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Abstract
We propose a new meta-module design for two important classes of modular robots. The new meta-modules are three-
dimensional, robust and compact, improving on the previously proposed ones. One of them applies to so-called edge-hinged
modular robot units, such as M-TRAN, SuperBot, SMORES, UBot, PolyBot and CKBot, while the other one applies to
so-called central-point-hinged modular robot units, which include Molecubes and Roombots. The new meta-modules use the
rotational degrees of freedom of these two types of robot units in order to expand and contract, as to double or halve their
length in each of the two directions of its three dimensions, therefore simulating the capabilities of Crystalline and Telecube
robots. Furthermore, in the edge-hinged case we prove that the novel meta-module can also perform the scrunch, relax and
transfer moves that are necessary in any tunneling-based reconfiguration algorithm for expanding/contracting modular robots
such as Crystalline and Telecube. This implies that the use of meta-meta-modules is unnecessary, and that currently existing
efficient reconfiguration algorithms can be applied to a much larger set of modular robots than initially intended. We also
prove that the size of the new meta-modules is optimal and cannot be further reduced.

Keywords Geometric reconfiguration · Self-reconfiguring modular robots · Meta-modules

1 Introduction

Self-reconfigurable modular robots are sets of robotic units
attached to each other forming a connected shape called robot
configuration. The units can change their connectivity, mov-
ing relative to eachother, thus changing the shapeof the robot.
Bymodifying theirmorphology (reconfiguring) they can bet-
ter suit different tasks, adapt to different environments, and
self-repair. This makes them more versatile than fixed-shape
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unique-purpose robots (Murata and Kurokawa 2012; Yim
et al. 2007).

Self-reconfigurable modular robots have been classified
according to different criteria: their architecture and topol-
ogy, the nature of their connections, their degrees of freedom,
their propulsionmethods, etc. (Brunete et al. 2017;Mounarak
and Ben-Tzvi 2012; Murata and Kurokawa 2012; Sirajoulis
and Adamatzky 2015). From a geometric viewpoint, a very
interesting class ofmodular robots is that of those that are able
to expand and contract, since this property can be exploited
by reconfiguration algorithms. The capability to expand and
contract allows moving the units through the interior of the
robot configuration, as shown in the top row of Fig. 1. This
allows so-called tunneling reconfiguration algorithms, where
modules travel through the volume of the robot. The bot-
tom row of the figure shows how the same reconfiguration is
achieved by means of traversing the surface of the robot, i.e.,
by moving the units along the boundary of the configuration,
requiring a longer sequence of steps.

This tunneling capability is particularly interestingbecause
it can be exploited to reconfigure robotic systems in-place,
i.e., using only the space occupied by the initial and goal
configurations, with a small number of robot moves and par-
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Fig. 1 Different reconfiguration strategies. Top: tunneling algorithm. The black dot represents that two units are compressed in the same cell.
Bottom: the same reconfiguration achieved by a surface algorithm

allel steps. As the volume of a robot configuration grows,
the surface area per module becomes proportionally smaller.
This is a limitation to parallelism in surface reconfiguration
strategies that causes the reconfiguration speed to decrease
as the number of modules increases.

Instances of self-reconfiguring systems with square or
cubic units that can expand and contract by a factor of two in
each of its dimensions are Crystalline robots (Rus and Vona
2001) in two dimensions and Telecubes (Suh et al. 2002)
in three dimensions. Other modular robots that can expand
and contract include the Metamorphic robot (Pamecha et al.
1996), which can squeeze by modifying the angles of its
2-dimensional hexagonal pieces; PolyPod (Yim 1994), a
chain bipartite robot made of contractible segments with two
degrees of freedom; TETROBOT (Hamlin and Sanderson
1998), a truss-structured robot composed of rigid or actuated
struts and joints allowing rotation; Odin (Lyder et al. 2008), a
versatile three-dimensional robot using telescopic links; and
the very recentM-Lattice (Yang et al. 2018), a 2-dimensional
modular robot made of triangular units that can modify its
angles as well as contract and expand its edges.

Several tunneling algorithms for reconfiguringCrystalline
and Telecube robots have been proposed in the past. In
all of them the units are grouped into so-called meta-
modules (Kotay and Rus 2000; Nguyen et al. 2000). These
are connected configurations of at least 2 × 2 equal units in
the 2D case, and 2 × 2 × 2 units in 3D, that collaborate in
order to form a robot that has more functionality (e.g., in
terms of possible moves) than any single module (Nguyen
et al. 2000), adding extra versatility to the robotic system.

Many reconfiguration strategies have been proposed in
the literature. The melt-grow method (Rus and Vona 2001)
is a centralized algorithm that allows to reconfigure any con-
nected robot with n units in O(n2) moves and steps. The
Pac-Man algorithm (Butler and Rus 2003) and the algo-
rithm by Vassilvitskii et al. (2002) both also reconfigure in
O(n2) parallel steps. In-place reconfiguration is also possi-
ble. Assuming constant velocity and strength, under which a
module can pull or push only a constant number of othermod-
ules at constant speed,meta-modulesmade of 2×2(×2) units
can be used to reconfigure in-place. This can be achieved by

both a centralized (Aloupis et al. 2011) and a distributed (Per-
era 2015) algorithm. The overall number ofmoves performed
by these algorithms isΘ(n2), which is optimal in this setting.
If themodules of the robot have linear strength, the total num-
ber of moves can be reduced to O(n) (Aloupis et al. 2009).
If, in addition, we allow velocities to build up over time,
then reconfiguration is possible in O(log n) parallel steps
and O(n log n) overall moves (Aloupis et al. 2008).

Many current modular robot prototypes have other very
convenient properties such as chain/tree or hybrid architec-
tures providing their units with high mobility or locomotion
capabilities, but they cannot expand and contract. However,
this can be achieved by combining them into meta-modules.

In general, themeta-module design problem aims at struc-
turing a set of modular robot units in a way such that this
structured set is able to perform the operations required
in reconfiguration algorithms. In our case, the goal is to
design minimum-size meta-modules that can perform the
Crystalline and Telecube unit operations expand, contract,
attach and detach and that are valid for a wide range of mod-
ular robots. This will allow to apply the previously described
algorithms, designed for robots that can expand and contract,
also to other important classes of robots whose units cannot
expand or contract.

Due to the interest of the tunneling capabilities for the pur-
pose of reconfiguration, meta-modules of other robots have
been designed that are able to expand and contract. Kotay and
Rus (2000) have proposed an expandable and contractible
meta-module for Molecules. More recently, Kawano (2020,
2019) has proposed a meta-module for slide-only cubes that
can tunnel without disassembling. Murata and Kurokawa
(2012) have presented a small and compact M-TRAN meta-
module, although it can only expand and contract in two
dimensions. In three dimensions, the only M-TRAN meta-
module that we are aware of that can expand and contract
is the one proposed by Aloupis et al. (2013), which is also
valid for Molecubes (Zykov et al. 2007). Their meta-module
is made of 58 units, and the length of the side of its minimum
axis-aligned bounding box (cube) when expanded is 32 units.
In addition to its size, its configuration is much less compact
than the one byMurata and Kurokawa, making it less robust,
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in the sense that it has many degrees of freedom that are not
necessary for the moves, but can make more difficult some
actions such as the alignment between meta-modules when
attaching to each other.

The interest in the M-TRAN series of self-reconfiguring
robots, from M-TRAN I to M-TRAN III (Kurokawa et al.
2008), is probably due to their simplicity and, at the same
time, their versatility. M-TRAN is one of the geometrically
fairest examples of a large class of so-called “edge-hinged”
robots from a geometric viewpoint of its degrees of free-
dom (this class of robots is precisely defined in Sect. 2).
Its units, depicted in Fig. 2, can be connected in chain or
tree topologies and allow for continuous movement. This
makes M-TRAN suitable for a variety of tasks and loco-
motion modes: among others, it can perform whole body
locomotion as a crawler and as a traveling wave, as well as
several legged gaits (Murata and Kurokawa 2012). At the
same time, the M-TRAN units can be arranged in a cubic
grid. In such a lattice architecture, it is simpler to plan recon-
figuration. Molecubes or Roombots (Spröwitz et al. 2010)
have a hinging mechanism that gives rise to a geometri-
cally different rotation movement of their units, in what
is known as “central-point-hinged” modular robots. Analo-
gously to edge-hinged, central-point-hinged robot units can
be arranged in chain, tree or lattice topologies as to produce
different forms of reconfiguration.

