
Autonomous Agents and Multi-Agent Systems
This is the accepted version of the work. The final publication is available
at Springer via http://dx.doi.org/10.1007/s10458-015-9311-7

Mobile Crowdsensing with Mobile Agents

Teemu Leppänen · José Álvarez Lacasia ·
Yoshito Tobe · Kaoru Sezaki · Jukka
Riekki

Received: date / Accepted: date

Abstract We introduce mobile agents for mobile crowdsensing. Crowdsensing
campaigns are designed through different roles that are implemented as mobile
agents. The role-based tasks of mobile agents include collecting data, analyzing
data and sharing data in the campaign. Mobile agents execute and control the
campaign autonomously as a multi-agent system and migrate in the opportunis-
tic network of participants’ devices. Mobile agents take into account the available
resources in the devices and match participants’ privacy requirements to the cam-
paign requirements. Sharing of task results in real-time facilitates cooperation
towards the campaign goal while maintaining a selected global measure, such as
energy efficiency. We discuss current challenges in crowdsensing and propose mo-
bile agent based solutions for campaign execution and monitoring, addressing data
collection and participant-related issues. We present a software framework for mo-
bile agents-based crowdsensing that is seamlessly integrated into the Web. A set of
simulations are conducted to compare mobile agent-based campaigns with existing
crowdsensing approaches. We implemented and evaluated a small-scale real-world
mobile agent based campaign for pedestrian flock detection. The simulation and
evaluation results show that mobile agent based campaigns produce comparable
results with less energy consumption when the number of agents is relatively small
and enables in-network data processing with sharing of data and task results with
insignificant overhead.

Keywords Distributed Computing · Multi-agent Systems · Mobile Computing ·
Mobile Agents · Mobile Crowdsensing

T. Leppänen and J. Riekki
Department of Computer Science and Engineering, University of Oulu, Finland
E-mail: teemu.leppanen@ee.oulu.fi

J. Álvarez Lacasia and K. Sezaki
Institute of Industrial Science, University of Tokyo, Japan
E-mail: sezaki@iis.u-tokyo.ac.jp

Y. Tobe
RealWorld Communication Laboratory, Aoyama Gakuin University, Japan
E-mail: yoshito-tobe@rcl-aoyama.jp



2 Teemu Leppänen et al.

1 Introduction

With the introduction of smartphones into our everyday lives, new types of location-
based and context-aware applications and services have emerged. Previously unob-
servable phenomena can be addressed by involving citizens in participatory sensing
campaigns, where local knowledge of communities and special interest groups can
be exploited at different scales for common good [4,5,26]. Crowdsensing applica-
tions create participatory sensor networks, where people take active roles with their
personal mobile devices. Human intelligence and social interactions are leveraged
to gather and analyze context-aware and semantically complex information and to
share this knowledge of urban phenomena [5,19,31]. People and their situations
are utilized to maximize the data quality, coordinate crowdsensing campaigns and
delivering personalized services [5,13,26]. Sensor network deployments no longer
require fixed infrastructure, but physical proximity is required. Human mobility
patterns, everyday actions and willingness to participate opportunistically extends
the data collection and sensing coverage with possibly large numbers of devices [1,
4,5,18,26,36].

The unprecedented variety and scale of crowdsensing applications introduce
challenges for systems design and development. Location-based and multimodal
real-world data needs to be incorporated into campaigns and integrated with so-
cial networking services and existing systems to increase data utility [8,19,31,
38]. Campaigns can’t be designed without the consideration of human-oriented as-
pects, such as how participants interact with the application and the environment.
In active (i.e. participatory) sensing, participants actively opt-in to campaigns and
perform required actions, whereas in passive (i.e. opportunistic) sensing, the ap-
plications decide who meets the requirements and data is collected automatically
[20,30]. Applications can be categorized into: (1) personal, involving data that the
participant considers sensitive; (2) social, involving data that is shared within the
social groups of the participant; and (3) public, involving data that is shared with
everyone [4,27]. A crowdsensing software framework then coordinates the partici-
pants to cooperatively run the campaign and subsidize each other’s efforts. Rules
for participation and data collection need to be flexible, as different campaigns
require different types of data. Incentives, monetary or otherwise beneficial to
the participants, are to be introduced [19,20,31]. Participants’ individual privacy
needs are to be considered [14], where data ownership must remain with the par-
ticipant [47], but on the other hand, collaboration through social interactions is to
be facilitated [31]. In this respect, smartphones as the personal communication de-
vices have become suitable platforms for crowdsensing. Smartphones are equipped
with various physical sensors, include powerful microprocessors, have sizable data
storage and communicate in short-range and over the Internet [18,19,31]. Partic-
ipant devices are then programmed for manual or automatic and context-aware
data collection.

Currently, no generally applicable solution for easy-to-follow mobile crowdsens-
ing strategies with supporting system architecture exists, that can be easily verified
or evaluated [7,20]. The existing approaches are either self-contained targeted ap-
plications, mobile task offloading frameworks or cloud-based data collection and
analysis platforms. In this work, we present multi-agent systems (MAS) with mo-
bile agents that provide decentralized and autonomous crowdsensing campaign
execution and coordination. In general, software agents act on behalf of system



Mobile Crowdsensing with Mobile Agents 3

entities, execute their tasks autonomously, react to the context in which they are
operating, abstract heterogeneous resources and facilitate cooperation with agent
and non-agent entities. MAS have been adopted for crowdsensing applications
[48] and to provide application services for crowdsensing frameworks [23], where
resident agents perform sensor data validation, information extraction, incentive
generation and information sharing. Service-oriented MAS architecture for mobile
crowdsensing was presented in [24], where application-specific resident agents run
crowdsensing services in the participating devices and mobile agents are utilized
for augmenting the services of resident agents and transferring their accumulated
results.

In this paper, we present how crowdsensing campaigns can be designed and im-
plemented as a whole with mobile agents, that operate autonomously as a MAS in
the opportunistic network of participants’ devices in a given location within a given
timeframe. Campaigns are designed through different roles and their interactions.
Mobile agents realize these roles, negotiate the role execution with available re-
sources in the devices, considering participants’ individual privacy constraints and
compensating them for their resource consumption and discomfort. The role-based
tasks of mobile agents encapsulate data collection, filtering and pre-processing, fea-
ture extraction, event detection, data quality analysis, anonymization and sharing
of data and results of the task in real-time. Real-time information sharing fa-
cilitates campaign execution and co-operation towards the campaign goal, while
maintaining a selected global measure, e.g. energy efficiency. Energy efficiency is
one self-evident measure that alone justifies the use of mobile agents as campaigns
run on battery-operated smartphones. Moreover, through mobile agents, MAS fa-
cilitates concurrent execution of multiple campaigns without explicit crowdsensing
application deployment that exhibits limited cooperation capabilities.

We discuss novel use cases for mobile agents in crowdsensing, their software re-
quirements and campaign design issues. We present an implementation for mobile
agent-based crowdsensing software framework over a resource-oriented architec-
ture, based on our previous work in [33–35]. The framework does not provide a
complete solution for MAS-based crowdsensing with mobile agents, but we de-
velop the idea and lay the groundwork for advanced MAS features, such as so-
phisticated campaign control algorithms and negotiation capabilities of mobile
agents. We simulate extensively different aspects of mobile agents in crowdsensing
in comparison with the existing crowdsensing approaches. Lastly, we implemented
a small-scale real-world crowdsensing campaign for pedestrian flock detection with
mobile agents, executed in the software framework. The simulation and real-world
evaluation results show, that mobile agent-based campaigns produce comparable
results and target area coverage with reduced total campaign energy consumption
with a relatively small number of mobile agents and increase data utility, i.e. shar-
ing data and task results in real-time in the system, with insignificant overhead.

The rest of this paper is organized as follows. In Section 2, we present current
challenges in crowdsensing based on the literature. Section 3 discusses how mobile
agents can address these challenges and present novel use cases for mobile agents
in crowdsensing. Section 4 presents the proposed software framework, which is
then evaluated by simulations in Section 5. In Section 6, we present and evaluate
a small-scale real-world mobile agent-based crowdsensing application. In Section
7, we discuss the related work. Section 8 concludes the paper with discussion and
considerations for future work.



4 Teemu Leppänen et al.

2 Motivation for this work

Current crowdsensing1 solutions and challenges have been considered in [1,4,5,13,
14,18,20,26,27,29,31,36,38,48,52,54]. We discuss these challenges and propose
mobile agent-based solutions, listed in Table 1, that are considered in detail in
the next sections. Selected properties of the proposed solutions are simulated and
later considered in a real-world prototype in this paper.

Crowdsensing campaigns require, on the one hand, human knowledge, cogni-
tion, perception and social interactions, on the other hand, machine intelligence
for data mining, computing and machine learning. Campaings are centrally coor-
dinated, synchronized in location or time and facilitate systematic data collection
embedded near the target areas or contexts, where data can be directly collected
and analyzed on real-time. Crowdsensing campaign design considerations include
the required degree of involvement and the style of data collection, e.g. is the cam-
paign opportunistic or participatory. Widespread everyday use of smartphones
offers better sensing coverage that exploits human mobility. Mobility patterns in-
corporate sociality and spatiotemporal “hotspots”, where “social sensors” that
observe human behavioral patterns are beneficial. Community models can be in-
tegrated into the campaigns to exploit this social intercourse. Leveraging this
information into the campaigns is a challenge, but it becomes possible to have
a broader perspective of the mobility patterns, activities and social interactions
of individuals, and increase data quality with less variable results. Nevertheless,
humans introduce randomness with their diverse actions, interests and goals. For
this reason, collected data can be more related to people-to-people or people-to-
environment interactions rather than to measuring physical phenomena system-
atically. Participants may even falsify the data while adapting their behaviors
towards the campaign goal or for personal benefit. Campaigners can’t control this
behavior other than rewarding participants and utilizing participant profiles based
on their performance monitoring. Participants’ suitability for campaigns is to be
assessed, where individual diversity increases in larger groups of participants.

Crowdsensing applications run in the background in the participants personal
devices and automatically collect data or opportunistically prompt for data entries,
whenever application requirements match that participant’s context. Often data
collection contexts and data quality requirements can be met only for short and
intermittent periods. Participant-related latencies in data collection and dissemi-
nation are inevitable due to their behavior. Different requirements for data source
selection for the required context, coverage, resolution and data granularity are set
for each campaign. Sensor calibration, data processing, verification, anonymization
and context-aware decision-making introduce further computational overhead in
the device. Other issues include incompleteness and quality of the data. Data
can be validated and quality monitored with entry verification by the user and
with real-time data processing in the device, such as context-aware filtering or
semantically interpreting the data. Data is tagged with timestamp and location
information indoors and outdoors, that increases its size and the amount of trans-
mitted data. Data sharing with the other participants or social media applications

1 As the terms crowdsensing and participatory sensing are closely related, with the above-
mentioned differences, we utilize the terms interchangeably.



Mobile Crowdsensing with Mobile Agents 5

Table 1 Current challenges in mobile crowdsensing and mobile agent-based solutions

Challenges in systems and campaigns

Campaigns are coordinated cen-
trally

Campaigns considered distributed multi-agent ap-
plications

Campaigns require different
types of involvement and data
collection styles

Multiple campaigns co-exist in MAS without con-
sidering one another

Unified system architecture for
all campaigns that is integrated
with external systems

Mobile agents facilitate data sharing and abstract
data sources with common interfaces

Easy campaign deployment Mobile agent-based roles and sensing tasks deployed
into existing infrastructure

Campaigns need to be monitored
in real-time

Mobile agents can detect, report and react to issues
in campaign execution

Self-contained applications with
no interaction capabilities

MAS’s facilitate cooperation with in-network real-
time data processing and result sharing

Data quality issues and incom-
plete data

Mobile agents perform data analysis and provide
feedback to campaigner and participants in real-
time

Human-related challenges

Participant recruitment Mobile agents monitor resource availability of par-
ticipants and assess their previous performance

Participation rules need to be
flexible

Mobile agents automatically detect match between
campaign and participant contexts

Leveraging information from so-
cial interactions

Mobile agents integrate social networking systems
as data sources for context-aware data

Participant commitment Participant performance evaluated in real-time in
location

Participant compensation Mobile agents estimate fair compensation for re-
source consumption and discomfort in real-time

Data available in short intermit-
tent periods

Mobile agents detect events in real-time in location
to collect data

Data privacy management Mobile agents encapsulate data, expose only se-
lected and negotiated data features

Device-level challenges

Heterogeneous user devices and
data types

Mobile agents abstract device heterogeneity and dif-
ferent types of sensor data

Crowdsensing tasks should not
interfere with smartphone nor-
mal use

Mobile agents react to smartphone use context

Battery-operated device with
limited capabilities

Mobile agents can aim at reducing energy consump-
tion

Task communication energy con-
sumption

Mobile agents reduce amount of transmitted data
with in-network data processing

Opportunistic data transmission Mobile agents can react to changes in system and
operate locally

can expose this refined data for common benefit, with increased communication
energy consumption.

