂)𝑷 (

𝜕𝐻̂2(𝑡)

𝜕𝑀1
,

𝜕𝐻̂2(𝑡)

𝜕𝑀2
)

′

= (1 + 𝑒𝑀1 + 𝑒𝑀2)−4(𝑒𝑀1  𝑒𝑀2)𝑷′𝑉̂(𝜷̂)𝑷(𝑒𝑀1  𝑒𝑀2)′. 339 

The CI at 𝑡 can be calculated based on the assumption of an approximately normal distribution 340 

of 𝐻̂2(𝑡). On the other hand, the pointwise variance of the estimated dynamic heritability 341 

𝐻̂2(𝑡) can also be acquired from a parametric bootstrap method described previously (He et al. 342 



2016). In the bootstrap method, each bootstrap estimates of the heritability at 𝑡 is calculated 343 

according to the equation (3) from a bootstrap replicate sampled from the formula (2) with 𝜷̂ 344 

plugged in. The delta method may not be accurate when the estimated heritability or 345 

component variance approaches its boundary. In this situation, the bootstrap method is 346 

recommended. 347 

 348 

Software overview 349 

 350 

To use the ACEt R package, the data set should be prepared in a matrix format for MZ and DZ 351 

twins separately in which each row for a twin pair contains three columns (the first two are 352 

phenotypes and the third is age or other moderators of interest). An example data set is given 353 

in the package, and an example of its application is described in the supplementary materials 354 

(Text S1). The phenotypic data should be zero-mean normally distributed and preferably 355 

adjusted by age as aforementioned. The AtCtEt function estimates variance curves using B-356 

splines in which users can specify whether the variance of each component is dynamic, 357 

constant or zero. Users need to provide the number of knots and how the knots are distributed, 358 

evenly or quantile-based. Our previous simulation shows that the pointwise CIs computed from 359 

the Hessian matrix provided by the maximum likelihood estimation are comparable to those 360 

from the bootstrap method, but when the curves are close to their boundaries the bootstrap 361 

method is recommended. The AtCtEtp function corresponds to ACE(t)-p in which users can 362 

specify a component to be modeled by splines, a linear function or a constant. The acetp_mcmc 363 

function implementing an MCMC method is dedicated to producing the empirical Bayes 364 

estimates and to generating the covariance matrix for the estimates. Two model comparison 365 

methods for ACE(t)-p are provided by the test_acetp function. Finally, variance curves and 366 

dynamic heritability with their pointwise CIs can be plotted using the plot_acet function either 367 

with the delta or the bootstrap method. 368 



Results 369 

 370 

In this section, we evaluate the performance of the proposed models in estimating the variance 371 

components and testing twin models. More specifically, we first assess the accuracy of the 372 

estimation in terms of average mean square errors (AMSEs). The type I error rate and the 373 

empirical power of the testing procedures are then evaluated by simulations. We then report a 374 

rough estimate of the computational cost of the estimation algorithm in ACE(t) and ACE(t)-p. 375 

Finally, as a demonstration of the proposed package, we analyze the dynamic heritability of 376 

BMI and height for a Finnish twin cohort. The sample sizes of the MZ and DZ twins in all of the 377 

following simulation studies are set to be equal although there are often more DZ twins than 378 

MZ twins in twin studies. In the Appendix, we further discuss the robustness of the estimation 379 

algorithm against the selection of the initial values (Appendix D), and compare different 380 

methods (analytical Hessian vs. approximate Hessian, bootstrapping vs. delta method) for 381 

estimating the CIs (Appendix E and F). 382 

   383 

Evaluation of the accuracy of the estimation 384 

 385 

To evaluate how many samples are needed to obtain accurate estimates of the variance 386 

functions, we compute the following AMSE for component 𝑗 based on 𝑚 points evenly placed 387 

across the age interval, 388 

 𝐴𝑀𝑆𝐸𝑗 =
1

𝑚
∑ (𝜎𝑗

2(𝑡𝑖) − 𝜎𝑗
2̂(𝑡𝑖))2𝑚

𝑖=1 , 𝑗 ∈ {𝐴, 𝐶, 𝐸}, 0 ≤ 𝑡1 < ⋯ < 𝑡𝑚 ≤ 50, (4) 

where we chose 𝑚 = 500, which is sufficient to produce a reliable estimate of AMSE for the 389 

smooth functions assessed in the following simulation study. The same AMSE has previously 390 

been used to assess the performance of the models in which only two components are set to 391 

be dynamic (He et al. 2016). In this simulation, we were interested in further figuring out 392 

whether more samples would be needed to achieve the same AMSEs if the number of dynamic 393 

components increased up to three. We also assessed the possible impact of the initial values on 394 



the estimation procedure. To simplify the comparison, we used the same quadratic and power 395 

functions for the A and C components as in (He et al. 2016),  396 

𝜎𝐴
2(𝑡) = 3 − 10(

𝑡−25

50
)2, 397 

𝜎𝐶
2(𝑡) = 𝑡−0.2, 398 

and additionally the following oscillation function for the E component, 399 

𝜎𝐸
2(𝑡) = 0.6 + 0.5𝑠𝑖𝑛 (

𝑡

4
). 400 

A plot of the three variance functions is given in the supplementary materials (Figure S1). We 401 

evaluated the AMSEs under scenarios of different numbers of interior knots, twin pairs and 402 

initial values. In each scenario, the estimated AMSEs were computed using the equation (4) 403 

from 100 simulated datasets based on the above twin model with 𝑡 sampled from a uniform 404 

distribution 𝑈𝑛𝑖𝑓(0, 50).  405 

 406 

In the case of ACE(t), we observed that the AMSEs for the three components dropped 407 

substantially with the number of twin pairs increasing from 5,000 to 20,000 in all scenarios 408 

(Figure 1). The AMSEs for the E component were much lower than those for the A and C 409 

components. The AMSEs rose rapidly for the A and C components with the number of interior 410 

knots increasing from 5 to 12, but decreased for the E component. With the same sample sizes, 411 

the estimated AMSEs for the A and C components were comparable to the estimates from the 412 

previous simulation study in which the E component had a constant variance (Table 2 in (He et 413 

al. 2016)), suggesting that increasing the number of dynamic components did not require more 414 

samples to attain the same AMSE. The results also showed that trying additional randomly 415 

generated initial values had little impact on the AMSEs.  416 

 417 

Akin to the trend observed for ACE(t), the results for ACE(t)-p showed that the AMSEs dropped 418 

rapidly with the increasing twin pairs, particularly from 5,000 to 10,000 (Figure 2). The results 419 



also indicated that using multiple initial values at the suggested magnitude (See supplementary 420 

materials D) had little influence. However, we observed different patterns with respect to the 421 

number of knots. Specifically, the AMSEs for the E component decreased with the knots 422 

increasing from 8 to 20, which were similar to that from ACE(t), while the AMSEs rose very 423 

modestly with the increasing knots for the A component and there was almost no evident 424 

upward trend for the C component, indicating that the performance of ACE(t)-p was robust 425 

against excessive knots. Comparing with the results from ACE(t), we found that the AMSEs for 426 