1.1 Contributions

– A geometric abstraction of two classes of modular robots
that cover a wide set of existing modular systems, that
we call edge-hinged and central-point-hinged modular
robots. See Sect. 2.

– A newmeta-module for edge-hinged modular robots that
can expand and contract as to double/halve its size, just
as Crystalline and Telecube units do. We prove that the
meta-module is optimal in size and number of units. It
is valid for M-TRAN (Kurokawa et al. 2008), Super-
Bot (Salemi et al. 2006), SMORES (Davey et al. 2012)
UBot (Zhao et al. 2012), PolyBot (G3) (Yim et al. 2002)
and CKBot (Park and Yim 2009). See Sect. 3.

– A new meta-module for central-point-hinged modular
robots that can expand and contract as to double/halve its
size, valid for Molecubes (Zykov et al. 2007) and Room-
bots (Spröwitz et al. 2010). The size of this meta-module
is also optimal. See Sect. 4.

– Both meta-modules enable the application of tunneling
reconfiguration algorithms for Crystalline and Telecube
units (Aloupis et al. 2011; Butler and Rus 2003; Rus
and Vona 2001; Vassilvitskii et al. 2002) to edge-hinged
and central-point-hingedmodular robots. However, these
algorithms rely onmeta-modules of 2×2(×2)Crystalline
or Telecube units that are able to perform three additional

Fig. 2 An edge-hinged unit and its degrees of freedom, as they appear
in M-TRAN

operations (scrunch, relax, and transfer). We further
show that our meta-module for edge-hinged robots can
also directly perform these operations. This implies that,
to apply the constant-strength tunneling algorithms for
Crystalline and Telecube units (Aloupis et al. 2011; But-
ler andRus 2003;Vassilvitskii et al. 2002) to edge-hinged
robots, meta-meta-modules are not necessary. As a side
effect, the meta-module can also be used in surface
traversing reconfiguration strategies based on the sliding-
cube model. Thus, reconfiguration strategies as the ones
illustrated in Fig. 1 can be directly applied to our meta-
module for edge-hinged modular robots. See Sect. 5.

2 Geometric abstraction of the units

In this section we define two geometric abstractions that
allow us to model several current robot prototypes. First,
we abstract the geometric properties of M-TRAN, and prove
that our abstraction models a wide set of currently exist-
ing modular robots, including SuperBot, SMORES, CKBot,
PolyBot, andUBot.We call this class edge-hindged. Thenwe
abstract the geometric properties of Molecubes, and prove
that our abstraction applies to Roombots too. We call this
class central-point-hinged.

2.1 Edge-hinged robot units

Our edge-hinged geometrical model is an abstraction of
M-TRAN units. M-TRAN units consist of two linked semi-
cylindrical cubes, as illustrated in Fig. 2. We refer to these
two semi-cylindrical cubes as blocks. The minimum bound-
ing box of each block is a cube. The units have two degrees
of freedom: each semi-cylindrical block can rotate from
− 90◦ to + 90◦ with respect to the link connecting both
blocks. The semi-cylindrical shape of the blocks prevents
self-intersections along the rotations. Each M-TRAN block
has a gender (male/female) and connectors (different for the
two genders) on its three flat surfaces. Two units can be
attached through flat surfaces of different gender, in any of
the four possible relative orientations.

We abstract the geometric properties of M-TRAN as fol-
lows.
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Fig. 3 A SuperBot unit

Fig. 4 Illustration of the degrees of freedom of SMORES, CKBot U-
bar, and PolyBot units

1. Each unit of the robot consists of two blocks and a linkage
between them.

2. The minimum bounding box of each block is a cube and
each block is contained in a semi-cylindrical shape, union
of half a cube and half a cylinder.

3. Each block can rotate from − 90◦ to + 90◦ with respect
to the link joining both blocks.

4. Two units can be attached through their flat surfaces (with
or without gender distinction), in any of the four possible
relative orientations.

Following the terminology from Aloupis et al. (2013), we
call the family of modular robots instantiating this geometric
concept edge-hinged.

Observation 1 Although they have different technical pecu-
liarities, M-TRAN, SuperBot, SMORES, CKBot U-bar, and
PolyBot can fully instantiate edge-hinged modular robots.
Moreover,Ubot andCKBot L7 can partially instantiate edge-
hinged modular robots.

This is obvious for M-TRAN, since the edge-hinged
model is a geometrical abstraction its properties. These geo-
metric properties also apply to SuperBot (Salemi et al. 2006)
units. The main geometric difference is that these units have
an extra degree of freedom that is not required within the
edge-hinged model (as illustrated in Fig. 3 the link can also
rotate). Moreover, the connectors in this case are genderless.

One SMORES unit (Davey et al. 2012) consists of a U-
shaped structure and a circular movable piece (see Fig. 4a)
with 4 rotational degrees of freedom. Two SMORES units
attached by their circular movable piece can behave like one
Superbot unit. Therefore, SMORES can also instantiate an
edge-hinged modular robot.

Fig. 5 Illustration of the degrees of freedom of Ubot and CKBot L7
units, and how to attach two of them

CKBots (Park and Yim 2009) include two kinds of units.
U-bar units, illustrated in Fig. 4b, consist of a U-shaped
structure and a square movable piece, but have only one
degree of freedom. Nonetheless, two CKBot U-bar units,
when attached by their square movable piece, have the same
degrees of freedom as M-TRAN. Therefore, if they were
equipped with self-reconfigurable connectors with the right
parity, they could also instantiate an edge-hinged modular
robot.

A PolyBot (G3) unit (Yim et al. 2002) consists of two U-
shaped structures, one interior to the other, and has one degree
of freedom (see Fig. 4c). When attached by their central face
of the interior U-shaped structure, two units behave as in the
previous case of CKBot U-bar units. Thus, PolyBot can also
instantiate an edge-hinged modular robot.

A Ubot unit (Zhao et al. 2012) consists of two L-shaped
parts connected by a 1-bend axis with two rotational degrees
of freedom, illustrated in Fig. 5a. Two units of Ubot attached
as shown in Fig. 5b can rotate as one M-TRAN unit or, more
generally, as one edge-hinged unit. Notice that the faces per-
pendicular to the rotation axes in a edge-hinged unit do not
behave as in two attached Ubot units. More precisely, one
such face per Ubot unit behaves differently (in Fig. 5b the
two edge-adjacent faces on the bottom). Nevertheless, this
does not affect the moves we need for our expanding and
contracting meta-module. A CKBot L7 (Park and Yim 2009)
unit is geometrically equal to a Ubot unit, except for the fact
that it only has one of the two rotational degrees of free-
dom of Ubots (see Fig. 5c). Thus, both Ubots and CKBot L7
partially instantiate edge-hinged modular robots.

In contrast, there are some seemingly very similarmodular
robots that does not fall into the edge-hinged model, as in the
case of the iMobot (Ryland and Cheng 2010). The bounding
box of an iMobot semi-cylindrical block is not a cube, but
a right rectangular prism, due to its rotating faceplates (see
Fig. 6). This difference has a huge significancewhen it comes
to using the units of a modular robot in a lattice context since
the units do no fit in a cubic lattice.