Campaigns rely on “people-powered” and heterogeneous devices carried by
participants during their everyday actions. Devices, such as smartphones, are
equipped with similar types of sensors, whose intended purpose is to elevate the
user experience of the phone. The devices are programmed for either manual or



6 Teemu Leppänen et al.

automatic and context-aware data collection. Mobile and battery-operated devices
bring limitations also with different sets of integrated hardware components and
varying CPU power, in-device memory, and communication interfaces. Sensing is
a low priority operation on the smartphone, thus sensing tasks should tolerate
interruptions in the execution and should not interfere with the normal use of
the phone, e.g. deplete the device battery or manage wireless connections while
ignoring other applications. Moreover, most’ crowdsensing applications are self-
contained without interaction capabilities and developed for different operating
systems and hardware platforms.

Ultimately, unified system architecture with standardized interfaces is needed
to facilitate a broad range of campaigns, co-operation in data collection and analy-
sis and to integrate external data sources into the campaigns, such as social media
applications and Web services. In the crowdsensing systems, data transmission is
opportunistic without infrastructure-based management and relies on the mobil-
ity, goals and social connections of the participants. Vast amounts of sensor data
are generated and transmitted, thus large-scale storage capacity for historical data
is needed for example in a cloud platform. Cloud platforms scale up, offer large-
scale data fusion and analysis capabilities, integrate into external systems and can
expose campaign results over the Internet.

3 Mobile agents for crowdsensing

In this section, we discuss how mobile agents can be utilized in crowdsensing
and can provide solutions for the above-mentioned challenges. Mobile agents have
been widely studied in distributed systems and in the context of wireless sensor
networks (WSN). Generally, communication costs are reduced and network lifetime
is increased when context-aware pre-processing and data redundancy removal are
distributed and moved to the data source [10]. Robustness and fault tolerance
are improved as tasks are executed autonomously and asynchronously taking into
account local circumstances. Software components can be deployed dynamically in
runtime, which facilitates software adaptation and system evolution, when mobile
agents’ tasks can be updated instead of software in hosting devices [32].

3.1 Crowdsensing campaigns

A general model of coordinated crowdsensing campaign is described in [44] with the
following stages: (1) campaign creation; (2) participant recruitment; (3) campaign
execution; (4) results verification; and (5) attestation, privacy-aware sharing and
publication of results. A campaign is created based on a specification, that defines
required sensing context, regions of interest in space and time, campaign budget,
participant selection criteria and campaign starting and ending criteria. The spec-
ification is used in participant recruitment to provide maximum utility and level of
participant commitment, according to the campaign budget. Campaign execution
component then orchestrates data collection by tasking the participant devices
and keeping the participants in the loop of task progress. However, participants
regulate their own participation. Watchdog component estimates the individual
effort of the participants and rewards them accordingly. A verification mechanism



Mobile Crowdsensing with Mobile Agents 7

checks the data quality with location attestation or with cross-checking, where par-
ticipants may prefer anonymity. The campaign results are published with selective
sharing that maintains negotiated privacy levels.

MAS are designed in terms of agent roles and their interactions. Roles provide
abstractions that enable high-level interaction capabilities between cooperating
agents, allow agents to specialize in behavior, and reduce the number of agents
competing for any task [6]. In MAS, roles interact with other roles and exter-
nal data sources, which establishes system configuration and abstract model of
data flow. Complex tasks can be then defined through cooperating roles. For each
role, its data inputs, outputs and associated computations are described that de-
fine its view of the system. Then, MAS is coordinated through the role outputs
synchronously or can be left operating asynchronously without further considera-
tion by the campaigner. Agent interaction protocols need to be defined to enable
interactions and resource access with a uniform interface.

We consider crowdsensing campaigns designed and implemented as a MAS,
where the goal is generally data collection about specific real-world phenomena.
Campaigns are designed and organized as roles and their interactions that corre-
spond to the campaign requirements and goals. In crowdsensing, the minimal role
required is sensor data collector(s) for the required types of data, which in the
existing solutions is implemented without the agent abstraction. In an unified sys-
tem architecture, roles cooperate and interact with other roles even outside their
campaigns. Roles could be designed as general data sources for different campaigns
to some extent, which facilitates cooperation further. This is difficult to implement
in self-contained applications or crowdsensing frameworks without interaction ca-
pabilities. An additional campaign-specific selected global measure can be intro-
duced, e.g. maximum sensing coverage or energy-efficiency with limited coverage,
that is taken into account by the roles in executing their tasks. The participants’
devices are no longer operated by a single authority, but opportunistically utilized
while considering the participant’s individual context. Now, the responsibilities
of the role must have limits, as its operations may be suboptimal for some par-
ticipants. Therefore, participants must have means to negotiate and control their
own participation. The underlying crowdsensing system is opportunistic and in
continuous transition due to human mobility and resource availability that can’t
be modeled explicitly, thus campaign organization model is abstract.

Group abstraction is beneficial in the campaign design and coordination. Roles
are organized into groups that are defined spatially, temporally, contextually or
based on interaction patterns of the role. A role can belong to several groups simul-
taneously, which are addressed separately. Efficient campaign execution requires
management of the group structure, roles and their memberships, where member-
ships can be based on a number of well-known clustering algorithms. Groups select
a representative agent, that solely communicates outside the group. This role is
particularly useful for campaigns with large geographical target area, large number
of participants and large amount of data. The representative can adopt the role
of data aggregator that buffers data, removes redundancies and extracts informa-
tion from the data received from group members, before disseminating it further.
Communication load is reduced and security increased if group members only
communicate with each other and if data processing is distributed and partitioned
between members. The representative role circulates among the group members
to distribute the extra energy consumption. The challenge lies in implementing



8 Teemu Leppänen et al.

an efficient clustering algorithm for opportunistic networks with variable group
count and unequal group sizes for heterogeneous mobile devices. As an example,
representatives are selected based on the lowest movement speed in relation to the
other group members or history of the members’ contact patterns that assumes
Wi-Fi-based wireless communications [22].

Mobile agents embrace different campaign-specific roles and encapsulate the
functionality and interactions of the role as a single computational unit. Now,
campaigns are realized by collaborative actions of mobile agents in the MAS. Cam-
paigners initiate and run crowdsensing campaigns by injecting mobile agents into
the system. Mobile agents facilitate the online model where sensing tasks arrive
at the system in runtime, as opposed to an offline model where all the tasks are
known at the time of scheduling. With multiple simultaneous campaigns running
in the same system, mobile agents can identify common goals for their tasks, reuse
the data and features exposed by other agents, which distributes and could reduce
the resource utilization in the campaigns. The negotiation and conflict resolution
capabilities of mobile agents in a MAS assist in operating towards campaign goals
while maintaining the global measure. Completely autonomous and distributed
campaign control requires reflection capability and reasoning about the campaign
execution. During the execution, mobile agents autonomously react to the local
situation, negotiate with the devices to utilize their resources and access global
system resources and migrate based on their task and the device context. Several
modes for campaign operation can be identified. First, the campaigner performs
one-time resource lookup to the system for the participant selection criteria, cre-
ates and injects the mobile agents into the system with the configuration available
at that time. This facilitates small-scale tasks also, i.e. applications that require
occasional data from a target location [1]. Secondly, the campaigner monitors the
system for available resources in its sensing context, and injects mobile agents into
the system whenever resources become available. This maintains the critical mass
of devices for the campaign. Thirdly, mobile agents feature various levels of au-
tonomy in their operation, can clone themselves or spawn new agents, for example
to maintain the critical mass. It becomes possible even for the mobile agents to
update their roles in the sensing context or assume different roles in campaigns.

Mobile agents have been used to implement different data routing algorithms
in WSNs. In crowdsensing, the challenge is that device availability can’t be guar-
anteed, thus data routing decisions need to be dynamic. However, routing schemes
change between applications that differ in the characteristics of human mobility,
uncertainty of future connectivity, availability and heterogeneity of the participat-
ing devices, thus no single routing scheme is optimal [13]. A method for energy-
efficient data routing, based on participant flocks, was presented in [22]. Flocks are
detected based on the recent histories of wireless connectivity between the par-
ticipants, who then form a cluster among their connections. Data is first shared
within all devices in the cluster. Whenever neighboring flock is detected, data are
exchanged between the flocks. The neighboring flocks are detected by a subset
of devices in the cluster to reduce the energy consumption of contact probing.
Moreover, in [50], several data routing algorithms in delay-tolerant networks were
evaluated for opportunistic sensing with mobile and static sinks.



Mobile Crowdsensing with Mobile Agents 9

3.2 Sensing tasks

The sensing tasks for crowsensing campaigns are defined in terms of sensing context
and required in-network data processing. Tasks are operated by mobile agents as a
part of their role, where data sources are incorporated into the agent composition.
A challenge is that crowdsensing data is typically noisy [11]. Data processing in-
cludes clean-up, feature extraction, event detection, quality assessment and privacy
protection. Moreover, real-time in-network data processing facilitates exposing re-
fined data and task results to the other system components. For example, energy
consumption can be reduced by sharing data from energy hungry sensors, such as
GPS receiver, with local short-range communications between participant devices
[17]. Multiple data processing tasks can be included in a mobile agent that each
expose different representation of the same data. These tasks may utilize different
resolution in data collection, such as intelligent oversampling and subsampling, in
specific locations. As data is collected by different sensors in local environment,
the amount of transmitted data can be further reduced within a group, when the
group representative (i.e. data aggregator) adaptively samples the data and shares
its result. This can avoid data round-trip to the backend system.

Mobile agents incorporate different sensing modes, such as manual, automatic
or context-aware. In manual mode, the mobile agent lives in the hosting device
but only operates when new data is available, e.g. in case the participant initi-
ates sensing or inputs data. In automatic mode, the mobile agent controls the
sensing task execution and sensing parameters, for example starts and stops the
sensing or changes the sampling rate. In context-aware mode, the mobile agent
reacts and operated according to the specified context, for example by starting
sensing based on detected events. Mobile agens facilitate both participatory and
opportunistic sensing approaches. Users opt-in to participatory tasks by allowing
an agent to migrate into their smartphones and make data available as negotiated
with the campaigner. Opportunistic approaches exhibit automated sampling and
application-specific data processing, depending on how the participants agree to
the sensing context. To distribute the task execution, the agent’s migration pol-
icy can feature fixed or non-fixed itineraries. However, resource availability and
sensing coverage are evolving in runtime, which dictates how mobile agents oper-
ate and migrate in MAS by taking into account sensing contexts and participant
set constraints. The dynamic availability of components in the devices, such as
specific sensors, can’t be guaranteed at all times as they may be in use by other
applications. To avoid this bottleneck, migration should be based not only on the
selection of the best matching device for a context but also include its groups’
members. Mobile agents can reroute other agents [16].