ACE(t)-p were substantially lower under the same settings.           427 

 428 

Evaluation of type I error rate 429 

 430 

First, we check that the proposed parametric bootstrap method for testing log-linearity of a 431 

component variance in ACE(t)-p works properly under different settings. In each setting, we 432 

simulated a phenotypic dataset of 10,000 twin pairs. We examined the null distribution of the 433 

p-values for testing a log-linear C component. In principle, the choice of the C component is 434 

arbitrary because the bootstrap method for LRT does not require a specific component. 435 

However, as found in the previous subsection, the estimation for the A and C components is 436 

more prone to error than the E component. Therefore, we are more interested in checking the 437 

type I error rate for the A or C component. In the first case, we assumed a log-linear C 438 

component and kept the A and E components as constants (𝜎𝐴
2(𝑡) = exp(1) , 𝜎𝐶

2(𝑡) =439 

exp(0.5 + 0.02𝑡) , 𝜎𝐸
2(𝑡) = exp (0)). We also examined the null distribution under different 440 

numbers of initial values attempted in the EM algorithm. The Q-Q plot of the p-values (Figure 3) 441 

showed that there was a slight deviation from the expected null distribution only in the case of 442 

one initial value, suggesting that using one initial value had a modest influence on the type I 443 

error rate. Nevertheless, computational cost grows linearly with the initial value attempts, 444 

which can become a major burden for the intensive bootstrap procedure. In the second case, 445 

we replaced the constant A component by splines to examine whether the performance was 446 

affected by the existence of another spline term. The spline coefficients for the A component 447 

were randomly generated from a zero-mean normal distribution with 𝜎
𝜷𝑨
2 = 1. We used 8, 10 448 



and 12 interior knots to test the sensitivity to the number of knots in the spline term. Our 449 

simulation results showed that the distribution of the p-values under the null hypothesis 450 

obtained by the bootstrap method was not affected by the existence of another spline term 451 

other than the tested component or the number of the knots in the spline term under the null 452 

model (Figure 4). Again, the deviations from the expected null distributions in the case of one 453 

initial value were trivial in these scenarios.  454 

 455 

To evaluate the proposed correction method for testing constancy in ACE(t)-p, we still checked 456 

Q-Q plots to compare the null distributions of the p-values before and after the variance 457 

correction. We tested a constant versus a log-linear E component under the same simulation 458 

setting as the above second case. We chose 𝑆 = 30, the number of resampling used for the 459 

variance correction (see Appendix C for more details). Our simulation results showed that there 460 

was a modest inflation of the type I error rate without the correction and the inflation 461 

disappeared after applying this correction (Figure 5). Similarly, the empirical type I error rate 462 

was well controlled for testing the A or C component when the tested component was 463 

comparable to the other components (the results not present here). However, when the A or C 464 

component was much smaller than the E component, we observed inflation of type I error rate.   465 

 466 

Evaluation of statistical power 467 

 468 

We assessed empirical statistical power of the proposed testing methods for the ACE(t) and 469 

ACE(t)-p models through simulated datasets. We focused on providing a rough estimate of the 470 

sample size needed for detecting a small deviation from the null hypothesis in each proposed 471 

test. We also examined the extent to which the statistical power was affected by other factors 472 

such as the ratio of the tested variance to the total variance. We assumed a twin model with a 473 

spline A component 𝜎𝑎
2(𝑡), a constant C component 𝜎𝑐

2 and a log-linear E component 𝜎𝑒
2(𝑡) =474 

exp (𝑎𝑒 + 𝑏𝑒𝑡). The simulation setting was chosen to mimic the variance functions and the 475 

similar scale of BMI in the previous Finnish twin study (He et al. 2016). For the ACE(t) model, we 476 



considered two sorts of tests: (1) zero against constancy of the C component, and (2) constancy 477 

against linearity of the E component. For ACE(t)-p, we  considered the following tests: (2) 478 

constancy against linearity of the E component and (3) linearity against non-linearity of the A 479 

component. The rationale of choosing these tests is that we are more interested in testing a 480 

zero C component as the previous results on BMI show that the C component almost disappear 481 

after some age (He et al. 2016). Testing a constant E component is also of importance because a 482 

linearly increasing E component indicates that the phenotype is subject to accumulative 483 

environmental effect as we will see in the following real data analysis. Additionally, testing non-484 

linearity of the A component may give us some information about gene-environmental 485 

interaction. For (1), we evaluated the empirical power by first changing the variance of the C 486 

component 𝜎𝑐
2  between 0.1 and 0.3 with 𝜎𝑎

2(𝑡), 𝑎𝑒 = log (2)  and 𝑏𝑒 = 0 fixed. To further 487 

assess whether the power was affected by the total variance, we then tuned 𝑎𝑒 between log(4) 488 

and log(12) given 𝜎𝑐
2 = 0.2. For (2), we evaluated the empirical power by first changing the 489 

slope 𝑏𝑒  between 0.0025 and 0.01 with 𝑎𝑒 = 1, 𝜎𝑎
2(𝑡) and 𝜎𝑐

2 = 2 fixed. We then assessed 490 

whether the power was affected by the intercept 𝑎𝑒 and the total variance, we changed 𝜎𝑐
2 491 

between 4 and 12 and 𝑎𝑒 between 1.5 and 2.5. For (3), we changed the variance for the spline 492 

coefficients of the A component 𝜎
𝛽𝐴
2  between 0.01 and 0.1 (𝜎

𝛽𝐴
2 = 0 corresponding to linearity) 493 

with 𝜎𝑐
2 = 2, 𝑎𝑒 = 1 and 𝑏𝑒 = 0.005 fixed. In each test, we calculated the empirical power 494 

from 200 simulated twin datasets and evaluated the power under different sample sizes 495 

ranging from 6,000 to 12,000 twin pairs (50% MZ and 50% DZ twins). The age of each twin pair 496 

was randomly generated from a uniform distribution 𝑈𝑛𝑖𝑓(0, 50).  497 

 498 

We observed that at least 12,000 twin pairs were needed to yield a power larger than 0.8 for 499 

detecting the existence of 𝜎𝑐
2 = 0.2 in ACE(t) when the total average variance was ~4.5 (Figure 500 

6A). The statistical power dropped dramatically with the increasing total variance. As shown in 501 

Figure 6B, even with 12,000 twin pairs the power was smaller than 0.5 when the total average 502 

variance became ~6.5, and was almost imperceptible when it was ~14.5. The results from the 503 

tests for constancy in ACE(t) show that 10,000 twin pairs were necessary to yield a statistical 504 



power of 80% for detecting a linear variance increasing with age from 1 to 1.25 (corresponding 505 

to 𝑏𝑒 = 0.005) given the total average variance of ~6 (Figure 6C). Unlike the test for existence, 506 

the power of LRT for detecting non-constancy was mildly affected by the total variance (Figure 507 