Observation 2 The modular robot iMobot does not instanti-
ate the edge-hinged geometric model.
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Fig. 6 An i-Mobot unit

Fig. 7 A central-point-hinged unit and its rotational degree of freedom,
as it appear in Molecubes. Model from the Molecubes project (Zykov
et al. 2007)

2.2 Central-point-hinged robot units

Our central-point-hinged geometrical model is an abstrac-
tion of Molecube units. Molecube (Zykov et al. 2007) units
are cube-shaped with rounded corners and two halves that
can rotate relative to each other, giving rise to one degree
of freedom. The two halves are created by partitioning the
cube by a plane through its center and orthogonal to the line
defined by two opposite vertices of the cube. Such line is
the axis with respect to which the two halves of the unit can
rotate, as shown in Fig. 7. The rounded corners are the result
of intersecting the cube with a cylinder whose axis coincides
with the rotation axis (see Fig. 8a). This prevents intersec-
tions of the rotating halves with adjacent units. All faces of
a Molecube can connect in any possible orientation, with no
gender distinction.

We abstract the geometric properties of Molecubes as fol-
lows.

1. Each unit of the robot consists of one block whose mini-
mum bounding box is a cube. Each block is divided into
two halves by a plane through its center, orthogonal to
the line defined by two opposite vertices of the minimum
bounding cube (axis).

2. Each block is contained in the intersection of the mini-
mum bounding cube and a cylinder whose axis coincides
with the aforementioned axis, as to physically allowProp-
erty 3 in the presence of adjacent blocks. For this purpose,

the appropriate radius of the cylinder is
√
3

2
√
2
times the

length of the edges of the cubes (see Lemma 1).

U

(a) Cube intersected by
cylinder.

k

k√
2

√
3

2
√
2
k

(b) The radius of the cylinder
is the apothem of U ∩ π.

Fig. 8 Construction of central-point-hinged units

Fig. 9 A Roombot unit

3. Each half can rotate from − 120◦ to + 120◦ about the
axis.

4. Two units can be attached through any of the six faces of
their bounding cubes, in any of the four possible relative
orientations. Notice that this abstraction is independent
of whether the attachments have gender distinction or
not.

Following the terminology from Aloupis et al. (2013), we
call the family of modular robots instantiating this geometric
concept central-point-hinged.

Observation 3 Although they have different technical pecu-
liarities, Molecube and Roombots can instantiate central-
point-hinged modular robots.

Since the central-point-hinged model is a geometrical
abstraction ofMolecube units,weonly need to argue that they
also model Roombots (Spröwitz et al. 2010). Each Roombot
unit is made of two rounded cubes that are divided into two
halves in the same way Molecubes are. Each half can con-
tinuously rotate about the axis, and the faces of the cube can
attach and detach fromneighboringmodules in all directions,
with no gender restrictions. In fact, a Roombot unit has one
extra rotational degree of freedom between its two blocks
(see Fig. 9). Therefore, one unit of Roombots can behave as
one Molecube 2-unit chain.
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(a) Arms expanded. (b) Central units. (c) Arms contracted.
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(d) Arms expanded, different view.

Fig. 10 Meta-module for edge-hinged units

Lemma 1 In order to allow full rotation of one half-unit of
a central-point-hinged robot in the presence of neighboring
units, it is necessary and sufficient that the bounding cylinder

of the unit has radius
√
3

2
√
2
times the length of the edges of the

cubes.

Proof Let u and u′ be the two opposite vertices of the bound-
ing cube U of a central-point-hinged unit along its rotation
axis, and let π be the perpendicular bisecting plane of seg-
ment uu′. Plane π separates the two halves of the unit.

The intersectionU ∩ π is a regular hexagon whose edges
are the intersection of π with the six neighboring lattice cells
of U . Therefore, if the unit was a cube, even an infinitesi-
mal rotation of a half of the unit would mean invading its
neighboring lattice cells. Free rotation within the lattice cell
is possible if and only if the unit is contained in the cylinder of
axisuu′ whose radius equals the apothemof the hexagon (i.e.,
the length of a line segment from the center of the hexagon to
the midpoint of one of its sides). Refer to Fig. 8b. If k is the
length of any edge of U , then the hexagon sides have length

k/
√
2, and its apothem has length

√
3

2
√
2
k. ��

3 Ourmeta-module design for edge-hinged
modular robots

In this section we describe how edge-hinged units can be
combined into a meta-module that is able to expand and con-
tract. We will prove its correctness in the edge-hinged model
and it implies it for M-TRAN, SuperBot, SMORES, UBot,
PolyBot, and CKBot.

3.1 Description of themeta-module

The proposedmeta-module for edge-hinged units, illustrated
in Fig. 10a, consists of 6 arms, aligned in three directions that
are parallel to the x , y and z axes.

J1,1

J1,2

J2,1

J2,2

(a) (b)

Fig. 11 Each arm is implemented using a 2-unit chain. a The four
semi-cylindrical blocks of the top 2-unit chain of the top-down 4-unit
chain from Fig. 10a labelled J1,1 (tip), J1,2, J2,1, and J2,2 (central). b
The edge-hinged arm is able to contract while maintaining its potential
connections at both ends

Each arm is implemented using a 2-unit chain. It consists
of two units attached at square flat faces, with the direction
of their links aligned, as shown in Fig. 11.

For each of the three directions parallel to the x , y and z
axes, two such arms are connected to each other, resulting
in a 4-unit chain whose blocks are all aligned. However, the
linkages of the two connected arms differ in their orientations
(see Fig. 12). This design decision is important in order to
endow the meta-module with as much mobility as possible.
We call the blocks connecting the two arms central. The end
blocks of a 4-unit chain we call tips.

Let us introduce some notation before we describe the
meta-module in more detail. We number from 1 to 4 the four
units of any of the 4-unit chains, as they appear along the
chain, in some order that we will precise when necessary.
We denote by Ji,1 and Ji,2 the two blocks of the i-th unit, as
they appear in the same order.

The meta-module is formed by connecting three 4-unit
chains, one for each of the x , y and z directions. The con-
nection is done through their central blocks (see Fig. 10b)
at their semicircular faces. We note that each central block
has only one connection through a semicircular face. This
implies that the meta-module also applies to robots like Ubot
and CKBot L7 that partially instantiate edge-hingedmodular
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Fig. 12 a Connecting two edge-hinged arms into a 4-unit chain. The
central blocks are highlighted in green. b The contraction movement of
one 4-unit chain (Color figure online)

robots. Fig. 10a, d show the meta-module with all its arms
expanded and Fig. 10c shows it with all its arms contracted.

To describe themeta-module more precisely, wewill refer
to the three 4-unit chains as top-down, back-front, and left-
right (refer to Fig. 10a), andwewill number their units in that
same order. Then, the attachments between the three chains
are done as follows: J2,2 of the top-down chain is attached to
J3,1 of the back-front chain. Analogously, J2,2 of the back-
front chain is attached to J3,1 of the left-right chain. Finally,
J2,2 of the left-right chain is attached to J3,1 of the top-down
chain.

3.2 Meta-module’s properties

The goal of this design is to obtain a minimum-size meta-
module that can perform the Crystalline and Telecube unit
operations expand, contract, attach and detach. To this aim,
the meta-module should have the following key properties:

1. Each arm is able to independently expand and contract,
doubling and halving its length, respectively. Moreover,
during the move of an arm, the six central blocks are
kept still, while the two tips of the arm stay aligned and
maintain their orientations. This last property is criti-
cal, as it guarantees the connectivity with the rest of the
robot in reconfiguration algorithms. This will be proved
in Lemma 2.

2. When arms are moving, no arm collides with any other
part of themeta-module. Thiswill be proved in Lemma 3.

3. Throughout the move, the robot stays connected. This
will be proved in Lemma 4.

4. The size of the meta-module is minimal. This will be
proved in Theorem 5.

In the next section we formalize and prove the properties
above.

3.3 Proof of themeta-module’s properties

All the following properties are stated in terms of the contrac-
tion move. It is straightforward to realize that they also hold
for the expansion move, which is no more than the reverse
of a contraction.

We start proving a key property of the arms. Namely, that
the rotation of the blocks allows each arm to contract an
expand, while preserving potential connections.

Lemma 2 The edge-hinged arm of the meta-module can be
contracted. Throughout the move its two extremal blocks
(central and tip) stay aligned and keep their orientation,
while the centers of the four blocks always lie in the same
plane. By the end of the contraction, the distance between
the extremal faces of the central and tip blocks of the arm is
half the distance when expanded.