Task-based interactions of the mobile agents include controlling local and ex-
ternal resources, such as actuating a sensor, and sharing data and task results.
Sharing is achieved through their states, which can be returned for a request or
uploaded to the state to the campaigner by the agent. The state contains at least
the current result of the task, but can also include real-time information about
task execution, device resource availability and information about the partici-
pant’s performance and context. This enables autonomous cooperation with other
agents and non-agent system components. Other agents can react to state changes,
detect their task-specific events and adjust their behavior accordingly. The task
result can be utilized by the campaigner to control the campaign. Moreover, some



10 Teemu Leppänen et al.

tasks are executed in response to an event, when a participant exposes particular
context or appears in target location. Data sharing is based on specific queries,
either one-shot or continuous [45]. One-shot queries include single point-of-interest
queries and spatial aggregation over a region or a trajectory. Continuous queries
include monitoring and event detection tasks. For one-shot queries, the devices
can receive compensation for each data sample and for the loss of privacy. For
continuous queries, a budget is set and the question is which devices to use, where
and when.

A request-based method for data sharing is presented in [39]. Collected sensor
data is stored in the device to save communication energy, but devices send real-
time notifications of their current location to the framework to facilitate location-
based data queries. Data is uploaded to the framework only on request. In [45],
a data acquisition framework enables sharing of the sensors and data between
multiple simultaneous queries. The campaigners submit queries to an aggregator
component, that selects appropriate participating devices based on the value of
the data for multiple queries, common data requirements and the cost of obtaining
such samples. The queries include requested data sampling rate and a valuation
function to assess the quality of the collected data samples.

3.3 Participant-related aspects

Successful campaign execution requires consideration of human-related aspects
that include identifying the right set of devices and participants [8,19,28,31,43].
Participants are recruited based on their availability, activity, location, context,
events and history [8,23,25,28,43,50]. Reputation can identify and promote certain
participants for on-going campaigns. Participants prefer long-term automatic tasks
over short-term manual tasks and task completion ratio is high once the task
is accepted [8]. For opportunistic sensing campaigns, it is beneficial to consider
also participants whose context matches the campaign requirements only partially,
provided that the task coverage then increases [50]. Participants may have different
understanding about the task goals, in which case, the real-time data verification
and quality assurance provides feedback for the participants in campaign runtime.

Mobile agents embrace the task of monitoring campaign execution through the
behavior of the participants and data quality. Unwanted behavior of participants
can be detected by mobile agents, which then suggest real-time modifications to the
in-situ data collection. Participants’ performance and reputation can be evaluated
in runtime, based on different policies, such as the attendance of the participant
or recency of the participants’ actions [8]. The reputation is presented, for exam-
ple, in a ranked list [8] for each task and maintained automatically through the
exposed mobile agent’s states. If a participant cancels sensing tasks in runtime
or the individual constrains for participation are met, there are several options
to continue task execution. The agent state is returned to the campaigner as its
final result. The agent can migrate from the device to continue the task execution
within the group members or other available devices. New agents can be injected
or spawned in runtime. Due to this autonomy of mobile agents, it is not required
to have a priori knowledge of the context or future goals of the participants for
successful completion of a campaign.



Mobile Crowdsensing with Mobile Agents 11

Sensing coverage is improved around places that people frequently visit, but
coverage can be addressed by fostering increased compensation for more frequent
visits to the target location. Participants can be persuaded to change travelling
routes for places that are relatively close to their location [11]. However, unpre-
dictable mobility patterns introduce randomness [11], although human mobility
traces have been found to be stable enough for meaningful predictions of future
traces [55]. If campaigners have no access to the location information about par-
ticipants, exposed or publicly available trajectory histories can be utilized to build
a mobility model and estimate future locations [40]. To increase accuracy of the
model, spatial and temporal information about the participants can be reported
to the system in real-time to control the campaign execution and update the mo-
bility model. To improve the target area coverage, reverse auctioning based on the
participants’ location and available campaign budget can be utilized as in [25].
Mobile agents can guide the participant movement, while protecting participants’
privacy by adding uncertainty to the location information.

If participants don’t directly benefit from the data or the application itself,
compensation for resource consumption needs to be considered. Compensation
can be measured in terms of energy consumption of crowdsensing application ex-
ecution, data transmission and required actions and interactions, but also based
on some user discomfort measure [28,49]. Compensation costs are considered pri-
vate information for each participant, which can cause issues for the campaigner if
participants misreport their actual costs [8]. Previous work demonstrates reverse
auctioning to solve this issue [28]. The campaigner can use a priori metrics to cal-
culate the compensation, such as task progress, received data quality or role of the
participant. Additionally, campaigners can utilize historical data of target areas
to estimate the demand and supply of data on that location, i.e. frequently visited
location delivers less compensation in return than an infrequently visited location
[49]. Mobile agents can measure actual costs fairly and campaigner issues the indi-
vidual compensations according to resource availability and negotiated contracts.
At the same time, agents react to changes in user and sensing context, which may
lead to decreased compensation.

3.4 Privacy management

The data collected in people-centric applications can reveal the personal habits or
behavior of the participants. Location traces, time traces and data upload sched-
ules reveal additional information. This data might be utilized without consent,
once exposed to the system [1,12]. Sensing tasks have their own parameters, where
deployment of the task to the system can reveal the identities of the participants if
a rare sensor type or a particular place of interest is requested [12]. Users may not
be aware of which applications are running in their smartphones and what kind
of data and location information they are collecting. Moreover, long-term data
storages in the backend systems also face diverse types of attacks [27].

When potential participants are made aware of these possible ways of intrusion
into their privacy, they may become reluctant to contribute to campaigns [12,14,
45]. Therefore, participants should be able to express personal privacy preferences
and negotiate the appropriate privacy level for each campaign that are then in-
cluded in the campaign execution from the data collection to the analysis and



12 Teemu Leppänen et al.

long-term data retention [47]. After all, in the end, only a subset of data may
be needed by the end users of the campaign results [12,47]. Participants should
explicitly negotiate the type, temporal resolution and granularity of information
that is collected. They should be able to exclude sensitive locations, such as home,
from the campaign. They should control access to their data, and moreover, what
they are willing to share with whom and for how long [5,12,47]. Here socio-cultural
and contextual differences also impact the individual perception of data sensitiv-
ity [12]. Nonetheless, in opportunistic sensing this could be concern as users may
falsify the data or perform biased sampling for personal gain [1,12]. Crowdsens-
ing application developers should implement negotiation means for data sharing,
where sharing practices may vary across campaigns. The crowdsensing platform
should facilitate visualizing the data with campaign-specific interpretations to help
the users understand what is actually revealed about them [1,47]. As an example,
AnonySense [14] is a framework for crowdsensing that protects the privacy of par-
ticipants and guarantees integrity of the received data, based on a communication
channel mixing between the participants and the data recipient that during upload
de-links data from its sources.

Mobile agents negotiate between the participant’s privacy requirements and
the campaign data requirements, while monitoring that privacy rules are followed
and possibly automatically adjust sensing parameters if needed. Mobile agents en-
capsulate data for short-term storage and expose only a subset of data and its
features. Data processing algorithms can include data perturbation, tailored to
the specific task and campaign. Mobile agents can implement spatial cloaking and
pseudonymity with migration, obfuscating the data source and the data process-
ing host. Context resolution is to be considered also, as the users may not want
to reveal too much information about their identity or location [4]. On the other
hand, maintaining participants’ reputations requires analyzing application-specific
detailed information. If the participant is simultaneously participating in several
campaigns or hosting multiple agents, each agent must operate without any knowl-
edge of the existence of others. Data sharing interfaces facilitate privacy protection
requirements, despite of the data location, such as local data in the phone or re-
motely retrieved data. Resource access keys and authentication methods can be
incorporated into the mobile agent. The exposed information can be further visu-
alized in the application user interface through the agents’ states, so that the user
can verify the information about to be shared. However, in emergency situations
[12], for example, if critical events are detected from the data, these privacy rules
can be overridden by the mobile agents.

4 Implementation of mobile agent-based crowdsensing

In this section, we describe the internals of mobile agents and a software framework
that enables utilizing mobile agents in crowdsensing. This work is based on the
work in [3] and our previous work in [33–35]. The presented architecture and the
framework are not fully FIPA compliant.

We adopt a resource-oriented architecture, which seamlessly integrates the
framework and campaigns into the Internet through through RESTful interfaces.
Key abstraction is a resource, that is something having value in the campaigns. We
identify the following resources: (1) participants’ devices as sensing task and agent



Mobile Crowdsensing with Mobile Agents 13

execution platforms; (2) integrated physical sensors, including GPS receiver, Wi-
Fi radio, camera and microphone; (3) raw and refined sensor data; and (4) mobile
agents through their states. Each resource is uniquely identified and addressable
with URL. HTTP is utilized as a standardized universal communication protocol,
thus each system component needs to run an HTTP server. HTTP methods and
their corresponding response codes are utilized as generic primitives in communi-
cation within the system, including intra- and inter-agent communications. This
seamlessly integrates external Web services as data sources for the campaigns.
Moreover, HTTP includes content type negotiation and security mechanisms.

4.1 Internal Architecture of Mobile Agents

A mobile agent has the following properties: state, implementation, interactions
and a unique identifier [10,16]. The state abstracts the agent functionality and
represents the agent in the system. Agent implementation defines its its behavior
and interactions enable the agent to reason about its environment and to co-
operate. A unique identifier is needed to address the agent globally. The agent
can also have metadata related to its interactions, such as security and privacy
attributes.

The internal architecture of the mobile agent in this work is shown in Figure
1a, where arrows depict dependencies between the components, e.g. the state is
updated by the task. The tasks are separated into different functions, which im-
plement task-specific data processing algorithms and their interactions. Tasks can
control sensing parameters, such as sample rate, and actuate the physical sensor.
Functionalities are labeled in the agent composition and can be implement in any
programming language, if provided with specific identifiers. This facilitates sepa-
ration of concerns and enables modifying the agent functionality in runtime and
to create higher-level plans for MAS. Agent composition can include a reference,
instead of code block, for on-demand retrieval of the task code [34].

The resources needed by the task are listed in the resource segment. Resources
include data sources and system components, which the task controls and interacts
with. For each resource, the composition includes a reference (i.e. URL) that can

(a) Mobile agent (b) Mobile agent execution environment

Fig. 1 Internal architectures and components



14 Teemu Leppänen et al.

have additional query parameters for resource specific operation, such as a time
period for the retrieved data. We have defined three types of resources in [34]:
(1) local resources that are hosted by the sensing device; (2) remote resources
that are external to the device; and (3) static resources that are invariable remote
resources for the lifetime of the agent. Local resources determine to where the
agent migrates, whereas remote resources are accessed in each iteration of the agent
execution and static resources are accessed only once during the agent execution.
As an example, the barometer sensor in the agent hosting smartphone is a local
resource, current temperature from an infrastructure service is a remote resource
and average temperature of yesterday is a static resource.

This separation to different resources types is justified for resources access.
Mobile agents reason about resource access and their migration, by analyzing
each interaction before it is conducted. The decision to migrate and the next
host are selected based on some local measure, such as the amount of collected
unprocessed data on the device, as shown in later in this paper. This measure tries
to minimize communication energy consumption and to avoid data loss. When the
agent composition is modifiable, the resource type can change. However, a resource
may be hosted by a device that can’t execute mobile agents, thus the resource must
be considered as remote.

State segment exposes the current results of the agent task, that are updated
after each time the task is executed. The campaign designer can select what addi-
tional information is included in the state, if any. Multiple representations of the
data are facilitated, as well as exposing the task execution- and participant-related
information. Task local variables that are retained across the multiple iterations
of task execution, can be stored in the state, but are not exposed as a part of it.

4.2 Mobile Agent Execution Environment

The software components needed in participating devices include: a tasking com-
ponent to control and monitor the task execution, a data analysis component, a
storage component for the data task results, a presentation component to visualize
the results and system components for core network services.

With mobile agents, agent execution environment (EE) application is needed
to run agents’ tasks and handle their interactions. Internal architecture of the EE
in this work is shown in Figure 1b, where arrows depict the direction of data or
control flow. EE contains an HTTP server for communications over the Internet, a
component to handle mobile agents, a component to execute the agent task code
(e.g. scripts), a component to control the sensors in the device and a database
component to store sensor data and task results. EE handles data requests and
agent-based interactions on behalf of the agents. Whenever external requests for
data arrive or agent initiates a conversation, the EE creates new thread for it. This
way, it can handle multiple simultaneous interactions. Sensor data in the database
is augmented with timestamp and location information and is annotated for the
particular task.