6D) and the intercept (Figure 6E).  508 

 509 

Comparison between Figure 6C and 7A suggested that the test for constancy in ACE(t)-p was 510 

somewhat more powerful than that in ACE(t) when the true variance function is linear. This is 511 

expected as the alternative model is linear when testing a constant component in ACE(t)-p. At 512 

least 6000 twin pairs were required for a power of 80% when detecting 𝑏𝑒 = 0.005. The results 513 

(Figure 7B) showed that a large sample size (>12,000 twin pairs) was necessary to achieve a 514 

power of 80% for detecting 𝜎
𝛽𝐴
2 = 0.1.  515 

 516 

Evaluation of computational cost 517 

 518 

The current implementation of the models makes it feasible to estimate dynamic variance 519 

components for large-scale twin data sets within a few seconds, especially in the case of ACE(t). 520 

We considered the factors including sample size, the function form (i.e. spline, log-linear or 521 

constant) of a variance component, the number of knots to investigate the computational cost. 522 

It should be noted that a specific dataset and the number of parameters also determine the 523 

speed of convergence of the L-BFGS algorithm. Table 1 gives rough estimates of the average 524 

computational time of ACE(t) and ACE(t)-p based on three randomly generated simulation 525 

datasets. The estimation was conducted on an Intel i7-4790, 16G RAM PC. It seemed that the 526 

computational time grew almost linearly with sample size in ACE(t). We also observed that 527 

when the number of knots was large (e.g. >10), the computational time was comparable 528 

between 5,000 and 10,000 twin pairs, which is probably because the optimization algorithm 529 

takes longer to converge in this case. Regarding ACE(t)-p, it took much longer than ACE(t) under 530 

the same setting. Moreover, it is harder to predict the computational intensity because it was 531 



dramatically affected by the number of iterations in the EM algorithm, although the algorithm 532 

converges within 10 iterations in most cases we simulated. It seemed that excessive number of 533 

knots had modest impact on the computational intensity particularly under large sample size 534 

(e.g. the computational time for ACE(t)-p increased a little from 10 knots to 15 knots in Table 1) 535 

probably because the EM algorithm converged faster and stops in fewer steps when excessive 536 

knots were provided.  537 

 538 

The computational cost for the hypothesis testing in ACE(t) can almost be neglected as the 𝜒2 539 

tests can be used. In contrast, testing log-linearity in ACE(t)-p largely depends on the number of 540 

resampling for obtaining the null distribution, which is unfortunately time-consuming. A test 541 

with a dataset of 10,000 twin pairs using 200 bootstrap replicates can take more than one hour. 542 

Testing constancy in ACE(t)-p is computationally much faster, and the simulation results show 543 

that the variance correction with the resampling method solves the inflation of type I error 544 

rate. When testing constancy in ACE(t)-p, the cost largely depends on how many MCMC 545 

iterations are used to approximate the posterior distribution, and 𝑆 (the number of resampling 546 

𝜎
𝛽{𝐴,𝐶,𝐸}\{𝑖}
2  to correct for the type I error rate. It takes the same PC a few minutes for such a test 547 

using 10,000 MCMC iterations and 𝑆 = 30. 548 

 549 

An application to a Finnish twin study of height and BMI 550 

 551 

We applied the R package to a Finnish twin study to investigate the dynamic heritability of 552 

height (cm) and BMI. The same dataset has been used in the previous study (He et al. 2016), 553 

including 19,510 MZ and 27,312 DZ same-sex twin individuals along with the information on 554 

age at the measurement contributed to the CODATwins project (Silventoinen et al. 2015). The 555 

details on collection of the data were described in previous publications (Kaprio and Koskenvuo 556 

2002) (Kaprio et al. 2002). In the previous analysis, the age-specific genetic and environmental 557 

components of BMI between age 11-60 was studied using a model with dynamic A and C 558 



components and a constant E component. After finding that the C component disappears after 559 

the age of ~20, a dynamic AE model was fitted for the individuals with age 20-60. In this 560 

analysis, we fitted an ACE(t)-p model with all component being dynamic to investigate the 561 

heritability of BMI and height. We used two different numbers of knots, 8 and 12. Figure 8 562 

shows the variance components for BMI and height estimated by the ACE(t)-p models with 8 563 

and 12 knots. For BMI, the variance of the A component leveled off across the age interval 564 

while the variance of the E component rose gradually (Figures 8A and 8B). A test for a log-linear 565 

E component with 200 bootstrapping gave a p-value of 0 (i.e., p<0.005), indicating the E 566 

component increased in a non-log-linear trend. For height, the variances of the A and C 567 

components dropped drastically until age ~20, and after that both keep almost constant 568 

(Figures 8C and 8D). An additional analysis of height with the twins of age>20 showed similar 569 

patterns (Figures 8E and 8F). The tests for log-linearity and constancy with 8 knots (Table 2) 570 

suggested that the A and C components were constant and the E component was non-linear 571 

after age 20. However, both A and C components seemed to be close to a linear function and it 572 

was possible that the tests lacked enough power to detect the log-linearity. The number of 573 

knots had no noticeable effect on the estimated variance curves except for the E component of 574 

BMI that was more wiggly under the setting of 12 knots. The heritability curves of BMI and 575 

height estimated from ACE(t)-p with 8 knots (shown in Figure 9) peaked at the age of ~20 and 576 

~40, respectively.  577 



Discussion 578 

 579 

So far, we introduce the ACEt R package for estimating dynamic heritability and comparing twin 580 

models with different variance functions. Although OpenMx (Boker et al. 2011) has been widely 581 

applied in twin studies for estimating variance components, the ACEt R package provides a 582 

comprehensive and fast computational alternative that focuses on dynamic variance 583 

components and heritability. The package is a major extension to the classical ACE twin model 584 

and is more flexible than the parametric models using predefined functions (Purcell 2002).  585 

 586 

The evaluation of AMSEs provides more insights into the different estimation performance of 587 

ACE(t) and ACE(t)-p. In the simulations, 5 interior knots are sufficient for the smooth quadratic 588 

and low-order power functions, but more than 10 knots are needed for the oscillation function 589 

that has more fluctuations. Using either abundant or inadequate knots would lead to increased 590 

estimation errors, particularly in the case of ACE(t). This is because an overly small number of 591 

knots is not able to capture the sharp dynamics of the oscillation while an overly large number 592 

of knots results in overfitting. Compare to ACE(t), ACE(t)-p is superior in the sense that it is 593 

immune to the pre-specification of abundant knots. In ACE(t)-p, ensuring more than the 594 

minimum adequate number of knots is more crucial (Ruppert 2002), as also shown in our 595 

simulation studies. It has been noted that choosing Ki = min (0.25 × unique number of t, 35) 596 

as a simple default usually works well (Ruppert 2002; Ruppert et al. 2003). It is demonstrated 597 

from the simulation results that ACE(t)-p with 8 or 12 knots had much smaller AMSEs than 598 