Proof Without loss of generality, let us discuss the case
of a 2-unit chain J1,1,J1,2,J2,1, and J2,2. The proof for
J3,1,J3,2,J4,1, and J4,2 is symmetric.

J1,1 and J1,2 are connected through a rotational link, and
so are J2,1 and J2,2. A rigid attachment exists between J1,2
and J2,1.

The contraction, shown in Fig. 11, consists of a −90◦
rotation of J1,1 and J2,2 and a +90◦ rotation of J1,2 and J2,1
about their respective links. The realization of this move is
allowed by the two rotational degrees of freedom and the
semi-cylindrical shape of the blocks.

Notice that the two rotation axes of an arm are parallel.
By construction, their direction is perpendicular to that of the
line connecting all the centers of the blocks when the arm is
in extended position. Therefore, the centers of the blocks stay
in the same plane throughout the contraction move. Further-
more, the contraction does not change neither the alignment
nor the orientation of the central and tip blocks of the chain,
J1,1 and J2,2, due to the opposite sign of the rotations applied
to each pair of blocks connected by a rotational link. Indeed,
since J2,2 is central and stays still, then the composition of
the four rotations gives rise to a translation of J1,1 in the
direction of the arm, towards J2,2. Notice that the require-
ment for this statement to be true is that the move consists
of a rotation of angle −α for J1,1 and J2,2, and a rotation of
angle +α for J1,2 and J2,1 about their respective links, for α

going from 0◦ to 90◦. In other words, the property that the
two rotation angles used are the same with opposite signs
must be maintained throughout the entire contraction.

It is easy to prove that no self-intersection of the arm hap-
pens throughout the contraction. Blocks within the same unit
cannot self-intersect by construction. On the other hand, J1,2
and J2,1 cannot self-intersect since they are rigidly attached
to each other. In order to prove that J1,1 can neither inter-
sect J2,1 nor J2,2, let us assume, without loss of generality,
that the arm is aligned parallel to the x axis, and the mini-
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Fig. 13 Edge-hinged meta-module contracting an arm in its corre-
sponding octant

mum bounding box of each of its blocks has size 1 × 1 × 1.
Let x1, x2, x3, and x4 be the x-coordinates of the centers of
the bounding boxes of J1,1, J1,2, J2,1, and J2,2 respectively.
It is immediate to realize that x1 ≤ x2, x3 = x2 + 1, and
x3 ≤ x4 throughout the contraction, due to the size of the
units and the rotation axes and angles of the blocks. There-
fore, x4 ≥ x3 ≥ x1 + 1. This implies that J1,1 can never
intersect J2,1 nor J2,2, since the minimum bounding boxes
of the blocks stay aligned and never change their orientation
throughout the move. By symmetry, this also proves that J2,2
can neither be intersected by J1,2 nor by J1,1 throughout the
contraction.

Finally, since the minimum bounding box of each block
is a cube, by the end of the contraction the distance between
the extremal faces of the chain has been halved. ��

Next we show that contracting and expanding the arms of
themeta-module does not produce collisions.Wewill use the
fact that the linkages of the two arms forming a 4-unit chain
have different directions. Therefore, their contraction and
expansion movements take place in two orthogonal planes,
as illustrated in Fig. 12 right.

Lemma 3 No self-intersection is produced when contracting
any arms of the edge-hinged meta-module.

Proof Consider the minimum axis-aligned cube containing
the expanded meta-module and decompose it into eight
octants through its center. By construction, each expanded
arm is contained in a different octant (and two octants are
empty). By Lemma 2, the centers of the four blocks of a
contracting arm always lie in the same plane, so that the con-
traction of an arm sweeps a sub region of its corresponding
octant (see Fig. 13). This guarantees that collisions between
arms cannot occur. Collisions within one arm are excluded
by Lemma 2. ��

Finally, we prove that expanding and contracting arms can
be done without disconnecting the robotic system.

Lemma 4 Throughout the contraction of any subset of arms
of an edge-hinged meta-module, the robot stays connected.

Proof While contracting any arm, its central block does not
change its orientation (see Lemma 2). Hence, it does not
need to change its attachments. Therefore, the six central
blocks can maintain the meta-module connected at all times.
Moreover, connectivity with neighboring meta-modules is
preserved: if the tip of an arm is attached to the tip of another
meta-module arm, Lemma 2 guarantees that this attachment
can be maintained throughout expansion and contraction. ��

From the previous lemmata we conclude that the length
of the meta-module can be reduced by half (when expanded
arms are contracted) or doubled (when contracted arms are
expanded) in any of the x , y and z directions. This can be
done while preserving connectivity (Lemma 4) and avoiding
collisions (Lemma 3). Attachments and detachments of the
meta-module are performed by the tips of its six arms.

Theorem 4 The edge-hinged meta-module can perform the
Crystalline and Telecube unit operations: expand, contract,
attach, and detach.

Consider a lattice such that in the expanded configuration
of the meta-module each of the edge-hinged blocks fits in a
unit cell. We define the size of the meta-module as the length
of its minimum bounding cube. In other words, the size of the
meta-module measures the resolution of any configuration of
meta-modules.

Theorem 5 The edge-hinged meta-module has optimal size.

Proof Since the meta-module must be able to contract to fit
in a cube of half side length, its size has to be even, both in
its expanded and in its contracted form. Otherwise, it will be
unable to align in the grid, and therefore with its neighbors.
As the size of our meta-module is eight, the only remaining
option is size four.

In this case, notice that the compressed meta-module
would have only 2 × 2 × 2 = 8 cells. However, any meta-
module of size four requires at least five edge-hinged units,
which occupy ten lattice cells. Indeed, the meta-module
needs to connect the six faces of the bounding cube. There-
fore, since parallel external faces of the bounding cube are at
distance four, the meta-module must contain a subtree with
three connections in each of the three directions x , y, and z
of the cube. These nine different connections imply that the
meta-module must occupy at least ten cells. ��

4 Extension to the central-point-hinged case

In this sectionwe extend the previous results to central-point-
hinged units. In particular, they will apply to Molecubes and
Roombots.
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Fig. 14 Meta-module for central-point-hinged units. From left to right: expanded, contracting (60◦), contracted
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Fig. 15 The central-point-hinged arm. The rotation axes and the plane
separating the two halves of a unit are shown in red (Color figure online)

4.1 Description of themeta-module

The meta-module for central-point-hinged units is similar to
the one described in Sect. 3. When expanded, it also consists
of six arms aligned in the x , y and z directions (see Fig. 14).

Each arm consists of a chain of four units (i.e., 4Molecube
units or 2 Roombot units). If we number them, 1, 2, 3, and
4, as they consecutively appear in some order, we denote the
two halves of the i-th unit as Ji,1 and Ji,2, as they appear in
the same order. The plane separating them is denoted πi , and
the rotation axis �i . The center of the bounding cube of the
i-th unit Ui is Oi = (xi , yi , zi ).

The rotation axes �1 and �2 are parallel, and so are �3
and �4. In addition, the rotation axes �2 and �3 share a point,
namely one of the common vertices of the minimum bound-
ing cubes ofU2 andU3.We refer to J1,1 as the tip half-unit of
the arm, and to J4,2 as central (see Fig. 15 for an illustration).

Similarly to the edge-hinged case, for each of the three
directions parallel to the x , y and z axes, two such arms
are connected to each other, through their central half units,
forming a chain whose eight units are all aligned (see Fig. 16
for an illustration). If we number from 1 to 8 the units of the
resulting 8-unit chain as they appear in consecutive order, the
attachment is done such that the four rotation axes �3, �4, �5,
and �6 are all parallel, and so are �1, �2, �7, and �8.

x
zzzzzzzzzzzzzzy

1
2

3
4

5
6

7
8

Fig. 16 Connecting two arms in the same direction. The rotation axes
are shown in red (Color figure online)

Let us describe in more detail the case where the two con-
nected arms are parallel to the x axis (refer again to Fig. 16).
Assume that each arm is made out of units whose minimum
bounding box has size 1× 1× 1. One of the arms is located
in the octant x ≤ 0, y ≥ 0, z ≤ 0. Let us label its units
from 1 to 4. Then one vertex of U4 is positioned at the ori-
gin and one edge of each of the four arm units lie in the x
axis. The rotation axes �2 and �3 of this first arm are located
as to share point (−2, 1, 0). The second arm parallel to the
x axis is attached to the first one at the plane x = 0, such
that it lies in the x-opposite octant x ≥ 0, y ≥ 0, z ≤ 0. The
attachment is done such that �6 and �7 of this arm share point
(2, 0,−1). This orientation structure is reproduced in the y
and z directions.