The EE executes agents’ tasks in their own threads. Scheduling and execution
of threads is done by application or operating system. First, EE parses the agent
message and generates a runnable script for the task. Then, it runs the script, and
during task execution, retrieves the required local and external data through the



Mobile Crowdsensing with Mobile Agents 15

references in the composition. Also, during the execution, it disseminates local or
external agent-based messages, dispatches event notifications and controls external
components through the references. After task execution, the current task result
is updated into the compositon. If required, the agent can also upload the result
to the campaigner. Now, the campaigner can monitor the campaign progress and
control the task execution with this real-time information. Moreover, when results
are stored by the campaigner, the participating devices need not to handle external
requests out side the campaign. When the agent makes decision to migrate, its task
code, resource references and state are composed into a message that is send to
the next host.

Tasks can start their own asynchronous conversations with other system com-
ponents, based on their state and received messages, with specific agent communi-
cation languages. Same communication interface should be utilized for both local
and external communications. We have defined HTTP methods and their response
codes as the general agent interaction protocols, shown in Table 2. The method
OPTIONS is used to get resource metadata, that facilitates reasoning about the
resource access and agent migration. The method GET is used to retrieve resource
representation, e.g. sensor data or agent state. The method POST is used to: (1)
actuate a resource, e.g. turn a sensor on or off; (2) migrate a mobile agent between
devices; and (3) register resources to the system whenever new participants or
data sources appear. The DELETE method is used to remove a resource from the
system that is useful when resources are utilized by some other application or the
participant wants to control the usage of resources. In all requests,“Unauthorised”
response can be returned in case of authentication failure.

This approach provides limited autonomy for the mobile agents. Agents are
reactive, based on retrieved data and their internal state, and exhibit limited
reasoning capabilities about their own migration and resource utilization. Agents
can start new simple conversations with other system components. With this EE,
it is not possible for the agents to autonomously negotiate or control the campaign
execution or create new tasks or goals.

Table 2 HTTP-based mobile agent interaction protocols

Protocol Method Response

Request resource meta-
data

OPTIONS OK Metadata

Query resource repre-
sentation

GET OK Resource representation

Request action POST OK Action performed
Forbidden Action has been refused
Accepted The action will be performed later

Modify agent behavior POST Created New task has been created for the
agent

Request resource dele-
tion

DELETE No Content Resource deleted from system

Accepted Deletion will be performed later,
when resource becomes unused



16 Teemu Leppänen et al.

4.3 Software Framework

Software frameworks for crowdsensing require specific software components for
infrastructure and for participant devices. The framework must support public
and globally reachable resource naming, resource discovery, data management and
large-scale in-network data analysis. The framework should utilize standardized
communication protocols [1,4]. Mobile agent software frameworks require com-
ponents to facilitate different agent behaviours and interactions within the sys-
tem [16]: agent creation and dispatch, agent locating and tracking mechanisms,
task synchronization, agent interaction protocols, agent EEs with general com-
munication interfaces. Crowdsensing software framework adopts an opportunistic
networking approach, where communication mode is peer-to-peer and the cam-
paigner and participants are assumed to be at single-hop distance. This simplifies
executing agent interactions and migration policies.

Figure 2 illustrates the described the software framework for mobile agent-
based crowdsensing. A campaigner Web service controls and monitors the cam-
paign execution. A distributed resource directory (DRD) [35] provides a directory
service for the resources that are available for campaigns. For Internet and Web
connectivity, each participating device should have an IP address. Each resource
registers to the DRD in join-time with a resource description to participate into the
campaigns. The resource description contains unique resource identifier and cur-
rent address as URL, its type and semantic description and additional metadata,
such as security parameters. Each EE performs periodic updates for its resources
when there are changes, such as agent migration. This way, system components
can perform runtime lookups for available resources. In MAS, one role could be a
DRD peer that provides local copies of the directory.

To execute a campaign in this framework, a set of interaction protocols (Table
2) are required. “Request resource metadata” is used to reason about resource
access and agent migration, “Query resource representation” to is used retrieve
resource representation to the current host and “Request action” to send data or
dispatch events. ”Request resource deletion” is used to remove a resource from
the DRD. During campaign execution in this framework, campaign control and

Fig. 2 Software framework to enable mobile agents in mobile crowdsensing



Mobile Crowdsensing with Mobile Agents 17

managing the mobile agents is achieved through the uploaded task results and ex-
ecution parameters from participants to the campaigner in runtime. With mobile
agents, campaign control can be minimal, where the group abstraction assists in
both resource lookup and control. The campaigner is responsible for maintaining
sufficient number of mobile agents, taking into account the currently available re-
sources. The campaigner should also monitor the results to determine when the
campaign is finished. This contributes to the robust, flexible and scalable execu-
tion of the campaign. However, generally MAS facilitates sophisticated campaign
control algorithms that can are operated by the agents, e.g. with the ”Modify
agent behavior” protocol.

In highly distributed multi-agent application, resource discovery is challenging
due to mobility and, in crowdsensing, unpredictable behavior of the participants
and resource availability. As mobile agents migrate, existing bindings to the task’s
resources are constantly broken. Automatic rebinding at the update of reference
would assist with this problem, but due to the high mobility, it could create signif-
icant communication overhead. Therefore, for crowdsensing, we perform resource
lookups and rebinding in each time a resource access is needed. If a resource has
disconnected or disappeared, the lookup fails and access is not performed in this
iteration of the mobile agent execution. Eventually, if resources can’t be accessed,
agents should return their results to the campaigner and delete themselves, or
migrate away from the device.

5 Evaluation

We designed a set of campaigns to evaluate mobile agent based crowdsensing in
comparison with “traditional” approaches as reference campaigns. Evaluated cam-
paigns demonstrate both spatial and temporal aspects of crowdsensing. In [23],
crowdsensing MAS performance and overhead was evaluated in terms of execution
latencies, battery consumption and communication energy consumption. However,
the results are not compared with other approaches. Previous work has demon-
strated energy efficiency of mobile agent-based WSN that reduces the amount of
transmitted data [10,16].

In this evaluation, we consider total energy consumption in the campaigns
with and without mobile agents. We measure the time between participants’ vis-
its to the same point-of-interest, defined as inter-cover time in [36]. Evaluation
with mobile agents consider computation overhead of agent execution and inter-
agent communications. Real-time data utility is considered, that refers to sharing
collected data and agents’ task results in runtime in the campaign. For commu-
nications, we consider total amount of transmitted data, number of messages and
different message types. We also measure the number of participants in campaigns
and how that influences campaign execution.

We assume that a crowdsensing campaign has already been created by the
campaigner and the starting criteria have been met. The campaign defines a target
area, where the participants move, carrying their smartphones with them, until
they exit the area or campaign end criteria is met. The participant devices are
aware of the sensing context and opportunistic store-carry-and-forward method in
used data collection: (1) the devices store the collected raw data until a mobile



18 Teemu Leppänen et al.

Table 3 Description of the campaigns in the evaluation

Reference campaigns

T1 1 (1) No mobile agents
(2) Sensor data is collected at each cell and uploaded to the campaigner in
real-time
(3) One new participant appears at 50% probability in each round

T1 2 (4) Application utilizes adaptive sampling

T2 (1) No mobile agents
(2) Sensor data is collected at each cell, but uploaded to the campaigner exactly
once when leaving the campaign
(3) One new participant appears at 50% probability in each round

Mobile agents-based campaigns

T3 1 (1) Mobile agents migrate to devices when they appear at the target area
(2) Sensor data is collected at each cell, processed by the mobile agent and
uploaded to the campaigner in real-time
(3) One new participant appears at 50% probability in each round

T3 2 (4) Agents utilize adaptive sampling

T4 1 (1) Different number of mobile agents (1-90) roam and migrate to the devices
with most new collected data
(2) Sensor data is collected at each cell, but processed by the mobile agent when
it migrates into the device and then uploaded to the campaigner
(3) One new participant appears at 50% probability in each round

T4 2 (4) Agents utilize adaptive sampling

T5 (1) Number of mobile agents is fixed at 50
(2) Sensor data is collected at each cell, but processed by the mobile agent when
it migrates into the device and then uploaded to the campaigner
(3) New participants appear into the target area at increased rate

T6 (1) 1-20 mobile agents roam. 80% of agents share their state with 20% of agents
at each round

T7 (1) 1-20 mobile agents roam and share 1-20 raw data items with 1-20 requests
per round

agent migrates into the device; (2) data is processed by the mobile agent; and (3)
agent task result is uploaded to the campaigner after execution.

We utilize two migration policies on the campaigns. Firstly, mobile agents
migrate into the devices from the campaigner when the devices appear in the
target area and live in the device until the end of participation. Secondly, the
campaigner injects a number of mobile agents that roam freely, migrating in each
round into the devices with most collected raw data. This guarantees that every
migration is justified in terms of communication energy consumption, i.e. retrieving
the data to the current host is more expensive based on the resource sizes. This
policy prevents data loss in case the device fails or leaves the task, because it tries
to maximize the amount of processed data. For resource access and migration,
agents are aware of the amount of data in their possible migration hosts, as they
receive this information when uploading task results to the campaigner.

The campaigns listed in Table 3 are considered in the evaluation. Campaigns
T1 1, T1 2 and T2 are the reference campaigns. Campaign T1 1 demonstrates self-
contained application, where T1 2 augments the application with adaptive sam-
pling. As adaptive sampling example, the participants receive information from the
campaigner about redundant locations in the participants future path. In these lo-



Mobile Crowdsensing with Mobile Agents 19

cations, sensors are turned off and task results are not calculated nor uploaded to
the campaigner. Campaign T2 demonstrates a self-contained application, which
uploads all data to the campaigner at once at the end of its participation. Cam-
paigns T3 1-T7 are based on mobile agents and designed with increasing com-
plexity. Campaign T3 1 demonstrates the store-carry-and-forward method, where
mobile agents migrate into each participant’s device when they appear at the
target location as live in the device until end of participation. Campaign T3 2
adds adaptive sampling to this method. Campaign T4 1 demonstrates the effect
of increasing numbers of roaming mobile agents, where T4 2 includes adaptive
sampling in the agents’ tasks. Campaign T5 demonstrates the effects of increas-
ing the number of participants, without increasing the number of roaming mobile
agents. Campaign T6 demonstrates simple MAS based campaign, where agents’
states are shared and total overhead energy of sending and receiving is calculated.
Lastly, campaign T7 demonstrates the effects of sharing raw data with varying
campaign parameters such as number of mobile agents, number of requests per
round and requested data items, in relation to each other.

5.1 Simulations

We conducted a set of simulations to evaluate the designed campaigns. Simula-
tions were implemented with NetLogo2. In the simulations, we collected a number
of attributes from the campaigns: total campaign energy consumption, inter-agent
communication energy consumption, campaign completion time, inter-cover time,
amount of lost data, mobile agent execution energy consumption, number of mes-
sages and message types and number of participants. A snapshot of on-going sim-
ulation is shown in Figures 3a and 3b, where the colour of unvisited cells is black
and visited cells light grey. Participants are depicted with person icons, in which
the adjacent label indicates the amount of raw data hosted by each participant in

2 https://ccl.northwestern.edu/netlogo/

(a) The whole simulation area (b) Excerpt from the simulation area

Fig. 3 Visualizations of an on-going simulated campaign



20 Teemu Leppänen et al.

Table 4 The parameters utilized in the simulated campaigns

Global parameters

Target area Grid with 400 x 400 cells, cell dimensions 0.5m*0.5m
Time One round is one second
Participants appear rate Specific to campaign
Communication technology Wi-Fi, unlimited bandwidth and uniform coverage,

single-hop distance

Campaigner set

Campaign launch criteria 20 participants available
Campaign end criteria 80% sensing coverage of the target area

Participants

Moving direction Random: up, down, left or right in straight line
Moving speed Random: 1-5 cells per round
Available phone energy Unlimited

Application parameters

Power consumption Communication: 164mW, radio awake at all times [51]
Application: 5mW, a real-world prototype in Section 6)
Sensor: Included in application power consumption
Agent EE: 5mW, assumed

Data transmission energy Participants divided into 3 groups: 1/3 of participants
consume 5mJ / kB, 1/3 consumes 20mJ / kB and 1/3
consumes 40mJ / kB in both sending and receiving data

HTTP protocol overhead GET 370 bytes, POST 225 bytes
Composition size Total size 535 bytes, state is 135 bytes
Sensor data item size 100 bytes with timestamp, GPS location and data value

that round. The person icons change size when involved in agent migration and
colour to dark grey when hosting an agent. Links depict agent migration.