ACE(t) for the quadratic and power functions that require no more than 5 knots. It seems from 599 

the AMSEs that accurate estimation and discrimination of the A and C components is more 600 

difficult than the E component. This problem exacerbates if the E component is much larger 601 

than both A and C components. In this case, hypothesis testing of log-linearity and constancy 602 

for the A or C component can be unreliable due to the inaccurate estimation.    603 

 604 



The previous work based on simulation and real data analyses has demonstrated that reliable 605 

estimates can be achieved using ACE(t) or ACE(t)-p  with more than 10,000 twin pairs (He et al. 606 

2016). Therefore, in this work, we focus on developing and implementing inference procedures 607 

for the comparison of twin models with different variance functions. We create a unified 608 

framework that incorporates these models in order to leverage LRTs. Compared to LOSEM 609 

(Briley et al. 2015), one of the advantages is that it is straightforward to perform model 610 

comparison by leveraging the likelihood-based methods, which is one of the appealing features 611 

of our models. Bootstrapping for testing a penalized spline term has been shown to work 612 

perfectly in the penalized regression models (Ruppert et al. 2003; Kauermann et al. 2009). Our 613 

simulation results demonstrate the feasibility and robustness of the extension of such 614 

bootstrap methods to variance function models. We also find that the false positive rate for 615 

testing log-linearity in ACE(t)-p is not affected by adding more spline variance components with 616 

different knots. One concern is the computational intensity of using the bootstrap method. 617 

Parallel computing can be adopted to alleviate this problem. Testing multiple non-parametric 618 

hypotheses in ACE(t)-p can be performed for each component sequentially. Another advantage 619 

of ACE(t)-p over LOSEM is that it is less sensitive to the user-defined parameters by estimating 620 

them in a data-driven way. Nevertheless, LOSEM enjoys its convenience and flexibility in model 621 

specification as being incorporated in the SEM framework. 622 

 623 

In general, our results indicate that the number of attempted initial values for the estimation 624 

algorithm has little influence on the performance provided that the initial values are selected 625 

not to be far away from its true value. Otherwise, in both models, the optimization algorithm is 626 

more likely stuck at a distant local minimum that could substantively affect the result. Overall, if 627 

multiple random initial values are attempted, this problem has no predominant effect on the 628 

estimation accuracy of variance curves or on the performance of the hypothesis testing 629 

procedure. In addition, more sophisticated EM algorithm may be adopted to minimize the 630 

impact of the selection of initial values (Ueda and Nakano 1998). 631 

 632 



When using the ACE(t) model, the estimated variance of the estimates computed by the delta 633 

method from the Hessian matrix would not be reliable if the variance component is close to 634 

zero as the asymptotic property fails. In this case, we recommend that instead the bootstrap 635 

method should be adopted to construct the CIs. 636 

 637 

Our analysis of BMI and height implies that investigation of dynamic heritability can provide 638 

additional guidance for GWAS. The analyses of dynamic heritability with the Finnish twin cohort 639 

suggest that the environmental factors have much larger nonlinear cumulative influence on 640 

BMI than height, indicating the different property of the two traits. The increasingly inflated E 641 

component for BMI also suggests that general linear mixed models (LMM) used in GWAS may 642 

not be optimal for such traits as it is based on an assumption of homoscedasticity with respect 643 

to age. In this case, LMM may lose some statistical power to detect genetic variants and a 644 

variance function model can be considered. A variance function model even enables the 645 

estimation of heritability for certain phenotypes such as BMI from an independent population 646 

without genetic information as the genetic and environmental components become 647 

identifiable. In addition, dynamic heritability provides information about the optimal age of a 648 

sample for performing GWAS. Using individuals at the age with the largest heritability should 649 

yield most statistical power to detect genetic contribution in GWAS. 650 

 651 

In summary, the proposed R package is a useful and fast tool for computing variance curves and 652 

dynamic heritability for twin studies. The developed methods for model comparison have been 653 

shown to work properly under various settings. Future extension might incorporate a broader 654 

range of twin models such as the ADE model and allow other types of phenotypes such as 655 

binary and ordinal data. More sophisticated implementation using multicore and parallel 656 

computing can be developed to significantly reduce the cost for the hypothesis testing in 657 

ACE(t)-p that requires the resampling method. On the other hand, in the current models, we 658 

have only considered twin-level moderators such as age. Nevertheless, individual-level 659 

moderators are more common in epidemiology and sociology, and even for age, phenotypes 660 



can be measured at different time points within a twin pair. Thus, further work needs to be 661 

carried out to handle individual-level moderators. 662 

  663 
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Tables 
 

 

Computational time (in seconds) of the ACE(t) and ACE(t)-p model 

Knot Number of twin pairs 

 5000 10000 20000 40000 80000 

 ACE(t) 

3 1.243 2.903 5.580 12.677 23.820 

5 1.863 3.463 8.270 15.237 25.740 

10 3.840 5.327 10.837 20.617 35.195 

15 6.220 7.833 14.673 25.410 48.460 

 ACE(t)-p 

3 6.497 11.040 24.93 51.483 110.380 

5 11.287 31.483 50.120 110.573 148.650 

10 17.473 39.667 78.717 163.173 378.965 

15 30.833 42.150 85.920 195.17 393.825 

Table 1: This table gives rough estimates of the computational time for the ACE(t) and ACE(t)-p models with respect to 
the number of the interior knots and the number of twin pairs. All three variance components are assumed to be 
dynamic and modeled by B-splines. Knot: the number of interior knots for each of the A, C and E components. Model 
fitting in each simulation dataset was performed with one attempt of a randomly generated initial value within the 
proposed interval. 

 

 

Table 2: P-values from testing log-linearity and constancy of the variance components for height. The tests were based on the twins 
with age>20. We first tested log-linearity against dynamic, and then tested constancy against log-linearity. Each component was 
tested with the other two components modeled as splines with 8 interior knots.  