The design of themeta-module connects each 8-unit chain
through its central half-unit to the central half-unit of the
remaining two 8-unit chains, similarly to what was done for
the edge-hinged case (see Fig. 14). More precisely, if the
numbering of the units is done top to down, back to front,
and left to right, the attachment between them in the meta-
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module are as follows: J4,2 of the top-down chain is attached
to J5,1 of the back-front chain. Analogously, J4,2 of the back-
front chain is attached to J5,1 of the left-right chain. Finally,
J4,2 of the left-right chain is attached to J5,1 of the top-down
chain.

In summary, the 8-unit chain parallel to the x axis lies in
the quadrant y ≥ 0, z ≤ 0, all its units have one edge in the
x axis, �2 and �3 share point (−2, 1, 0), and �6 and �7 share
point (2, 0,−1). Analogously, the 8-unit chain parallel to the
y axis lies in the quadrant x ≥ 0, z ≥ 0, all its units have one
edge in the y axis, �2 and �3 share point (0, 2, 1), and �6 and
�7 share point(1,−2, 0). Finally, the 8-unit chain parallel to
the z axis lies in the quadrant x ≤ 0, y ≤ 0, all its units have
one edge in the z axis, �2 and �3 share point (−1, 0, 2), and
�6 and �7 share point(0,−1,−2).

4.2 Meta-module’s properties

The goal of this design is to obtain a minimum-size meta-
module that can perform the Crystalline and Telecube unit
operations expand, contract, attach and detach. The key prop-
erties for thismeta-module are essentially the same four as for
the edge-hinged case. However, some of the proofs become
more involved, since now the movement of each arm does
not take place in a fixed plane. We prove each of them in the
next section.

4.3 Proof of themeta-module’s properties

We start by defining more formally the the contract/expand
move for one single arm. Without loss of generality, we will
discuss the details for the case of an extended arm parallel to
the x axis, in the octant x ≥ 0, y ≥ 0, z ≤ 0. Recall that the
rotation axes of this arm, �6 and �7 are located as to share
point (2, 0,−1).

Let us orient positively the rotation axes of all the arm
units towards (2, 0,−1). The contraction move consists of
simultaneously rotating −120◦ both J5,2, J6,1, J7,1, and J8,2
about their respective axes, while J5,1, J6,2, J7,2 and J8,1
rotate +120◦ about theirs. The realization of the contraction
move is allowed by the one rotational degree of freedom of
each unit.

This move (illustrated in Fig. 17) can alternatively be
described in the following way. Let us start by looking at
the 5th and 6th units, U5 and U6. Since J5,1 is attached to
the remaining arms of the module, it stays still. Therefore,
J5,2 rotates −120◦ relative to J5,1, about �5. Since J6,1 stays
rigidly attached to J5,2, it also rotates −120◦ about �5, car-
rying �6 with it. Finally, J6,2 rotates +120◦ (relative to J6,1)
about �6.

The first thing to be noticed is that, in the central-point-
hinged case, the expansion and contraction of each arm does
not occur in a plane, as opposed to what happens in the edge-

Fig. 17 Contraction of a central-point-hinged arm

Fig. 18 While contracting a central-point-hinged arm, unitsU5 andU6
are confined between planes π0 and π6,7 at all times

hinged case. The central image in Fig. 17 illustrates this. As
a consequence, the shapes of the two meta-modules differ
along the contraction. Furthermore, the proofs of the results
analogous to Lemmas 2 and 3 get more involved than in the
central-point-hinged case.

We start by analyzing the move of the two adjacent units
of half one arm.

Lemma 5 Consider an extended arm parallel to the x axis,
in the octant x ≥ 0, y ≥ 0, z ≤ 0. Let π0 be the plane
x = 0, and let π6,7 be the plane supporting the cube facet
of U6 common to U7. Throughout the contraction move, π6,7

moves parallel to itself from x = 2 to x = 1, and U5 and U6

always lie between π0 and π6,7 (see Fig. 18).

Proof When the arm is extended, π6,7 is the plane x = 2.
Let us start proving that, as the arm contracts, π6,7 moves
parallel to itself.

When the arm starts in extended position, �6 is parallel to
�5. Throughout the move, �6 rotates about �5. Therefore, it
stays parallel to �5 at all times. Since the two ±120◦ rota-
tion angles have opposite signs, we obtain that J6,2 does not
change orientation: it moves parallel to itself throughout the
arm contraction, and so does π6,7. In fact, π6,7 occupies the
positions x = f (α) = 4

3 + 2
3 cosα where α is the rotation

angle of J5,2 about �5, decreasing from 0◦ to −120◦.
Let us now prove thatU5 lies between planes π0 and π6,7

throughout the contraction. Trivially, J5,1 stays between π0

and π6,7 at all times, since it does not move, and π6,7 mono-
tonically moves parallel to itself from x = 2 to x = 1.
Consider now J5,2. As it rotates about �5, it stays within the
cylinder that has �5 as axis and contains U5. Therefore, it
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always lies to the right of π0. Furthermore, as long as the
absolute value of the rotation angles stays between 0◦ and
120◦, J5,2 cannot intersectπ6,7 either. Indeed, even if J5,2 had
not been intersected with the cylinder, and was simply a half-
cube, it would not intersect π6,7, since the x-coordinate of
its most extreme vertex (1, 1, 0) would follow the trajectory
given by the equation x = g(α) = 1

3
√
3
(2

√
3 + √

3 cosα −
3 sin α), which is obtained by applying to the vertex a rota-
tion of angle α about �5. But we have f (α) > g(α) for all
α ∈ (−120◦, 0◦], and f (−120◦) ≥ g(−120◦) = 1.

The proof that U6 also stays between planes π0 and π6,7

throughout the contraction move is symmetrical, by consid-
ering all the moves relative to J6,2. ��

Lemma 6 The central-point-hinged arm can be contracted.
Throughout themove its two extremal (central and tip) halves
stay aligned and keep their orientation. By the end of the
contraction, the distance between the extremal faces of the
central and tip units of the arm is half the distance when
expanded.

Proof We already know that Lemma 5 applies toU5 andU6.
The analogous symmetric statement holds for U7 and U8.
Since J7,1 is rigidly attached to J6,2, we can conclude the
following:

– J6,2 and J7,1 move parallel to themselves without chang-
ing orientation throughout the arm contraction.

– J8,2 stays aligned with J5,1 at all times. In other words, it
undergoes a translation by a vector parallel to the x axis,
towards J5,1.

– The arm halves its length in the direction of the x axis.
– No self-intersection of the arm happens throughout the
contraction.

The first two statements are true because of the opposite signs
and equal absolute value (120◦) of the rotations. The third
statement is a direct consequence of Lemma 5.

In order to prove the forth and last statement, we start by
recalling that the plane π6,7 supporting the cube facet con-
necting U6 and U7 separates the first half of the arm (i.e.,
U5 and U6) from the second half (U7 and U8) throughout
the move. Therefore, we only need to prove that U5 and U6

cannot collide. Recall that J5,2 and J6,1 are rigidly attached
throughout the contraction move. This implies that they can-
not collide. Furthermore, it also implies that π5 and π6 stay
parallel and keep their distance constant at all times. There-
fore, J5,1 stays separated from J5,2 andU6 by π5 throughout
the entire move. Symmetrically, J6,2 stays separated from
J6,1 andU5 by π6. Figure 19 shows this separation property.