The simulation parameters are listed at Table 4, which include simulation
design parameters, campaigner set parameters, parameters related to the partici-
pants and parameters of the application and campaign execution. Wi-Fi is utilized
as the communication technology, but we omitted the Wi-Fi scan and connection
setup energy consumptions from the simulation. HTTP is used as communication
protocol. Participants have already been selected and assumed to have full battery
in their smartphones, as they appear in the target area at campaign-specific rate
in random locations (normal distribution with empirical rule) at the edges of the
area. Therefore, the target area centre draws more participants, corresponding to
the “hotspots” and “sociality” of participants that are significant human behav-
ioral factors [36]. Participants travel with random walking speed (0.5-2.5m/s), i.e,
one to five cells in each round. The movement direction is fixed (up, down, left,
right) following a straight line from an edge of the area towards the centre and
finish at the opposite edge of the grid. In each cell, the participant travels, one
sensor data item is collected.

5.2 Simulation Results

We present the results of the simulated campaigns in Figures 4a - 7 and analyze
each campaign below. Additionally, Figure 4f shows the effect of different mobile



Mobile Crowdsensing with Mobile Agents 21

agent execution energy consumption on the EE that is a significant factor in the
real-world prototype, as discussed in Section 6. In the simulations, we utilized
the measured real-world agent execution energy consumption (Table 4). In the
figures, the x-axis corresponds to number of mobile agents in the campaign except
in Figure 4b, where the x-axis corresponds to varying number of data requests,
data items and hosts.

Campaign T1 1 All data is uploaded to the campaigner in real-time from a
self-contained application. The energy consumption is quite high in comparison to
other campaigns, as shown in Figure 4a.

Campaign T1 2 With application-specific adaptive sampling, the communi-
cation energy consumption of real-time data upload is reduced significantly (Figure
5). This has no effect on campaign completion time or inter-cover time, which relies
on participant movement. No data is lost (Figure 4e).

Campaign T2 This campaign consumes more total energy than the real-time
data upload with adaptive sampling (T1 2), even though it only uploads data only
once. But, this method is more energy efficient than uploading all data in real-time
(campaign T1 1). No effect is seen in campaign completion time or in inter-cover
time. No data is lost.

Campaign T3 1 When mobile agents become resident agents in the partic-
ipant devices, we observe increase in energy consumption in comparison to cam-
paign T1 1. This is due to the mobile agent execution overhead (Figure 4f), even
though the communication energy consumption decreases after local data process-
ing (Figure 5). No effect is seen in campaign completion time or in inter-cover
time. No data is lost.

Campaign T3 2 With adaptive sampling, the energy consumption of resident
mobile agents decreases significantly. Figure 5 shows decreases in both communi-
cation energy consumption and agent execution energy overhead. But still, this
campaign consumes slightly more energy than campaign T1 2 due to the agent
execution energy overhead. In comparison to campaign T2, about 25% reduction
is seen in total energy consumption (Figure 4a). Yet, no effect on campaign com-
pletion time or inter-cover time. No data is lost.

Campaign T4 1 The energy consumption is very low with less than ten
agents, even lower than the energy consumption of all reference campaigns. But it
increases significantly when the number of agents is increased, almost to the level of
resident agents in campaign T3 1. The reasons are increasing communication and
agent execution energy consumption (Figure 5). With a large number of agents,
upload messages dominate the number of messages (Figure 6) and the number
of agent migration messages is reduced, as mobile agents become resident agents.
The task completion and inter-cover time vary little, but are within 10% range of
previous campaigns. The number of lost data items is large with a small number
of agents, due to the fact that the agents do not have enough time to migrate and
handle all the collected data before the participants leave the campaign.

Campaign T4 2 Roaming mobile agents with adaptive sampling consume
about the same amount of energy than the best reference campaign (T1 2). Energy
consumption is varies little when increasing the number of mobile agents (Figure
5), where the application execution energy consumption dominates. Again, the to-
tal number of messages (Figure 6) is reduced and agent migrations happen rarely
due to the selected migration policy, based on the amount of unprocessed data in
the devices. Task completion time remains about the same with a little variation.



22 Teemu Leppänen et al.

(a) Total energy consumption (b) Energy overhead of sharing
data/state

(c) Completion time (d) Inter-cover time

(e) Total lost data (f) Mobile agent execution energy con-
sumption

Fig. 4 Results of different parameters in the simulated campaigns

Inter-cover time increases significantly due to infrequent agent migrations, i.e. par-
ticipants collect a large amount of data before it is processed. Lost data approaches
zero quickly as data is processed in large chunks in comparison to campaign T4 1.

Campaign T5 We observe that when increasing the number of participants,
with a fixed number of mobile agents (Figure 7), the campaign is completed faster



Mobile Crowdsensing with Mobile Agents 23

Fig. 5 Distribution of total energy consumption in each campaign

Fig. 6 Total number and distribution of different types of messages in each campaign

Fig. 7 Total number of participants in each simulated campaign

as more participants cover the target area thus the total energy consumption be-
comes low. As seen in Figure 5, the application execution energy consumption over-
head dominates. Inter-cover time becomes almost zero (Figure 4d). The amount
of lost data increases because participants collect data, but agents rarely migrate
into the devices. Mobile agents process a large chunk of data in each migrated
device, thus only a few messages are sent during the campaign (Figure 6).



24 Teemu Leppänen et al.

Campaign T6 This campaign operates as campaign T4 2, but we utilized ra-
tio 4:1 in sharing agents states in MAS. This ratio was selected due to the number
of smartphones in our real-world prototype in Section 6. Sharing the states of a
small number of mobile agents introduces insignificant overhead energy consump-
tion, as shown in Figure 4b. If the campaigns T3 2 and T4 2 include the additional
state sharing overhead of 20 agents (as in ratio 4:1), the total energy consumption
is still lower than in the reference campaign T2.

Campaign T7 The number of data requests has a significant effect on the
additional energy consumption of sharing, where the size of requested data chunk
has less effect. But, when the number of agents and requests increases, we begin
to observe a significant increase in energy consumption. Even with real-time data
sharing by 20 agents (as in ratio 4:1) in campaigns T3 2 and T4 2, the energy
consumption is still lower than in the reference campaign T2.

5.3 Analysis of the Simulation Results

Generally, self-contained crowdsensing applications optimize data sampling, data
processing and communications for the target application solely, thus can exhibit
less total energy consumption (campaigns T1 1-T2). Nonetheless, modifying the
campaign parameters is limited to the features of these applications. In compar-
ison to the reference campaigns, the mobile agent based campaigns consume less
energy with a small number of roaming mobile agents and with adaptive sam-
pling. When the number of mobile agents increases, the energy consumption is
about the same as in the best reference campaign. Thus, the reductions in energy
consumption are related to the number of mobile agents. We observe the benefits
of in-network data processing and agent migration, as the dominating factor in
energy consumption becomes the EE application execution, as shown in Figure
5. Campaign completion time varies slightly with the number of roaming mobile
agents, remaining approximately the same in all campaigns except T5, due to its
large number of participants. Results show that the amount of lost data stays on
the same level with roaming mobile agents as with the reference campaigns, when
the migration policy gives higher priority to devices with most unprocessed data.
In multi-agent campaigns, state and data sharing introduces insignificant overhead
in energy consumption with a small number of mobile agents, which increases the
real-time utility of the data and task results. Nevertheless with mobile agents, we
lose the ability to further process the raw data in the backend system in real-time.
However, raw data is stored in the participant device and can be later shared with
the backend.

Some of the simulation parameters could be adjusted for further experiments,
such as the message and data item sizes. Participant routes can be upgraded to
resemble the real movement patterns of humans, with changing directions and
pauses in movement. Campaign start and end criteria can be adjusted for dif-
ferent campaigns. The data transmission energy consumption in the simulations
was divided between the value range (5-40 mJ/kB), as presented in [46], which
is more realistic in real-world settings. Moreover, the energies used in application
and mobile agent execution can be adjusted. We measured the effect of different
agent execution energy overheads in the EE (from 0.5mW to 10mW), as shown
in Figure 4f, where the approximated energy consumption was 5mW as reported



Mobile Crowdsensing with Mobile Agents 25

in the real-world experiment. This has a significant effect in the total energy con-
sumption of the campaign, thus it becomes implementation optimization issue for
the EE application. The mobile agent’s task code can be presented in the compo-
sition in a scripting language, requiring interpretation overhead, or in the native
language of the device. This has a significant impact on the agent execution energy
consumption overhead.

Campaigns designed and implemented with mobile agent based in-network
data processing transmit less data, which can reduce communication energy con-
sumption but introduces data processing energy consumption overhead. Overall,
the results suggest that with a relatively small number of mobile agents, the cam-
paigns require less total energy than the reference campaigns, and otherwise do
not consume significant overhead energy. Mobile agents can share data and task
results in real-time with a little overhead in energy consumption. Mobile agents-
based campaigns should tolerate a small amount of lost data, which is an issue in
all crowdsensing applications [31].

6 Prototype Application

We implemented a software framework for mobile agent-based crowdsensing, based
our previous work [34,35]. A small-scale real-world crowdsensing campaign for
pedestrian flock detection, based on our previous work [2,33], was also designed
and implemented. A Web server operates as the campaigner and a DRD runs as
infrastructure service. For the pedestrian flock detection, the participants collect
sensor data, i.e. conduct continuous Wi-Fi scan operation to detect different Wi-Fi
access points’ and their measured signal strengths. A cosine similarity measure is
then applied to the data to cluster the participants into flocks during their move-
ment. In related work, a data routing method in crowdsensing based on participant
flocks was presented in [22].

The campaign is designed with two roles that are implemented as mobile
agents. Mobile agent compositions are shown in Table 5. The sensing task is con-
ducted in manual mode where sensing is continuous, ie. the ’wifi vector” mobile
agent processes available new data when it migrates into the device. In its task,
it calculates the averages of measured signal strengths’ of each Wi-Fi access point
for a time window that are exposed as data vector in its state. EEs in the devices
store the task results into databases, therefore, the most current result can be
returned for queries, even if the agent has migrated away from the device. The
”similarity” mobile agent retrieves the data vectors by one-shot queries from the
other agents and then calculates the cosine similarity measures between each data
vector. That result is then uploaded by the task to the campaigner after each
iteration. The campaigner then determines and presents the detected flocks in the
Web service. The purpose of this design is to reduce the energy consumption of
the participating devices (the global measure) and to demonstrate MAS operation
by sharing task results in the campaign in runtime, thus the “similarity” agent is
not part of the data collection.

See Figure 8 for illustration of the application. The campaign operates as fol-
lows. Each participant registers its resources into the DRD (1). The campaigner
performs lookup to the DRD for resource ”wifi” (the name for the Wi-Fi scan
operation as sensor), until a sufficient number of participants has been found (2).



26 Teemu Leppänen et al.

Fig. 8 Mobile agent-based crowdsensing application for pedestrian flock detection

Table 5 The two mobile agents utilized in the prototype application

Agent similarity wifi vector

Code “Process” “Filter”
similarity[0] = cos sim(p2, p3) def averages(wifi data):
similarity[1] = cos sim(p2, p4) ...
similarity[2] = cos sim(p2, p5) ”Process”
similarity[3] = cos sim(p3, p4) wifi vector.add(averages(wifi))
similarity[4] = cos sim(p3, p5)
similarity[5] = cos sim(p4, p5)

Resource ”Local” ”Local”
”Remote” wifi = phone 2/wifi

p2 = phone 2/wifi vector wifi = phone 3/wifi
p3 = phone 3/wifi vector wifi = phone 4/wifi
p4 = phone 4/wifi vector wifi = phone 5/wifi
p5 = phone 5/wifi vector ”Remote”

”Static” ”Static”
State similarity = [...] wifi vector = [...]
Metadata [...] [...]