 Component 

 A C E 

H0: log-linearity, H1: splines  0.72 0.69 <0.01 

H0: constancy, H1: log-linearity 0.15 0.20 0.00019 



Figures 1 

 2 

Figure 1. The AMSEs for the three components (A, C, E) using the ACE(t) model with respect to sample size (5000 – 20000 twin pairs), number of the interior knots (5, 8, 12) 3 
and number of initial values attempted (2, 3, 4). 4 

 5 

Figure 2. The AMSEs for the three components (A, C, E) using the ACE(t)-p model with respect to sample size (5000 – 20000 twin pairs), number of the interior knots (8, 12, 6 
16, 20) and number of initial values attempted (2, 3, 4). 7 

 8 

Figure 3: QQ Plots of p-values obtained by the bootstrap method under the null hypothesis for testing log-linearity of the C component. In this setting, the C variance 9 
component is a log-linear function (𝝈𝑪

𝟐(𝒕) = 𝐞𝐱𝐩 (𝟎. 𝟓 + 𝟎. 𝟎𝟐𝒕)) and the A and E variance components are a constant (𝝈𝑬
𝟐(𝒕) = 𝐞𝐱𝐩 (𝟏), 𝝈𝑬

𝟐(𝒕) = 𝐞𝐱𝐩 (𝟎)) under the null 10 
model. We investigate the influence of multiple attempts of initial values on the type I error rate. A) Left: One initial value was used in the estimation of each bootstrap 11 
sample. B) Right: Three randomly generated initial values were attempted in the estimation of each bootstrap sample.  12 

 13 

Figure 4: QQ Plots of p-values obtained by the bootstrap method under the null hypothesis for testing log-linearity of the C component. In this setting, the A, C and E 14 
variance components are modeled by splines (𝝈𝜽𝑨

𝟐 = 𝟏), a log-linear function (𝝈𝑪
𝟐(𝒕) = 𝐞𝐱𝐩 (𝟎. 𝟓 + 𝟎. 𝟎𝟐𝒕)) and a constant (𝝈𝑬

𝟐(𝒕) = 𝟏), respectively, under the null model. 15 
We investigate the influence of different numbers of interior knots (8, 10 and 12) for the spline term and multiple attempts of initial values on the type I error rate. A) Top 16 
left: 8 knots and one initial value attempted. B) Top right: 10 knots and one initial value attempted. C) Bottom left: 12 knots and one initial value attempted. D) Bottom right: 17 
12 knots and two initial values attempted. 18 

 19 

Figure 5: QQ Plots of p-values obtained from 100 simulations under the null hypothesis for testing constancy of a variance component in the ACE(t)-p model. A) Left: the 20 
distribution of p-values without the correction of the variance of the estimated spline coefficients. B) Right: the distribution of p-values after correcting for the 21 
underestimation of the variance of the estimated spline coefficients using a resampling method. 22 

 23 

Figure 6: Empirical power curves for testing zero or constant variance components using the ACE(t) model. The statistical power was evaluated under different sample sizes 24 
(4000-12000 twin pairs). A) The power curves for testing a non-zero C component. B) The power curves for testing a non-zero C component with respect to different 25 
variances of the E component. C) The power curves for testing a constant E component. D) The power curves for testing a log-linear E component with respect to different 26 
variances of the C component. E) The power curves for testing a log-linear E component with respect to different intercepts. 27 

 28 



Figure 7: Empirical power curves for testing constant or linear variance components using the ACE(t)-p model. The statistical power was evaluated under different sample 29 
sizes (4000-12000 twin pairs). A) The power curves for testing a constant E component. B) The power curves for testing a log-linear E component. 30 

 31 

 32 

 33 

Figure 8: The variance curves of the A, C and E components for BMI and height estimated from the Finnish twin cohort. The shaded areas represent the 95% confidence 34 
bands. The variance curves are: A) across age 11-60 for BMI with 8 knots for each component, B) across age 11-60 for BMI with 12 knots for each component, C) across age 35 
11-60 for height with 8 knots for each component, D) across age 11-60 for height with 12 knots for each component, E) between age 20-60 for height with 8 knots for each 36 
component, F) between age 20-60 for height with 12 knots for each component. 37 

 38 

Figure 9: The dynamic heritability for BMI and height across age 11-60 estimated from the Finnish twin cohort. Both heritability curves were estimated using an ACE(t)-p 39 
model with 8 knots for each component. A) the heritability curve for BMI, B) the heritability curve for height. 40 
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Appendix 42 

 43 

A. More description of the ACE(t)-p model 44 

 45 

The ACE(t)-p model is featured by adding a penalizing term with a difference matrix 𝑫𝑖 for each 46 

component coefficients to the log-likelihood in ACE(t). From a Bayesian perspective, following 47 

the previous notations (He et al. 2016), it can be treated as assigning a multivariate normal prior 48 

on the spline coefficients of each component, i.e., 49 

𝜷𝑖~𝒩 (0, 𝜎
𝜷𝒊
𝟐 𝑫𝑖

−), 𝑖 ∈ {𝐴, 𝐶, 𝐸} 50 

where 𝑫𝑖
− is the generalized inverse of the difference matrix and 𝜎

𝜷𝑖
2  is the inverse of the 51 

penalizing coefficient 𝜆𝑖. This means that the selection of 𝜆𝑖 is equivalent to choosing 𝜎
𝜷𝑖
2 . We 52 

then develop an empirical Bayes method by first estimating 𝜎
𝜷𝑖
2  from the marginal likelihood 53 

𝐿𝑝𝑠𝑝 (𝜎
𝜷𝐴,𝐶,𝐸
2 ) = (∏ 𝜎

𝜷𝑖

−(𝐾𝑖−2)
)𝑖∈{𝐴,𝐶,𝐸} ∭|𝜮𝑀|−

1

2|𝜮𝐷|−
1

2 exp (−
1

2
(𝒀𝑀

′  𝜮𝑀
−𝟏𝒀𝑀 + 𝒀𝐷

′ 𝜮𝐷
−1𝒀𝐷 +54 

∑
𝜷𝑖′

𝑫𝑖𝜷𝑖

𝜎
𝜷𝑖
2𝑖∈{𝐴,𝐶,𝐸} )) 𝑑𝜷𝐴,𝐶,𝐸. 55 

By applying a Laplace approximation to the integral, we construct an EM-like algorithm to 56 

estimate 𝜎
𝜷𝐴,𝐶,𝐸
2 . This integrated likelihood is somewhat different from the marginal likelihood 57 

used by (Ruppert et al. 2003) and (Kauermann and Wegener 2011) in the sense that we further 58 

integrate out the parameters in the fixed effects (See the derivation below). The algorithm for 59 

the estimation procedure is similar to that described in (He et al. 2016). Given 𝜎̂
𝛽𝐴,𝐶,𝐸
2 , we 60 

estimate the spline coefficients 𝜷𝐴,𝐶,𝐸 by calculating the mean from the conditional joint 61 

posterior distribution 62 



𝑝 (𝜷𝐴,𝐶,𝐸|𝑌, 𝜎̂
𝜷𝐴,𝐶,𝐸
2 ) ∝ 𝑝 (𝑌|𝜷𝐴,𝐶,𝐸 , 𝜎̂

𝜷𝐴,𝐶,𝐸
2 ) 𝑝 (𝜷𝐴,𝐶,𝐸|𝜎̂

𝜷𝐴,𝐶,𝐸
2 )63 

∝ exp (−
1

2
(𝑙𝑜𝑔|𝜮𝑀| + 𝒀𝑀

′ 𝜮𝑀
−𝟏𝒀𝑀 + 𝑙𝑜𝑔|𝜮𝐷| + 𝒀𝐷

′𝜮𝐷
−1𝒀𝐷64 

+ ∑
𝜷𝑖′𝑫𝑖𝜷𝑖

𝜎̂
𝜷𝑖
2

𝑖∈{𝐴,𝐶,𝐸}

)) 65 

using an MCMC method. The Metropolis–Hastings (MH) method that we proposed in (He et al. 66 