SinceU5 andU6 do not intersect, by symmetryU7 andU8

do not intersect either. ��

Fig. 19 Throughout the contraction, the plane π6 keeps J6,2 away from
J6,2 and U5

As in the edge-hinged case, the centers of the four units of
a central-point-hinged arm are coplanar at all times during
a contraction move. Nevertheless, in contrast to the edge-
hinged case, such plane does not stay still throughout the
move, as shown in Fig. 17. This makes the proof of the fol-
lowing lemma—analogous to Lemma 3—more difficult for
the central-point-hinged case.

Lemma 7 No self-intersection is produced when expanding
or contracting any arms of the central-point-hinged meta-
module.

Proof Consider the minimum axis-aligned cube containing
the expanded meta-module and decompose it into eight
octants through its center. In what follows, we stick to the
position of the metamodule described in Sect. 4. It is easy to
see that each expanded arm is contained in a different octant.
Two centrally opposite octants are empty, namely x ≥ 0,
y ≥ 0, z ≥ 0 and x ≤ 0, y ≤ 0, z ≤ 0. Note that each
octant containing an arm shares two faces with octants that
also contain arms, and one face with an empty octant.

First, we argue that the six octants containing one arm
each are not intersected by any other arm during the contrac-
tion. We start by noticing that J5,1 is fixed. Symmetrically,
J8,2 is translated towards J5,1 along a direction parallel to
the arm’s coordinate axis. Therefore, none of them ever exits
their initial octant. It is easy to see that U6 and U7 move
always inside the octant. More precisely, J6,1 and J7,2 rotate
towards the interior of the octant, making J6,2 and J7,1 move
parallel to themselves within the octant. Finally, while rotat-
ing, J5,2 and J6,1 do not invade any of the two neighboring
octants containing arms. The reason being that they rotate
within a half cylinder that does not intersect those octants.
By Lemma 6, no collisions occur within these octants.

Each of the two empty octants, though, are intersected
by the rotating halves J5,2 and J8,1 (or J1,2 and J4,1) of
three different arms. The halves J1,2 and J8,1 cannot produce
collisions, as they invade the empty octant close to their cor-
responding coordinate axis, and only in the interval between
4 and 2 (or −4 and −2), i.e., far away from each other. It
remains to verify that no collisions occur between the halves
J4,1 or J5,2. This is due to the fact that each such half unit
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rotates inside its corresponding cylinder, and these cylinders
are all parallel and pairwise disjoint. ��

Using proofs analogous to those of Lemma 4, Theorem 4,
and Theorem 5 in the previous section (replacing Lemmas 2,
3, and 4 by Lemmas 6, 7, and 8, respectively), we obtain the
following statements.

Lemma 8 Throughout the contraction move of any subset of
arms of a central-point-hinged meta-module, the robot stays
connected.

Theorem 6 The central-point-hinged meta-module can per-
form the Crystalline and Telecube unit operations: expand,
contract, attach, and detach.

Finally, the meta-module in this case is also as small as
possible.

Theorem 7 The central-point-hinged meta-module has opti-
mal size.

5 Avoidingmeta-meta-modules

By Theorem 4, we can apply tunneling reconfiguration algo-
rithms forCrystalline andTelecube units (Aloupis et al. 2011;
Butler and Rus 2003; Rus and Vona 2001; Vassilvitskii et al.
2002) to our meta-module. These algorithms, in turn, use
meta-modules of 2 × 2(×2) Crystalline or Telecube units
that are able to perform the following operations:

– Scrunch and Relax: compressing two neighboring con-
nectedmeta-modules so that both occupy the same single
lattice cell, and the reciprocal operation (see Fig. 20a).

– Transfer: a compression in a meta-module is transferred
to an adjacent lattice cell whosemeta-module is not com-
pressed (see Fig. 20b).

In Sect. 3 we have shown that the newmeta-module is able
to perform the expand and contract Crystalline and Telecube
unit operations. In this section we show that for the case
of edge-hinged modular robots, it is also able to perform
scrunch, relax, and transfer. This decreases the resolution of
the configurations that are needed, both in size and number
of units, since the reconfiguration algorithms can be applied
without the needofmeta-meta-modules of edge-hingedunits.
Moreover, it also reduces the coordination and synchroniza-
tion needed to implement the reconfiguration algorithms.

We start by describing how twometa-modules can occupy
one single lattice cell in a canonical position. One of the two
meta-modules, that wewill call host, is positioned in the stan-
dard way defined in Sect. 3, guaranteeing the connectivity of
the overall structure. The other meta-module, that we will
call guest, is positioned as follows (see Fig. 21):

(a)

(b)

Fig. 20 Crystalline and Telecube meta-module scrunch and relax (a),
and transfer (b). Top: actual position of the Crystalline and Telecube
units in dimension 2. Bottom: symbolic representation in dimension 3

1. The three 4-unit chains of the guest meta-module are par-
allel to those of the host. Also their linkages are parallel
to those of the host.

2. Each guest 4-unit chain stands at lattice distance 1 from
its parallel host 4-unit chain.

3. Guest 4-unit chains are attached through their central
blocks to a perpendicular host 4-unit chain.

We are now ready to prove that our meta-module is able
to perform scrunch, relax and transfer. In a scrunch/relax, the
host meta-module stays still, while the other one becomes its
guest (scrunch) or leaves the guest position and locates itself
in a neighboring empty lattice position (relax). In a transfer,
two adjacent host meta-modules stay still, while the guest
moves from the canonical position attached to one of the
host meta-modules to the canonical position attached to the
other one.

This leads to the following result.

Theorem 8 The edge-hinged meta-module can perform the
Crystalline andTelecubemeta-module operations scrunch/relax
and transfer.

Proof Both scrunch/relax and transfer can be obtained by
only moving the scrunching, relaxing or transferred meta-
module, while all the remaining elements of the robot
configuration stay still. More precisely, each 4-unit chain of
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Fig. 21 Top: the scrunch/relax
operation. Bottom: the transfer
operation. Notice the canonical
position of the blue
meta-module when compressed
(Color figure online)

the moving meta-module is able to move in all x , y and z
directions as to reach its final destination, which is parallel
to its initial one. The symmetry of the meta-module together
with that of the canonical position for two meta-modules
within one lattice cell, allows to perform scrunch/relax and
transfer on the moving meta-module to place it in any of the
six adjacent lattice cells.

Furthermore, themoves can be planned so that no collision
occurs. Indeed, even when several rotations are performed
in parallel, the moving arm never collides with other arms
(of the guest or the host meta-modules), nor it exceeds the
boundary of the union of the two lattice cells (the adjacent
bounding cubes shown in Fig. 21). This requires some care-
ful planning, as one unit-size lattice cell can be temporarily
exceeded by the corners of a half-block during a rotation. The
low density of both our meta-module and the configuration
with two meta-modules in the same lattice cell (see Fig. 21),
makes this possible, as illustrated in Appendix B.

Let us finally show that the robot stays connected through-
out scrunch/relax, and transfer. First, notice that the sequence
of moves—illustrated in Appendix B—moves each 4-unit
chain as a whole, i.e., without ever disconnecting any of its
units. Furthermore, every step keeps the corresponding 4-unit
chain attached to the static host meta-module. In a transfer
or a relax, the fact that only the guest meta-module moves,
while the host meta-module(s) and all the remaining units of
the robots stay still, guarantees the connectivity of the over-

all structure. In a scrunch, the same property holds, assuming
that themeta-module to be scrunched is not a cut vertex of the
graph of attachments of the robotic system. This last require-
ment is always satisfied in the algorithm in Butler and Rus
(2003) as well as in the methods in Aloupis et al. (2011) and
Vassilvitskii et al. (2002). ��

We remark that some reconfiguration algorithms such
as Rus andVona (2001) require eachmodule to be able to pull
or push an arbitrary number of other modules. This is a very
strong requirement, and for such linear-strength algorithms
we cannot avoid the use of meta-meta-modules.