The campaign requires five participants, as explained in the next section, and no
other recruitment was done. As the agent task code has already been written by
the campaigner, who only needs to add the located available resources (i.e. par-
ticipants’ devices) into the mobile agent composition and inject the agent into the
system. The campaigner maintains the designed ratio between ”similarity” and
”wifi vector” by injecting mobile agents into the system (3). Then ”wifi vector”
mobile agent migrates according to its fixed itinerary (4) and ”similarity” agent
operates as resident agent, retrieving the ”wifi vector” results from the smart-
phones (5) and uploading its results to the campaigner (6). The campaign end
criterion is defined as a running period of 15 minutes. When the time has elapsed,
the campaigner deletes its mobile agents by performing lookup into the DRD to
locate the mobile agents and send delete messages to the hosts.

We have implemented an EE application for Android operating system in Java
in our previous work [34] that was extended here to facilitate MAS. The EE uti-
lizes HTTP for communication atop Wi-Fi with the presented agent interaction
protocols. The data format is JSON. The agent task codes where implemented



Mobile Crowdsensing with Mobile Agents 27

in Python although the scripting service implementation also supports JavaScript
and a number of other scripting languages3. When the EE application is started,
it registers the device and its resources, i.e. sensors, to the DRD. The registration
message format [35] enables an unlimited set of application-specific parameters
in the resource description, all of which can be queried separately. When device
resources change, e.g. after mobile agent migration, EE updates the resource de-
scription in the DRD. The EE user interface visualizes the remaining smartphone
battery and current power consumption of the utilized sensors. Participation can
be canceled from the user interface anytime.

For each mobile agent, a thread is started for its execution, where scheduling
and execution of multiple threads are done by the operating system. The data in
the device can be accessed by all agents simultaneously, but there are no conflict
resolution mechanisms for the actions performed by the agents. Once a task ex-
ecution has started, it can’t be stopped externally but only from the task code.
When a mobile agent migrates into a device, the EE operates as follows. First, it
retrieves the requested resources as described in the agent composition. Local data
is retrieved from the database in the device and external data from the remote
host. Task execution is halted while it waits for data. Then, a runnable script
code is generated from the task code and sent to the scripting service for execu-
tion. If the code includes local or external actions, these are communicated by the
scripting engine to the EE as messages describing the action. This way, the task
can send messages, dispatch events or operate external components. The imple-
mentation does not support retrieving external data during the script execution,
all data must be requested through the resource segment before execution. After
the task execution, control is returned to the EE that updates the agent state in
the composition and stores results into the database with a timestamp, enabling
to query the results of a particular participant regardless of where mobile agents
are currently hosted. This way, we avoid the agent tracing problem. At this point,
the EE updates the mobile agent’s resource description in the DRD to facilitate
exposing the new state. Now, the mobile agent is ready to migrate to the new host
or execute the next iteration in this device, according to the migration policy.

6.1 Evaluation of the prototype application

We run the pedestrian flock detection with two different campaign designs and
parameters. Both designs had one ”similarity” mobile agent that migrated into a
device at the campaign start. The first design had one ”wifi vector” mobile agent,
that migrated between the other devices and processed their collected data of de-
signed period as given below. The second design had four ”wifi vector” agents,
that migrated into the other devices at campaign start and operated as resident
agents. We assumed the ratio of 1:4 between “similarity” and “wifi vector” agents
due to the number of available smartphones for our experiments. For evaluation,
we added one reference campaign. Thus the evaluated campaigns were: (1) ”Up-
load” is a reference campaign with no agents where the smartphones upload raw
data to campaigner periodically, as in the simulated campaign T1 1; (2) ”MA resi-
dent”, where one ”similarity” agent retrieves data from four resident ”wifi vector”

3 https://github.com/damonkohler/sl4a



28 Teemu Leppänen et al.

agents, as in the simulated campaign T3 1; and (3) ”MA migrate”, where one
”similarity” agent retrieves data from one migrating ”wifi vector” agent as in the
simulated campaign T4 1. Moreover, we experimented with different agent migra-
tion intervals by changing this parameter in campaigns to demonstrate the effect
on the total campaign energy consumption: (1) every scan result; (2) 20 seconds;
(3) one minute; (4) four minutes; and (5) 15 minutes. In other words, the agent
migrates into the devices in this interval and the task algorithm processes data
for this period. Campaign ”Upload” with the interval of 15 minutes corresponds
to simulated campaign T2 with additional data processing.

We utilized five Android smartphones as the devices: (1) two Samsung Galaxy
S3 (GT I-9300) with Android 4.3, one for each agent type, (2) two Samsung
Galaxy S4 Mini (GT-I9195) with Android 4.2.2 and Android 4.4.2 executing the
”wifi vector” agents, and (3) one Samsung Galaxy S5 Mini (SM-G800F) with
Android 4.4.2 executing the ”wifi vector” agent. The energy comsumption mon-
itoring of the EE application was done with Powertutor4 application, although
it is implemented for earlier version of Android operating system and hardware,
thus inaccuracies are possible. From each device, we collected energy consump-
tion data and amount of transmitted data in each campaign. Moreover, the Wi-Fi
radio energy consumption monitoring by Powertutor was not directly shown for
the selected smartphone models. The energy consumption data in the participant
devices is not available in runtime to the EE. In the real-world, multiple types
of smartphones operated by the participants can be expected. We noticed signif-
icant differences in the energy consumption and mobile agent execution energy
consumption overhead in the EE application in different smartphones. The energy
consumption of different smartphone hardware models and components changes
between generations, as also discussed in [46]. Moreover, the behavior of the appli-
cation and varying network conditions in the public Wi-Fi network have an effect.
For the measured energy consumption data, the Galaxy S3 smartphones presented
the maximum standard deviation of 7J, the Galaxy S5 Mini 8J and the Galaxy
S4 Mini up to 29J. Android 4.2.2. operating system appeared slightly more stable
in this respect.

Figure 9a indicates that this campaign design, facilitating mobile agent based
in-network data processing, significantly reduced the amount of transmitted data
in comparison to the reference “Upload” campaign. This contributes towards less
communication energy consumption and less data processing in participating de-
vices. The energy consumption of evaluated campaigns is shown in Figure 9b that
shows for each campaign the sum of average energy consumption of each partici-
pant (i.e. smartphone model). The Application+sensor value shows the measured
application execution energy consumption that was also utilized in the simulated
campaigns. The lowest energy consumption is with the ”Upload” campaign with
a 15 minute data upload period, where data is once processed and uploaded at
the end of the campaign. The campaign ”MA migrate” (relates to campaign T4 1)
consumes less energy than the campaign ”MA resident” (as campaign T3 1). We
observe that the amount of transmitted data is considerably lower in campaign
”MA migrate”, but it consumes slight more energy in comparison to the refer-
ence campaign “Upload”. The reason for this is the extra energy consumed in
agent execution, which we can’t confirm as we cannot reliably separate the energy

4 http://ziyang.eecs.umich.edu/projects/powertutor/



Mobile Crowdsensing with Mobile Agents 29

(a) Total transmitted data (b) Total energy consumption

Fig. 9 Evaluation results of the real-world campaigns

consumption of the different components of the EE application with Powertutor
and heterogeneous hardware. This EE application design and implementation is-
sue becomes tradeoff between real-time utility of data and agent execution energy
overhead, as this may eliminate the benefit of communication energy reduction.
Nevertheless, it can be assumed that implementing the agent task code in native
language of the platform would considerably reduce the agent execution energy
consumption. To address this issue in the simulations, we considered different agent
execution energy consumptions (Figure 4f). As shown in the figure, the effect of
the agent execution to the total campaign energy consumption can be significant.
When the agent execution overhead becomes large, a solution could be to share
the data and task results instead of local data processing in each device. With
mobile agents, the data and results are shared in runtime at the devices or the
task is relocated by agent migration, in comparison to related work in [54], that
processes data locally only once and shares results between applications only at
the backend.

Smartphones today include several communication interfaces, such as 3G, Wi-
Fi and Bluetooth, with their individual energy consumption profiles. For each
interface, energy is consumed in keeping the radio interface on, scanning and set-
ting up connections. Wi-Fi was determined more energy efficient than 3G in [22].
Opportunistically uploading data in bursts and otherwise keeping the radio inter-
face sleeping could signifigantly decrease the energy consumption [22,46,51]. The
issue with Wi-Fi is that the access points can be sparsely deployed in urban envi-
ronments. With Bluetooth, the drawbacks are frequent connection set-ups and a
limited number of simultaneous communication links.

Lower layer communication protocol optimizations, such as optimized payload
size or send buffer size, are possible, but the evaluation metrics would be differ-
ent from layer to layer and are outside the focus of this paper. Decreasing data
sending intervals requires more energy, but on the other hand, the energy con-
sumption per bit is smaller [51]. Sending data consumes considerable more power
than receiving data [51]. Changes in the voltage level of the battery also affect the
power consumption [51]. Optimizing data transmission strategy in smartphones
differs between hardware, operating systems and device contexts [46]. With re-



30 Teemu Leppänen et al.

gard to Android-based smartphones, the operating system, other processes and
applications try to communicate with their servers in regular basis, which may ad-
ditionally distort the energy consumption results [46]. Energy consumption profiles
of the smartphone sensors are different for each sensor and may have significant
effect on the energy consumption, which is true for all crowdsensing applications.
Concrete generalized conclusions are therefore difficult to draw. In this evalua-
tion, we did not consider varying network conditions nor communication latencies
in this evaluation. Participant device failures, such as depleted battery, are not
addressed in this prototype.

In conclusion, despite of the considerable agent execution energy consumption,
we observe similar results in the real-world implementation than in the simulations.
Less data is transmitted and less messaging needed with in-network processing.
Reductions in energy consumption are seen with different campaign designs of
roaming mobile agents, in comparison with the reference campaign of uploading
all data in real-time to the campaigner. Alike, the real-world campaign utilized
only a few mobile agents. This suggests that mobile agent-based campaigns are the
most beneficial for opportunistic data collection style, where agents migrate into
devices infrequently. This sacrifices real-time data utility for the reduced agent exe-
cution overhead, which can be addressed in EE application implementation. When
the overhead is lower, there is more room (energy-wise) for more mobile agents to
operate. With different global measure and agent migration policy, the campaigner
could emphasize real-time data utility or minimize participants’ discomforts, for
example. When the agent execution overhead is smaller, campaign execution could
be significantly more effective in both reducing energy consumption and increasing
real-time utility. More complex campaigns that make better use of MAS features
could be implemented, presumably with additional energy consumption for agent
operations. Referring back to the earlier discussion, reducing the energy consump-
tion of the crowdsensing campaigns alone justifies the use of mobile agents as the
participants’ devices are generally battery-operated smartphones, provided that
comparable results for the campaigns are produced.

7 Related work

Related work in mobile crowdsensing and participatory sensing are extensive and
methods are too numerous to conclusively discuss here. We consider the relevant
work in crowdsensing frameworks, including software agent-based solutions.

The ParticiPact mobile crowdsensing platform [7] enables large-scale cam-
paigns with fine-grained sensing actions, where the sensors are duty-cycled and
data sharing energy overhead minimized. Actions are completed within the given
timeframe in the target location, with the most limited subset of available partici-
pants that are selected based on their profiles. Sensing tasks are deployed as OSGi
bundles to both client- and server-side, but the system does not facilitate migra-
tion. The client-side manages task and sensing actions for the participants and
provides long-term data storage in local databases, but copies are sent to backend.
The backend system manages all tasks, performs large-scale data post-processing
and data mining. For each action, incentives are available for the participants.