2016) using an independent normal proposal distribution suffers from slow mixing when 𝜎̂
𝜷𝑖
2  is 67 

close to zero because of the strong linear posterior correlation between the spline coefficients. 68 

In the current implementation, if 𝜎̂
𝜷𝑖
2  is small, we first reparameterize the spline coefficients 69 

using the spectral decomposition of 𝑫𝑖 (described in the following section) and run the MH 70 

algorithm based on the parameter space consisting of the eigenvectors. The posterior 71 

covariance matrix estimated from the MCMC method is used to construct the pointwise CIs. 72 

 73 

B. Detailed description of testing a log-linear component in the ACE(t)-p 74 

model  75 

 76 

Note that a log-linear component in ACE(t)-p can be regarded as a nested model in which we 77 

have 𝜎
𝜷𝑖
2 → 0 as 𝜷𝑖′

𝑫𝑖𝜷
𝑖 = 0 is satisfied only if |𝜷𝑖| = 0 or 𝜷𝑖 is linear. In fact, because 𝑫𝑖, the 78 

difference matrix of the second order, is a real symmetric matrix, it can be decomposed as 𝑫𝑖 =79 

𝑸𝑖𝜦𝑖𝑸𝑖
′, in which 𝑸𝑖  is an orthogonal matrix consisting of the eigenvectors and 80 

𝜦𝒊 = (

𝜆1

⋱
𝜆𝐾𝑖−2

02×2

) 81 

is a diagonal matrix in which 𝜆s are the eigenvalues of 𝑫𝑖 and the last two entries are zero. The 82 

two zero eigenvalues mean that two spline coefficients corresponding to the linear term are 83 



not penalized (Wood 2006). If we reparametrize using 𝜽𝑖(an 𝐾𝑖 × 1 vector) = 𝑸𝑖
′𝜷𝑖, then the 84 

marginal likelihood becomes 85 
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1

2
(𝒀𝑀

′  𝜮𝑀
−𝟏{𝑩𝒊𝑸𝒊𝜽

𝒊}𝒀𝑀 +89 

𝒀𝐷
′ 𝜮𝐷

−1{𝑩𝒊𝑸𝒊𝜽
𝒊}𝒀𝐷 + ∑

𝜽𝒊′
𝜦𝒊𝜽𝒊

𝜎
𝜷𝑖
2𝑖∈{𝐴,𝐶,𝐸} )) ∏ |𝑱𝑖|𝑖∈{𝐴,𝐶,𝐸} 𝑑𝜽𝐴,𝐶,𝐸  90 

= (∏ 𝜎
𝜷𝑖

−(𝐾𝑖−2)
𝑖∈{𝐴,𝐶,𝐸} ) ∭|𝜮𝑀{𝜽𝒊}|

−
1

2|𝜮𝐷{𝜽𝒊}|
−

1

2 exp (−
1

2
(𝒀𝑀

′  𝜮𝑀
−𝟏{𝜽𝒊}𝒀𝑀 + 𝒀𝐷

′ 𝜮𝐷
−1{𝜽𝒊}𝒀𝐷 +91 

∑
∑ 𝜆𝑖𝑗𝜃𝑗

𝑖2
𝑗∈{1,⋯,𝐾𝑖−2}

𝜎
𝜷𝑖
2𝑖∈{𝐴,𝐶,𝐸} )) 𝑑𝜽𝐴,𝐶,𝐸, 92 

in which |𝑱𝑖| is the absolute value of the determinant of the Jacobian matrix and is a contant 93 

that can be ignored by the likelihood function. As 𝜎
𝜷𝑖
2 → 0 implies 𝜽𝐾𝑖−2

𝑖 = (𝜃1
𝑖 , … , 𝜃𝐾𝑖−2

𝑖 )
′

= 0, 94 

the penalized marginal likelihood 𝐿𝑝𝑠𝑝 (𝜎
𝜷𝑖
2 = 0, 𝜎

𝜷Ψ
2 ), where Ψ = {𝐴, 𝐶, 𝐸}\{𝑖}, under the 95 

hypothesis of the log-linearity of the variance component 𝑖 follows 96 

𝐿𝑝𝑠𝑝 (𝜎
𝜷𝑖
2 = 0, 𝜎

𝜷Ψ
2 ) = 𝐿𝑝𝑠𝑝 (𝜽𝐾𝑖−2

𝑖 = 0, 𝜎
𝜷Ψ
2 ) =97 

(∏ 𝜎
𝜷𝜓

−(𝐾𝜓−2)
𝜓∈Ψ ) ∭|𝜮𝑀{𝜽2

𝑖 , 𝜽Ψ}|
−

1

2|𝜮𝐷{𝜽2
𝑖 , 𝜽Ψ}|

−
1

2 exp (−
1

2
(𝒀𝑀

′  𝜮𝑀
−𝟏{𝜽2

𝑖 , 𝜽Ψ}𝒀𝑀 +98 

𝒀𝐷
′ 𝜮𝐷

−1{𝜽2
𝑖 , 𝜽Ψ}𝒀𝐷) + ∑

∑ 𝜆𝑖𝑗𝜃𝑗
𝜓2

𝑗∈{1,⋯,𝐾𝜓−2}

𝜎
𝜷𝜓
2𝜓∈Ψ ) 𝑑𝜽2

𝑖 𝑑𝜽Ψ, 99 

in which 𝜽Ψ refers to the spline coefficients for the components other than 𝑖 and 𝜽2
𝑖  refers to 100 

(𝜃𝐾𝑖−1
𝑖 , 𝜃𝐾𝑖

𝑖 ), that is, the spline coefficients corresponding to the two eigenvectors with zero 101 

eigenvalues. So the log-linear component 𝑖  has only 𝜽2
𝑖  in the integrand of the marginal 102 



lilkelihood. . Under the ACE(t)-p model, testing a log-linear variance component against a spline 103 

one amounts to testing the following hypotheses, 104 

𝐻0:  𝜎
𝜷𝑖
2 = 0  𝑣𝑠.  𝐻1:  𝜎

𝜷𝑖
2 > 0, 𝑖 ∈ {𝐴, 𝐶, 𝐸}. 105 

Under the frequentist framework, the LRT has a variety of advantages over other methods in 106 

terms of testing a zero variance component (Scheipl et al. 2008). To test 𝐻0, we define the 107 

statistic 108 

𝐿𝑅 =
𝐿𝑝𝑠𝑝(𝜎̂

𝜷𝐴,𝐶,𝐸
2 )

𝐿𝑝𝑠𝑝(𝜎
𝜷𝑖
2 =0,𝜎̂

𝜷Ψ
2 )