It should be noted that the execution of the different opera-
tions requiresmany carefulmovements.Moreover, it requires
that the units fully instantiate edge-hinged modular robots.
Our algorithm comprises 51 independent movements of the
six arms of the moving meta-module for the scrunch opera-
tion and 63 for the transfer operation.Refer toAppendixB for
an illustration of the movements step by step. These move-
ments canbeparallelized. Indeed, 36parallel armmovements
are enough for the scrunch operation and 34 for the transfer
operation, as described in Appendix C. Visualizations of all
the moves are provided in a video accompanying this paper.

Furthermore, the fact that the edge-hinged meta-module
can perform scrunch/relax and transfer operations implies
that it can also perform slide and convex transition opera-
tions, illustrated inFig. 22. This can be done by concatenating
scrunch, transfer, and relax moves. Thus, the meta-module
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Fig. 22 Performing slide and convex transition operations using
scrunch, transfer, and relax moves

can also be used in all reconfiguration algorithms that are
based on surface strategies, such as Abel and Kominers
(2011), Dumitrescu and Pach (2006) and Fitch et al. (2003).

6 Discussion

Meta-modules allow to greatly extend the functionality of
modular robotic systems and allow them to mimic other sys-
tems. This is particularly interesting, since the design and
production of units that, for instance, only rotate, can be
technically simpler than that of units that can expand and
contract. Therefore, the use of meta-modules provides a way
to add operations such as the ability to expand and contract,
which increases the reconfiguration potential of the system
significantly. However, the use of meta-modules increases
the number of modules needed, i.e., the grain of robot con-
figurations as well as the synchronization requirements to
implement the meta-module moves. Further enhancing the
capabilities of modular robots while keeping them small
is still an interesting challenge, specially in the perspective
of progressive miniaturization provided by nanotechnology.
Moreover, the capability increase provided bymeta-modules
may be interesting in order to simplify the manufacture of
modular robots units while maintaining or even enhancing
their versatility. For these reasons, meta-modules have been
receiving attention up to this day (Aloupis et al. 2013; Dewey
et al. 2008; Hurtado et al. 2015; Kawano 2020, 2019; Kotay
and Rus 2000; Murata and Kurokawa 2012; Nguyen et al.
2000).

In this work we have proposed two abstract geometric
classes of modular robots, edge-hinged and central-point-
hinged modular robots, which cover a wide range of popular
modular robots. The first one is fully instantiated by M-
TRAN, Superbot, SMORES, PolyBot, and CKBot U-bar and
partially instantiated by UBot and CKBot L7. The second
one is instantiated by Molecubes and Roomboots. For each
of these two classes we have presented a new meta-module
that can simulate the expanding and contracting properties

of Crystalline and Telecube robots. By presenting our meta-
modules for the two proposed abstract geometric models, we
ensure that their design and properties are valid will also be
valid for future modular robot designs as long as they satisfy
the geometric description of each model.

The proposed meta-modules represent a considerable
improvement over the previously existing ones. Each meta-
module is made of only 12 robot units. When expanded, the
size of its bounding box is 8 × 8 × 8, and we have proven
that it is optimal. The number of units of our meta-modules
is greatly reduced with respect to the 58-units meta-module
presented in Aloupis et al. (2013) to less than one forth, and
its size is reduced exactly to one quarter. In comparison, it
is also much more compact. Furthermore, robustness is also
improved over the previous meta-module, as the new meta-
modules have only two corner joints per arm, as opposed to
the four used in previous work. This makes operations such
as alignment easier to perform. Therefore, the novel meta-
modules improve over previous results in the number of units
required and the space used, and have a more compact and
robust structure.

Another important property of our meta-module for edge-
hinged modular robots is that, in addition to being able to
expand, contract, attach and detach, tunneling reconfigu-
ration algorithms can be applied to edge-hinged modular
robots without requiring the use of meta-meta-modules. We
conjecture that a similar reduction can be proved for central-
point-hinged modular robots. However, our proofs for the
edge-hinged case cannot be applied to central-point-hinged
robots due to their different characteristics.

It is also worth noticing the symmetry of the proposed
meta-modules as well as the important role played by the
orientation of the rotation axes of their arms in their efficient
design. Last, we want to call the attention of the reader to
the importance of the geometric design of units’ shapes in
order to enhance feasible movements and produce a compact
meta-module. For the edge-hinged units to be able to rotate,
the intersection of the cubes with cylinders is essential. In the
central-point-hinged case, the intersection with a cylinder is
not essential to produce rotations, but it is so in order for such
rotations to be feasible in the presence of neighboring units
in adjacent lattice cells.

Finally, it should benoted thatwhile the focus on this paper
has been on designing a compact meta-module that provides
expand/contract capabilities to a wide range of existing mod-
ular robots, there are other aspects of a meta-module that can
be important and worth considering. For instance, analyzing
possible strategies in case that a (meta-)module fails, such as
replacement or self-healing, would be interesting from the
point of view of the meta-module design and also from the
algorithmic perspective.
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7 Conclusions

In this work we have presented two new expanding and
contracting meta-modules that can be applied to a large
class ofmodular robots that cannot expand/contract, allowing
them to use tunneling strategies including efficient universal
reconfiguration algorithms. Moreover, the meta-module for
edge-hinged modular robots can perform scrunch/relax and
transfer moves, allowing to also use surface strategies for
reconfiguration, which are most common. For this case, both
tunneling and surface algorithms apply without the need of
meta-meta-modules.

The proposed meta-modules are optimal in size, con-
siderably smaller, and more robust than the best previous
meta-module (Aloupis et al. 2013).

Acknowledgements The authors wish to thank their colleague Pedro
A. Ramos, for fruitful conversations at the Intensive Research Pro-
gram on Computational, Combinatorial and Discrete Geometry in
Bellaterra and, particularly, for his clear 3-dimensional geometric vision
of the cylindrical structure of central-point-hinged modular robots. We
acknowledge the anonymous reviewers for insightful comments. This
project has received funding from the European Union’s Horizon 2020
research and innovation programme under theMarie Skłodowska-Curie
Grant Agreement No 734922. I.P. was supported by the Austrian Sci-
ence Fund (FWF): W1230. V.S. and R.S. were supported by Projects
PID2019-104129GB-I00/AEI/ 10.13039/ 501100011033 andGen.Cat.
2017-SGR-1640.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Abel, Z.,&Kominers, S.D. (2011).Universal reconfiguration of (hyper-
)cubic robots. ArXiv e-Prints, arXiv:0802.3414v3.

Aloupis, G., Benbernou, N., Damian, M., Demaine, E. D., Flatland,
R., Iacono, J., & Wuhrer, S. (2013). Efficient reconfiguration of
lattice-based modular robots. Computational Geometry: Theory
and Applications, 46(8), 917–928.

Aloupis, G., Collette, S., Damian, M., Demaine, E. D., Flatland, R.,
Langerman, S., et al. (2011). Efficient constant-velocity reconfig-
uration of crystalline robots. Robotica, 29(1), 59–71.

Aloupis, G., Collette, S., Damian, M., Demaine, E. D., Flatland, R.,
Langerman, S., et al. (2009). Linear reconfiguration of cube-style
modular robots. Computational Geometry: Theory and Applica-
tions, 42(6–7), 652–663.

Aloupis, G., Collette, S., Demaine, E. D., Langerman, S., Sacristán,
V., & Wuhrer, S. (2008). Reconfiguration of cube-style modu-

lar robots using O(log n) parallel moves. In Proceedings of 19th
Annual International Symposium on Algorithms and Computation
(ISAAC), pp. 342–353.

Brunete, A., Ranganath, A., Segovia, S., Perez de Frutos, J., Her-
nando, M., et al. (2017). Current trends in reconfigurable modular
robots design. International Journal of AdvancedRobotic Systems,
2017(14), 1–21.

Butler, Z., & Rus, D. (2003). Distributed planning and control for mod-
ular robots with unit-compressible modules. International Journal
of Advanced Robotic Systems, 22(9), 699–715.

Davey, J., Kwok, N., & Yim, M. (2012). Emulating self-reconfigurable
robots—design of the SMORES system. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 4464–4469.

Dewey, D. J., Ashley-Rollman, M. P., De Rosa, M., Goldstein, S.
C., Mowry, T. C., Srinivasa, S. S., et al. (2008). Generalizing
metamodules to simplify planning in modular robotic systems. In
Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1338–1345.