Context-aware mobile crowdsensing service-oriented architecture with social
networking is introduced in [23] that integrates multidimensional data sources,



Mobile Crowdsensing with Mobile Agents 31

such as personal, environmental and social, with crowdsensing applications and
Web services to provide higher-level contextual data with a common ontology.
Context is utilized to improve the usability of the services in the system. A cloud
platform deploys and coordinates campaigns, and exposes results in a Web ser-
vice. Campaigns are executed with software agents in the participating devices.
This work is based on TripleS [24] that utilizes a cloud platform to coordinate
crowdsensing tasks for social networking services. A service-oriented architec-
ture framework in the mobile devices realizes a set of services, implemented as
application-specific resident agents: local sensing service, crowdsensing service,
context-awareness service, interfaces to the cloud platform and for social net-
working, and management of services. Mobile agents are utilized for augmenting
resident agents and transferring their accumulated results.

In [56], energy-efficient participatory sensing task allocation framework is pre-
sented. The framework facilitates a centralized task allocation and scheduling com-
ponent, that handles both offline and online data queries. The idea is to allocate
temporally overlapping queries of the same data to the same participating devices.
Device allocation is based first on the devices which can cover the task entirely,
secondly on devices with smallest aggregated sensing time, and thirdly on devices
with least increased sensing time. Tasks are then executed in devices in temporal
order based on task start time.

In [21], a service-oriented middleware for participatory sensing is presented.
Devices periodically advertise their resources and future paths to a system reg-
istry. When the registry receives queries for data, it selects the relevant devices
and composes a data acquisition service from them. The devices are considered for
participation only if they increase the sensing coverage, i.e. their expected moving
path is not redundant or an already registered device or substitute composition
does not exist for the path. The middleware aims at minimum sensing coverage
to limit the number of participating devices and tries to reduce total energy con-
sumption. User queries are compiled with a common ontology.

Zhao et al [55] utilize the trajectory histories of selected devices in participatory
sensing to provide energy-efficient coverage. Trajectories assist in offline partici-
pant selection, and in online, to adapt the sampling frequency with spatiotemporal
correlations among sensing data. Each device knows its location and disseminates
its location to all other devices with epidemic data exchange. Their results, col-
lected with real-world human and taxi mobility traces, imply that human mobility
traces are stable enough for meaningful predictions of future traces.

Matador [9] is a crowdsensing framework that embeds context-awareness to the
sensing task execution. Campaigners describe tasks through a Web application as
XML files that give the required context and describe the action for data collection
or for users. The smartphone application contains a task list, that is periodically
synchronized with server-side. User context, such as location, is adaptively sampled
in smartphones with modifiable accuracy and rate. The server-side creates the
visualizations of the task results.

Layered virtual machine-based crowdsensing application deployment model
was presented in [52]. At the lowest layer, mobile devices and crowdsensing appli-
cations forward their data to ”proxy” virtual machines in the second layer. The
second layer comprises distributed cloud infrastructure, where the proxy virtual
machines migrate according to the mobility of the user. Other virtual machines
then perform application-specific data processing and forward the results to the



32 Teemu Leppänen et al.

top layer. Coordinating entities in the top layer, i.e. application servers in the
cloud infrastructure, manage application execution. The infrastructure includes a
global registry to discover proxy virtual machines for tasks.

A geo-social crowdsensing platform was presented in [8]. The idea is to build
time-variant resource maps that enable dimensioning people’s involvement and
sensing accuracy in the data backend to assist in designing crowdsensing cam-
paigns. The maps are constructed by analyzing the results of mobile sensing ac-
tions and the contexts of potential participants, after which, tasks are assigned
automatically for the participants.

In [42], is presented a Web-based framework for users to deliver simple sensing
tasks to their smartphones. A set of programming abstractions are provided for
tasks and for composing higher level abstractions from the tasks. The tasks, stored
in a system repository, are precompiled in servers and heuristically partitioned to
execution in either on the smartphone or in remote servers if the task requires
input from other system devices.

Medusa [41] is a programming framework for crowdsensing applications with
a macroprogramming language based on the master-worker pattern. Applications
are described as stages, concurrently executed in the smartphones and a cloud
platform. The results of each stage are inputs to the next stages. The master is
only informed when the task is complete. The stages are reusable from a repository.

MECA [54] is a framework, where the idea is to share the results of data pro-
cessing between applications in a way that each primitive operation for the data
is done only once in the participating devices. A layered architecture is utilized,
where the “phenomena” layer receives high-level data collection specifications from
applications, selects appropriate nodes on the “edge” layer at the network edge
that can provide data for the application and then returns the data to the appli-
cations. “Edge” layer then selects and coordinates a subset of local devices in the
“data” layer, that have resources to provide the particular data. Each device runs
a software agent to execute the instructions for data collection and processing.

Prism [15] addresses running precompiled binary code in a set of smartphones
as tasks. The phones are centrally orchestrated to co-operatively participate in
mobile sensing applications, but without co-operation. The smartphones register
their current location and available resources into a server. The server then deter-
mines suitable participants for the task, based on the given set of predicates, then
pushing the tasks to the participants.

An agent-based system for crowdsensing was presented in [48]. Raw sensor
data is provided by user agents in the phones, at the same time, monitoring the
user performance. Then, data is processed by local system agents by instructions
from a coordination agent. Verification agents validate the processed data and
the user performance, providing feedback for participant selection. Application-
specific event monitoring agents send notifications to the coordination agent and
start services for sensing tasks based on detected events. A central coordination
agent stores the data into a database, communicates with all agents and system
operators to control the tasks and provides access end-point for system operators.

Darwin [37] is a framework for collaborative mobile phone sensing with local
data analytics on the phone and further analysis in the backend. The data pro-
cessing algorithms are shared between participating phones to globally enhance
the algorithms on each phone to increase sensing accuracy.



Mobile Crowdsensing with Mobile Agents 33

In [53], a mobile crowdsourcing platform was presented, which allows users to
post their own tasks to the system. The tasks exploit available mobile workers
in the task execution. Data queries can be made through a mobile application to
existing crowdsourcing tasks in the system. The uploaded task results are then
made available in the mobile application.

A privacy preserving software framework for crowdsensing was presented in
[14] that protects the privacy of participants and guarantees data integrity. A
mixing channel is used to anonymize data sources in received data during upload.
Framework also features a registration authority that ensures authenticity of the
system components. Tasks are described in their specific high-level language.

8 Discussion and conclusion

In this work, we introduce mobile agents-based MAS for crowdsensing. A promi-
nent benefit is that mobile agents provide decentralized and autonomous campaign
execution that enables mobile agents to consider resource availability and partici-
pant related issues in their operations. Mobile agents distribute computation and
communication load into the system based on their tasks and control algorithms.
Moreover, mobile agents can negotiate complex global measures that guide the
campaign execution, where examples include minimizing total energy consump-
tion, minimizing participants’ discomforts or maximizing data utility in real-time.

We described a software framework to realize mobile agent-based crowdsens-
ing campaigns, supporting both participatory and opportunistic approaches. The
framework adopts REST principles and resource-oriented architecture that en-
ables the seamless integration of campaigns into the Internet. HTTP is employed
as a universal communication protocol in the framework, including agent interac-
tion protocols. The framework facilitates the online model, where multiple cam-
paigns execute asynchronously relying their context based resource availability.
Campaigns are designed as a MAS with different targets, roles and interactions.
Role-based interactions promote the reuse of data and agents’ tasks results through
real-time sharing. Roles embrace their specific data collection and analysis tasks
that are realized as mobile agents. Mobile agents execute, control and monitor
the campaign through their role-based tasks autonomously in the opportunistic
network of participants’ smartphones. Mobile agents’ tasks include negotiating
participants’ personal boundaries with the campaign requirements, taking into
account the individual context and data privacy management. Participants’ be-
haviors are monitored by the agents and appropriate compensation calculated for
their resource usage and discomforts.

We conducted a set of simulations to study the characteristics of mobile agent-
based campaigns in comparison to the “traditional” crowdsensing approaches. The
simulation results indicate that campaigns designed with a relatively small num-
ber of mobile agents performs best in terms energy consumption. The amount
of data transmitted and messaging in the campaign reduces considerably with
mobile agent-based in-network data analysis and with campaign-specific adaptive
sampling algorithms. The sharing of the task results in real-time in the campaign
introduces insignificant overhead to the campaign execution at the same time in-
creasing real-time data utility. However, the participants’ mobility patterns and
agent migration policies have impact on this aspect. These results enable to further



34 Teemu Leppänen et al.

consider MAS in crowdsensing, as several issues could be studied with simulations:
sophisticated campaign control, negotiation capabilities of mobile agents, differ-
ent task assignment policies [8], event-driven tasking, data quality[45], participant
reputation in recruitment and robust campaign execution.

We implemented a small-scale real-world crowdsensing campaign based on mo-
bile agents atop the implementation of the framework. The target application was
pedestrian flock detection, designed with two roles realized with mobile agents
interacting with each other. The evaluation results are similar to the simulation
results. However, we experienced relatively large agent execution energy consump-
tion overhead in the EE application, due to its implementation. This overhead
could be reduced with reconsideration of the EE implementation. When the over-
head is smaller, mobile agent based campaign execution could be significantly
more effective. Notwithstanding, the optimization of application and communi-
cation energy consumption in smartphones is a complex task. Hardware design
with static and dynamic characteristics of the utilized components have an effect
on this. This information is crucial for the optimized campaign design, therefore,
energy consumption information in participants’ devices should be exposed.

Referring back to the challenges listed in Table 1, the implemented framework
features unified system architecture and standardized communication protocol.
Easy campaign deployment is facilitated through seamless connection to the In-
ternet and campaign monitoring in real-time is featured through real-time upload
of results. MAS based campaign design facilitates cooperation and sharing of data
in real-time. Data quality issues can be addressed either in the device or by the
campaigner. Concerning participant-related issues, real-time resource availability
is exposed in the framework, but no other means to recruit, evaluate or compensate
participants are implemented. Privacy concerns are addressed by exposing only a
selected set of data features into the system, but participants can not negotiate
their individual concerns. The implemented mobile agents did not utilize event de-
tection in data collection and to react to changes in the system or smartphone use
context. The real-world system did not feature multiple simultaneous campaigns,
nor integration to social networking systems. The framework addresses guidelines
for mobile crowdsensing systems [8]: minimal delay in producing the stream of
information, minimal computing overhead with fast feedback mechanism, data
transmission in phases, and complete data management cycle.

This work suggests that mobile agent-based campaigns are beneficial for op-
portunistic crowdsensing data collection style. Benefits are evident to campaigns
that are designed with infrequent agent migration and utilize data sharing. Mobile
agent migration and in-network data analysis significantly reduces the amount of
transmitted data and contribute to reduced energy consumption in campaigns.
Reduced energy consumption alone justifies the use of mobile agents, provided
that comparable results for the campaigns are produced. As a future work, more
complex campaigns that make better use of MAS features are to be studied. So-
phisticated campaign control with more complex agent interaction protocols and
machine learning algorithms play a role in the autonomous crowdsensing campaign
execution as MAS. We believe that this approach can potentially become one of
the integral data acquisition methods in pervasive computing environments.