=
𝐿𝑝𝑠𝑝(𝜎̂

𝜷𝐴,𝐶,𝐸
2 )

𝐿𝑝𝑠𝑝(𝜽𝐾𝑖−2
𝑖 =0,𝜎̂

𝜷Ψ
2 )

. 109 

It should be pointed out that the likelihood used here is an integrated likelihood in which the 110 

fixed effects are integrated out in our empirical Bayes method. Under LRT, integrated likelihood 111 

functions are similar to or even more advantageous than ordinary likelihood functions (Berger 112 

et al. 1999; Severini 2010).  113 

 114 

As aforementioned, under the null hypothesis, the LRT statistic asymptotically follows a simple 115 

mixture of χ2 distributions in certain cases when it is on the boundary of the parameter space 116 

(Self and Liang 1987). Unfortunately, it has been shown that the proposed mixture of the 𝜒2 117 

distributions does not work properly and the asymptotic approximation performs poorly in real 118 

data analysis because the number of random effects which is related to the number of knots 119 

does not grow to infinity with increasing sample size (Ruppert et al. 2003). Our simulation 120 

results (not presented here) also indicate that the empirical distributions under null hypotheses 121 

in ACE(t)-p moderately deviate from the 50:50 mixture of the 𝜒2 distributions. Although the 122 

exact distribution of the LRT statistic under the regression model has been solved (Crainiceanu 123 

and Ruppert 2004), the situation in ACE(t)-p is more complicated, so we resort to Monte-Carlo 124 

simulation of the empirical null distribution. A variety of bootstrapping strategies aiming to 125 

accurately mimic the null distribution for the penalized spline models have been proposed 126 

(Ruppert et al. 2003; Kauermann et al. 2009). Following the same spirit by (Ruppert et al. 127 

2003), we employ a parametric bootstrap method to simulate the null distribution of the LRT 128 

statistic. More specifically, we first simulate the random effects for the other spline terms 𝜓 ∈129 



Ψ in the null model, i.e., the spline coefficients 𝜃𝑗
𝜓∗

,  𝑗 = {1, … , 𝐾𝜓 − 2} from a zero-mean 130 

normal distribution with the variance 𝜎̂
𝜷𝜓
2  estimated from the null model. Alternatively, a 131 

residual bootstrap method (Kauermann et al. 2009) based on the prediction 𝜽̂𝐾𝜓−2
𝜓

 can be 132 

used to generate 𝜃𝑗
𝜓∗

, and we do not observe significantly distinct results from these two 133 

methods in our simulation studies. If there is no spline term in the null model, the above step is 134 

skipped. Then, a phenotypic data set is simulated based on the null model with 𝜃𝑗
Ψ∗

, 𝜽̂2
𝑖  and the 135 

estimates of other parameters 𝜽̂2
Ψ plugged in. The empirical null distribution of the LRT statistic 136 

can be acquired by repeating the estimation procedure and calculating the LR for a large 137 

number of simulated data sets (e.g., 200), from which a p-value can be derived. 138 

 139 

C. Detailed description of testing a constant component in the ACE(t)-p 140 

model 141 

 142 

For a log-linear component, the coefficients corresponding to the non-linear spline terms are 143 

zero (𝜃𝑗
𝑖 = 0, 𝑗 = {1, … , 𝐾𝑖 − 2}). To simplify the inference, we further reparametrize 𝜽̂2

𝑖  using 144 

a linear transformation with 𝜼𝑖 = (𝜂0
𝑖 , 𝜂1

𝑖 )′, which is the log-variance values at the starting and 145 

the end points of the age interval, that is, 𝜎𝑖
2(𝑇𝑚𝑖𝑛) = 𝑒𝜂0

𝑖
,  𝜎𝑖

2(𝑇𝑚𝑎𝑥) = 𝑒𝜂1
𝑖
, 𝜎𝑖

2(𝑡) =146 

𝑒
𝜂0

𝑖 +
𝑡−𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
(𝜂1

𝑖 −𝜂0
𝑖 )

 . 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 are the minimum and maximum ages in the data. Thus, 147 

testing the constancy of component 𝑖 is equivalent to testing the following hypotheses 148 

𝐻0:  𝜂𝟎
𝑖 = 𝜂𝟏

𝑖   𝑣𝑠.  𝐻1:  𝜂𝟎
𝑖 ≠ 𝜂𝟏

𝑖 , 𝑖 ∈ {𝐴, 𝐶, 𝐸}. 149 

Suppose that we denote by 𝜼̂𝑖 = 𝐸(𝜼𝑖|𝑌, 𝜎̂
𝜷Ψ
2 ) and 𝑉𝑎𝑟̂(𝜼̂𝑖) = 𝑉𝑎𝑟(𝜼𝑖|𝑌, 𝜎̂

𝜷Ψ
2 ) the posterior 150 

mean and its estimated variance from the conditionally marginal posterior distribution 151 

(𝜼𝑖|𝑌, 𝜎̂
𝜷Ψ
2 ) , Ψ = {𝐴, 𝐶, 𝐸}\{𝑖} that can be obtained from the output of the MH algorithm. 152 

Thus, 𝜼̂𝑖  is the first order approximation of the posterior mean 𝐸(𝜼𝑖|𝑌) =153 

𝐸𝜎
𝜷Ψ
2 (𝐸 (𝜼𝑖|𝑌, 𝜎

𝜷Ψ
2 )) (Kass and Steffey 1989). As discussed above, the integrated likelihood 154 



that we used amounts to giving a uniform flat prior to 𝜼𝑖. The Bayesian estimate with a uniform 155 

prior is equivalent to MLE. The Bayesian central limit theorem ((Carlin and Louis) Theorem 5.1) 156 

states that the posterior distribution 𝑝(𝜼𝑖|𝑌) asymptotically converges to the limiting normal 157 

distribution of MLE, in which we can replace the posterior mode and the observed Fisher 158 

information with the posterior mean and the posterior covariance matrix, i.e., 159 

𝜼𝑖|𝑌~𝒩(𝐸(𝜼𝑖|𝑌), 𝑉𝑎𝑟(𝜼𝑖|𝑌)) . Thus, the p-value for testing 𝜂0
𝑖 = 𝜂1

𝑖  can be calculated 160 

approximately based on the following normality under the null hypothesis 161 

𝜂̂𝟎
𝑖 − 𝜂̂𝟏

𝑖 ~𝒩(0, 𝝎′𝑉𝑎𝑟̂(𝜼̂𝑖)𝝎), 𝝎 = (1 −1)′, 𝑖 ∈ {𝐴, 𝐶, 𝐸}. 162 

If no spline component is assumed in Ψ , the test based on the above normality is 163 

straightforward. However, if there is at least one spline component in Ψ , 𝑉𝑎𝑟̂(𝜼̂𝑖)  will 164 

underestimate 𝑉𝑎𝑟(𝜼𝑖|𝑌) because it does not take into account the variation of 𝜎̂
𝜷Ψ
2  for the 165 

components that have a spline function. This is one of the drawbacks of using the empirical 166 