Dumitrescu, A., & Pach, J. (2006). Pushing squares around. Graphs
and Combinatorics, 22, 37–50.

Fitch, R., Butler, Z., & Rus, D. (2003). Reconfiguration planning
for heterogeneous self-reconfiguring robots. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 2460–2467.

Hamlin, G., & Sanderson, A. (1998). Tetrobot: A modular approach
to reconfigurable parallel robotics. Dordrecht: Kluwer Academic
Publishers.

Hurtado, F., Molina, E., Ramaswami, S., & Sacristán, V. (2015).
Distributed reconfiguration of 2D lattice-based modular robotic
systems. Autonomous Robots, 38(4), 383–413.

Kawano, H. (2019). Linear heterogeneous reconfiguration of cubic
modular robots via simultaneous tunneling and permutation. In
Proceedings of IEEE International Conference on Robotics and
Automation (ICRA), pp. 332–338.

Kawano,H. (2020).Distributed tunneling reconfiguration of cubicmod-
ular robots without meta-modules disassembling in severe space
requirement. Robotics and Autonomous Systems, 124, 103369.

Kotay, K. D., & Rus, D. (2000). Algorithms for self-reconfiguring
molecule motion planning. In Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp.
2184–2193.

Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., &
Murata, S. (2008). Distributed self-reconfiguration of M-TRAN
III modular robotic system. International Journal of Robotics
Research, 27(3–4), 373–386.

Lyder, A., Garcia, R., & Stoy, K. (2008). Mechanical design of Odin, an
extendable heterogeneous deformable modular robot. In Proceed-
ings of IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 883–888.

Mounarak, P., & Ben-Tzvi, P. (2012). Modular and reconfigurable
mobile robotics. Robotics and Autonomous Systems, 60, 1648–
1663.

Murata, S., & Kurokawa, H. (2012). Self-organizing robots. Berlin:
Springer.

Nguyen, A., Guibas, L., & Yim, M. (2000). Controlled module density
helps reconfiguration planning. InProceedings of 4th International
Workshop on Algorithmic Foundations of Robotics (WAFR), pp.
23–25.

Pamecha, A., Chiang, C.-J., Stein, D., & Chirikjian, G. (1996). Design
and implementation of metamorphic robots. In Proceedings of
ASME Design Engineering Technical Conference & Computers
in Engineering Conference (IDETC/CIE), pp. 18–22.

Park, M., & Yim, M. (2009). Distributed control and communication
fault tolerance for the CKBot. In Proceedings of ASME/IFToMM

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/0802.3414v3


472 Autonomous Robots (2021) 45:457–472

International Conference on Reconfigurable Mechanisms and
Robots (ReMAR), pp. 682–688.

Perera, M. (2015). Reconfiguración distribuida de robots cristalinos
(Distributed reconfiguration of crystalline robots). Degree thesis
under the supervision of V. Sacristán, Facultat d’Informàtica de
Barcelona, Universitat Politècnica de Catalunya.

Ryland, G. G., & Cheng, H. H. (2010). Design of iMobot, an intel-
ligent reconfigurable mobile robot with novel locomotion. In
Proceedings of IEEE International Conference on Robotics and
Automation (ICRA), pp. 60–65.

Rus, D., & Vona, M. (2001). Crystalline robots: Self-reconfiguration
with compressible unit modules. Autonomous Robots, 10(1), 107–
124.

Salemi, B., Moll, M., & Shen, W.-M. (2006). Superbot: A deployable,
multi-functional, and modular self-reconfigurable robotic system.
In Proceedings of IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 3636–3641.

Sirajoulis, G. C., & Adamatzky, A. (Eds.). (2015). Robots and Lattice
Automata. Berlin: Springer.

Spröwitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Möckel,
R., Billard, A., et al. (2010). Roombots: Reconfigurable robots for
adaptive furniture. IEEE Computational Intelligence Magazine,
5(3), 20–32.

Suh, J. W., Homans, S. B., & Yim, M. (2002). Telecubes: Mechanical
design of amodule for self-reconfigurable robotics. InProceedings
of IEEE International Conference on Robotics and Automation
(ICRA), pp. 4095–4101.

Vassilvitskii, S., Yim, M., & Suh, J. (2002). A complete, local and
parallel reconfiguration algorithm for cube style modular robots.
In Proceedings of IEEE International Conference on Robotics and
Automation (ICRA), pp. 117–122.

Yang, Z., Wu, Y., Fu, Z., Fei, J., & Zheng, H. (2018). A unit-
compressible modular robotic system and its self-configuration
strategy using meta-module. Robotics and Computer Integrated
Manufacturing, 49, 3953.

Yim, M. (1994). New locomotion gaits. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp.
2508–2514.

Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., et al.
(2007). Modular self-reconfigurable robot systems [grand chal-
lenges of robotics]. IEEE Robotics & Automation Magazine, 14,
43–52.

Yim, M., Zhang, Y., Roufas, K., Duff, D., & Eldershaw, C. (2002).
Connecting and disconnecting for chain self-reconfiguration with
PolyBot. IEEE/ASME Transactions on Mechatronics, 7(4), 442–
451.

Zhao, J., Cui, X., Zhu, Y., & Tang, S. (2012). UBot: A new reconfig-
urable modular robotic systemwithmultimode locomotion ability.
Industrial Robot, 39(2), 178–190.

Zykov, V., Chan, A., Lipson, H. (2007). Molecubes: An open-source
modular robotics kit. InWorkshop on self-reconfigurable robotics
at IROS.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Irene Parada is currently, since
2020, a postdoctoral research assis-
tant at the Department of Mathe-
matics and Computer Science of
TU Eindhoven (The Netherlands).
In 2019 she obtained her PhD
in Technical Mathematics summa
cum laude at Graz University of
Technology (Austria). Previously,
she had received her BSc. in 2014
degree from Universidad Comp-
lutense de Madrid (Spain) and in
2015 her MSc. from Universitat
Politècnica de Catalunya (Spain).
Her main research interests are in

discrete and computational geometry and graph drawing.

Vera Sacristán is a Professor
in the department of mathemat-
ics of the Universitat Politècnica
de Catalunya, and head of the
UPC Research Group on Discrete,
Combinatorial and Computational
Geometry. She has over 50 publi-
cations in different areas of com-
putational geometry, together with
more than 80 coauthors. She has
been actively involved in the orga-
nization of the main conferences
in computational geometry, includ-
ing the Spanish Meeting in Com-
putational Geometry (2015), the

European Workshop in Computational Geometry (1998), and the flag-
ship conference in the area, the Symposium on Computational Geom-
etry (2002). She is also a regular member of the program committees
of the main conferences in the area, and she was editor for the journal
Computational Geometry: Theory and Applications.

Rodrigo I. Silveira is a Professor
in the department of mathemat-
ics of Universitat Politècnica de
Catalunya. He is a member of the
UPC Research Group on Discrete,
Combinatorial and Computational
Geometry. Graduated from the Uni-
versity of Buenos Aires(Argentina)
and PhD from Utrecht University
(The Netherlands). He has par-
ticipated in projects with several
research groups around the world,
and he is coauthor of over 80 pub-
lications in journals, conferences,
and workshops in computational

geometry, together with more than 90 coauthors. His main research
interests are geometric algorithms, geographic information science,
and graph drawing.

123


	A new meta-module design for efficient reconfiguration of modular robots
	Abstract
	1 Introduction
	1.1 Contributions

	2 Geometric abstraction of the units
	2.1 Edge-hinged robot units
	2.2 Central-point-hinged robot units

	3 Our meta-module design for edge-hinged modular robots
	3.1 Description of the meta-module
	3.2 Meta-module's properties
	3.3 Proof of the meta-module's properties

	4 Extension to the central-point-hinged case
	4.1 Description of the meta-module
	4.2 Meta-module's properties
	4.3 Proof of the meta-module's properties

	5 Avoiding meta-meta-modules
	6 Discussion
	7 Conclusions
	Acknowledgements
	References