Mobile Crowdsensing with Mobile Agents 35

References

1. Abdelzaher, T., Anokwa, Y., Boda, P., Burke, J., Estrin, D., Guibas, L., Kansal, A.,
Madden, S., Reich, J.: Mobiscopes for human spaces. IEEE Pervasive Computing 6, 20–
29 (2007)

2. Álvarez Lacasia, J., Leppänen, T., Iwai, M., Kobayashi, H., Sezaki, K.: A method for
grouping smartphone users based on wi-fi signal strength. In: Forum on Information
Technology, vol. J-032. IPSJ (2013)

3. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a FIPA-
compliant agent framework. Software - Practice and Experience 31(2), 103–128 (2001)

4. Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava,
M.: Participatory sensing. In: 4th ACM Conference on Embedded Networked Sensor
Systems , 1st Workshop on World-Sensor-Web: Mobile Device Centric Sensory Networks
and Applications. ACM (2006)

5. Campbell, A., Eisenman, S., Lane, N., Miluzzo, E., Peterson, R., Lu, H., Zheng, X., Mu-
solesi, M., Fodor, K., Ahn, G.S.: The rise of people-centric sensing. IEEE Internet Com-
puting 12(4), 12–21 (2008)

6. Campbell, A., Wu, A.: Multi-agent role allocation: issues, approaches, and multiple per-
spectives. Autonomous Agents and Multi-Agent Systems 22(2), 317–355 (2011)

7. Cardone, G., Cirri, A., Corradi, A., Foschini, L.: The participact mobile crowd sensing
living lab: The testbed for smart cities. IEEE Communications Magazine 52(10), 78–85
(2014)

8. Cardone, G., Foschini, L., Bellavista, P., Corradi, A., Borcea, C., Talasila, M., Curtmola,
R.: Fostering participaction in smart cities: a geo-social crowdsensing platform. IEEE
Communications Magazine 51(6), 112–119 (2013)

9. Carreras, I., Miorandi, D., Tamilin, A., Ssebaggala, E., Conci, N.: Matador: Mobile task
detector for context-aware crowd-sensing campaigns. In: International Conference on Per-
vasive Computing and Communications Workshops (PerCom2013 Workshops), pp. 212–
217. IEEE (2013)

10. Chen, M., Kwon, T., Yuan, Y., Leung, V.: Mobile agent based wireless sensor networks.
Journal of computers 1(1), 14–21 (2006)

11. Chon, Y., Lane, N., Kim, Y., Zhao, F., Cha, H.: Understanding the coverage and scala-
bility of place-centric crowdsensing. In: Proceedings of the 2013 ACM international joint
conference on Pervasive and ubiquitous computing - UbiComp ’13, pp. 3–12 (2013)

12. Christin, D., Reinhardt, A., Kanhere, S., Hollick, M.: A survey on privacy in mobile
participatory sensing applications. Journal of Systems and Software 84, 1928–1946 (2011)

13. Conti, M., Giordano, S.: Mobile ad hoc networking: Milestones, challenges, and new re-
search directions. IEEE Communications Magazine 52, 85–96 (2014)

14. Cornelius, C., Kapadia, A., Kotz, D., Peebles, D., Shin, M., Triandopoulos, N.: Anony-
sense: privacy-aware people-centric sensing. In: Proceedings of the 6th International Con-
ference on Mobile Systems, Applications, and Services, MobiSys ’08, pp. 211–224 (2008)

15. Das, T., Mohan, P., Padmanabhan, V., Ramjee, R., Sharma, A.: Prism: Platform for
remote sensing using smartphones. In: Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, MobiSys ’10, pp. 63–76 (2010)

16. Dikaiakos, M., Kyriakou, M., Samaras, G.: Performance evaluation of mobile-agent mid-
dleware: A hierarchical approach. In: G. Picco (ed.) Mobile Agents, Lecture Notes in
Computer Science, vol. 2240, pp. 244–259. Springer (2001)

17. Eberle, J., Yan, Z., Aberer, K.: Energy-efficient opportunistic collaborative sensing. 10th
IEEE International Conference on Mobile Ad-Hoc and Sensor Systems pp. 374–378 (2013)

18. Estrin, D.: Participatory sensing: Applications and architecture. IEEE Internet Computing
14, 12–14 (2010)

19. Ganti, R., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE
Communications Magazine 49(11), 32–39 (2011)

20. Guo, B., Yu, Z., Zhou, X., Zhang, D.: From participatory sensing to mobile crowd sens-
ing. In: IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), pp. 593–598 (2014)

21. Hachem, S., Pathak, A., Issarny, V.: Service-oriented middleware for large-scale mobile
participatory sensing. Pervasive and Mobile Computing 10, 66 – 82 (2014)

22. Higuchi, T., Yamaguchi, H., Higashino, T., Takai, M.: A neighbor collaboration mechanism
for mobile crowd sensing in opportunistic networks. In: IEEE International Conference on
Communications (ICC2014), pp. 42–47 (2014)



36 Teemu Leppänen et al.

23. Hu, X., Li, X., Ngai, E., Leung, V., Kruchten, P.: Multidimensional context-aware social
network architecture for mobile crowdsensing. IEEE Communications Magazine 52(6),
78–87 (2014)

24. Hu, X., Liu, Q., Zhu, C., Leung, V., Chu, T., Chan, H.: A mobile crowdsensing system
enhanced by cloud-based social networking services. In: Proceedings of the First Inter-
national Workshop on Middleware for Cloud-enabled Sensing, MCS ’13, pp. 1–6. ACM
(2013)

25. Jaimes, L., Vergara-Laurens, I., Labrador, M.: A location-based incentive mechanism for
participatory sensing systems with budget constraints. In: IEEE International Conference
on Pervasive Computing and Communications, pp. 103–108 (2012)

26. Kanjo, E., Bacon, J., Roberts, D., Landshoff, P.: Mobsens: Making smart phones smarter.
IEEE Pervasive Computing 8(4), 50–57 (2009)

27. Khan, W., Xiang, Y., Aalsalem, M., Arshad, Q.: Mobile phone sensing systems: A survey.
IEEE Communications Surveys & Tutorials 15(1), 402–427 (2013)

28. Koutsopoulos, I.: Optimal incentive-driven design of participatory sensing systems. In:
32nd IEEE International Conference on Computer Communications, pp. 1402–1410 (2013)

29. Lane, N.: Community-aware smartphone sensing systems. IEEE Internet Computing
16(3), 60–64 (2012)

30. Lane, N., Eisenman, S., Musolesi, M., Miluzzo, E., Campbell, A.: Urban sensing systems:
opportunistic or participatory? In: Proceedings of the 9th workshop on Mobile computing
systems and applications, pp. 11–16. ACM (2008)

31. Lane, N., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.: A survey of
mobile phone sensing. IEEE Communications Magazine 48(9), 140–150 (2010)

32. Lange, D., Oshima, M.: Seven good reasons for mobile agents. Communications of the
ACM 42, 88–89 (1999)

33. Leppänen, T., Álvarez Lacasia, J., Ramalingam, A., Liu, M., Harjula, E., Närhi, P., Ylioja,
J., Riekki, J., Sezaki, K., Tobe, Y., et al.: Interoperable mobile agents in heterogeneous
wireless sensor networks. In: Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems (SenSys’13). ACM (2013)

34. Leppänen, T., Liu, M., Harjula, E., Ramalingam, A., Ylioja, J., Närhi, P., Riekki, J.,
Ojala, T.: Mobile agents for integration of internet of things and wireless sensor networks.
In: International Conference on Systems, Man, and Cybernetics (SMC), pp. 14–21. IEEE
(2013)

35. Liu, M., Leppänen, T., Harjula, E., Ou, Z., Ramalingam, A., Ylianttila, M., Ojala, T.:
Distributed resource directory architecture in machine-to-machine communications. In:
9th International Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), pp. 319–324. IEEE (2013)

36. Ma, H., Zhao, D., Yuan, P.: Opportunities in mobile crowd sensing. IEEE Communications
Magazine 52(8), 29–35 (2014)

37. Miluzzo, E., Cornelius, C., Ramaswamy, A., Choudhury, T., Liu, Z., Campbell, A.: Darwin
phones: the evolution of sensing and inference on mobile phones. In: Proceedings of the
8th international conference on Mobile systems, applications, and services, MobiSys ’10,
pp. 5–20. ACM (2010)

38. Miluzzo, E., Lane, N., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S., Zheng,
X., Campbell, A.: Sensing meets mobile social networks: The design, implementation and
evaluation of the cenceme application. In: Proceedings of the 6th ACM Conference on
Embedded Network Sensor Systems, SenSys ’08, pp. 337–350. ACM (2008)

39. Niwa, J., Okada, K., Okuda, T., Yamaguchi, S.: Mpsdatastore: A sensor data repository
system for mobile participatory sensing. In: Proceedings of the Second ACM SIGCOMM
Workshop on Mobile Cloud Computing, MCC ’13, pp. 3–8. ACM (2013)

40. Pournajaf, L., Xiong, L., Sunderam, V.: Dynamic Data Driven Crowd Sensing Task As-
signment. Procedia Computer Science 29, 1314–1323 (2014)

41. Ra, M.R., Liu, B., La Porta, T., Govindan, R.: Medusa: A programming framework for
crowd-sensing applications. In: Proceedings of the 10th international conference on Mobile
systems, applications, and services, MobiSys ’12, pp. 337–350. ACM (2012)

42. Ravindranath, L., Thiagarajan, A., Balakrishnan, H., Madden, S.: Code in the air: sim-
plifying sensing and coordination tasks on smartphones. In: Proceedings of the Twelfth
Workshop on Mobile Computing Systems & Applications, HotMobile ’12. ACM (2012)

43. Reddy, S., Estrin, D., Srivastava, M.: Recruitment framework for participatory sensing
data collections. In: P. Floren, A. Krger, M. Spasojevic (eds.) Pervasive Computing,
Lecture Notes in Computer Science, vol. 6030, pp. 138–155. Springer (2010)



Mobile Crowdsensing with Mobile Agents 37

44. Reddy, S., Samanta, V., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Mobisense - mo-
bile network services for coordinated participatory sensing. In: International Symposium
on Autonomous Decentralized Systems, ISADS ’09, pp. 1–6. IEEE (2009)

45. Riahi, M., Papaioannou, T., Trummer, I., Aberer, K.: Utility-driven data acquisition in
participatory sensing. In: Proceedings of the 16th International Conference on Extending
Database Technology, EDBT ’13, pp. 251–262 (2013)

46. Rice, A., Hay, S.: Measuring mobile phone energy consumption for 802.11 wireless net-
working. Pervasive and Mobile Computing, Special Issue PerCom 2010 6(6), 593 – 606
(2010)

47. Shilton, K.: Four billion little brothers?: privacy, mobile phones, and ubiquitous data
collection. Communications of the ACM 7, 40–47 (2009)

48. Sun, Y., Nakata, K.: An agent-based architecture for participatory sensing platform. In:
4th International Universal Communication Symposium (IUCS), pp. 392–400. IEEE (2010)

49. Tsujimori, T., Thepvilojanapong, N., Ohta, Y., Zhao, Y., Tobe, Y.: History-based incentive
for crowd sensing. In: Proceedings of the International Workshop on Web Intelligence and
Smart Sensing, IWWISS ’14, pp. 1–6. ACM (2014)

50. Tuncay, G., Benincasa, G., Helmy, A.: Participant recruitment and data collection frame-
work for opportunistic sensing: A comparative analysis. In: Proceedings of the 8th ACM
MobiCom Workshop on Challenged Networks, CHANTS ’13, pp. 25–30. ACM (2013)

51. Wang, L., Manner, J.: Energy consumption analysis of wlan, 2g and 3g interfaces. In:
Proceedings of the 2010 IEEE/ACM Int’L Conference on Green Computing and Commu-
nications & Int’L Conference on Cyber, Physical and Social Computing, GREENCOM-
CPSCOM ’10, pp. 300–307. IEEE Computer Society (2010)

52. Xiao, Y., Simoens, P., Pillai, P., Ha, K., Satyanarayanan, M.: Lowering the barriers to
large-scale mobile crowdsensing. In: Proceedings of the 14th Workshop on Mobile Com-
puting Systems and Applications, HotMobile ’13, pp. 9:1–9:6. ACM (2013)

53. Yan, T., Marzilli, M., Holmes, R., Ganesan, D., Corner, M.: mcrowd: A platform for mobile
crowdsourcing. In: Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, pp. 347–348. ACM, New York, NY, USA (2009)

54. Ye, F., Ganti, R., Dimaghani, R., Grueneberg, K., Calo, S.: Meca: Mobile edge capture and
analysis middleware for social sensing applications. In: Proceedings of the 21st Interna-
tional Conference Companion on World Wide Web, WWW ’12 Companion, pp. 699–702.
ACM, New York, NY, USA (2012)

55. Zhao, D., Ma, H., Liu, L.: Energy-efficient opportunistic coverage for people-centric urban
sensing. Wireless Networks 20(6), 1461–1476 (2014)

56. Zhao, Q., Zhu, Y., Zhu, H., Cao, J., Xue, G., Li, B.: Fair energy-efficient sensing task
allocation in participatory sensing with smartphones. In: INFOCOM2014 Proceedings,
pp. 1366–1374. IEEE (2014)