Bayes method instead of a full Bayesian method that further gives hyper-priors to 𝜎̂
𝜷Ψ
2 . This is 167 

also because we integrate out 𝜼𝑖  in the marginal likelihood and thus cannot estimate both 168 

𝜼𝑖and 𝜎
𝜷Ψ
2  at the first stage. Our simulation results suggest that the underestimated 𝑉𝑎𝑟(𝜼𝑖|𝑌) 169 

results in modestly inflated type I error rate (see the Results section). A handful of strategies 170 

based on delta methods (Kass and Steffey 1989; Ruppert and Carroll 2000; Krivobokova et 171 

al. 2008) have been proposed. The idea is to provide certain correction by focusing on an 172 

estimate of the second term in the following equation 173 

𝑉𝑎𝑟(𝜼𝑖|𝑌) = 𝐸 (𝑉𝑎𝑟 (𝜼𝑖|𝜎̂
𝜷Ψ
2 , 𝑌)) + 𝑉𝑎𝑟 (𝐸 (𝜼𝑖|𝜎̂

𝜷Ψ
2 , 𝑌)). 174 

Note that 𝑉𝑎𝑟̂(𝜼̂𝑖) is a first order approximation of the first term 𝐸 (𝑉𝑎𝑟 (𝜼𝑖|𝜎̂
𝜷Ψ
2 , 𝑌)) (Kass and 175 

Steffey 1989). As the estimates in our case are obtained using the numerical methods rather 176 

than explicitly, we propose a resampling method to approximate 𝑉𝑎𝑟 (𝐸 (𝜼𝑖|𝜎̂
𝜷Ψ
2 , 𝑌)). The basic 177 

idea is to estimate the variation of 𝜼̂𝑖  with respect to the variation of 𝜎̂
𝜷Ψ
2  by resampling from 178 

the asymptotic distribution of 𝜎̂
𝜷Ψ
2 . More precisely, we obtain 𝑆 samples  𝜎𝛽Ψ

2∗  from the normal 179 

distribution with the covariance matrix equal to the Fisher information from the MLE of the 180 

integrated likelihood. 𝑆 does not need to be large as the correction term is often small 181 



compared to the total variance. A rough estimate should be enough, which is also 182 

demonstrated in the simulation study where we chose 𝑆 = 30. For each sample 𝜎𝛽Ψ
2∗ , we 183 

calculate 𝜼̂𝑖∗
 using the same MCMC method. Then, 𝑉𝑎𝑟̂ (𝐸 (𝜼𝑖|𝜎̂

𝜷Ψ
2 , 𝑌)) can be approximated by 184 

the covariance of 𝜼̂𝑖∗
. Thus, the corrected estimated variance for the estimates 𝜼̂𝑖  is 185 

𝑉𝑎𝑟 𝑐̂(𝜼̂𝑖) = 𝑉𝑎𝑟̂(𝜼̂𝑖) + 𝑉𝑎𝑟̂ (𝐸(𝜼𝑖|𝜎̂𝜷Ψ
2

, 𝑌)). 186 

 187 

D. Impact of initial values for the estimation algorithm 188 

 189 

One of the concerns about the implementation lies in the potential convergence of the 190 

numerical algorithm to a local maximum of the log-likelihood rather than a global one. The log-191 

likelihoods are not necessarily concave in the whole space of the spline coefficients, so the 192 

achievement of the global maximum is not guaranteed. This issue is more manifest in ACE(t)-p, 193 

as we employ the EM-algorithm which tends to converge to a local maximum and depends on a 194 

pre-specified initial value. We found that the estimates with different initial values using ACE(t)-195 

p varied much more significantly than those from ACE(t) under the same setting. Nevertheless, 196 

we can mitigate this problem by trying multiple different initial values although we might never 197 

be assured whether the global maximum is attained. Thus, starting from initial values that are 198 

probably close to the true values is crucial for efficiently acquiring stable and accurate 199 

estimates. Attempts from multiple initial values effectively reduced the variation of the 200 

estimated maximum likelihood and the risk of being stuck on a local maximum that was far 201 

from away the global one at the cost of growing computational intensity which could be a 202 

major problem in the bootstrap method for LRT. We suggest choosing initial values at the same 203 

magnitude of the log scale of the phenotype variance. We find in our simulations with randomly 204 

generated initial values at this magnitude (not presented here) that the influence on the 205 

likelihoods, estimates and hypothesis testing is well controlled. The impact of the initial values 206 

on the accuracy of the estimation of the variance functions and the hypothesis testing were 207 

further evaluated in the following sections. The results in the following sections indicate that 208 



using random initial values at the suggested magnitude generally has little impact on the 209 

estimation. It also suggested that it had ignorable impact on the LRT even without repeated 210 

initial value attempts. 211 

 212 

E. Comparison between the analytical and approximated Hessian matrices  213 

 214 

As it is hard to express the analytical solutions in the MLE for ACE(t) or ACE(t)-p, we employed 215 

the L-BFGS algorithm with box constraints, which approximates the Hessian matrix in each 216 

iterative step, so that no computation of the analytical formula for the Hessian matrix is 217 

needed. The accuracy of the Hessian matrix has a direct impact on the estimated CIs. Hence, we 218 

investigated this potential issue in ACE(t) by comparing the Hessian matrix approximated by the 219 

L-BFGS algorithm with the analytical one derived from the second derivative of the log-220 

likelihood with expectation evaluated at 𝜷̂𝑖. The results from the analysis of the example 221 

dataset provided in the R package (in the supplementary materials (Text S1)) showed that the 222 

vast majority of the entries in the approximated Hessian matrix were very close to its analytical 223 

value, which demonstrates the reliability of the L-BFGS algorithm for computing the estimated 224 

standard error in this case. 225 

 226 

F. Comparison between the delta method and the bootstrap method 227 

 228 

Our simulation results from the example dataset in the R package showed that in general the pointwise 229 

CIs acquired by these two methods were comparable (See the supplementary materials (Text S1)). 230 

However, if the true value of the component variance is on the boundary (e.g., exp(𝑩𝑖(𝑡)′𝜷𝑖) = 0), the 231 

asymptotic normality of the MLE does not hold because the regularity condition is violated. Therefore, 232 

the delta method is not reliable in this case, and the parametric bootstrap method can be a better 233 

alternative. To examine the performance of the delta method and the bootstrap method for estimating 234 

CIs when some parameters are on the boundary, we set the C component to be zero and fitted it with a 235 

spline function. Figure S2 illustrates the difference of CIs between the delta method and the bootstrap 236 



method when estimating a variance component being zero. The estimated pointwise CIs from the delta 237 

method were much wider where the estimated variance curve of the C component approached zero due 238 

to the erroneously large estimated variance. 239 


