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Abstract
The article on Riemann derivatives by P.L. Butzer and W. Kozakiewicz of 1954 was
the basis to generalizations of the classical scalar-valued derivatives to Taylor, Peano,
and Riemann derivatives in the setting of semigroup theory. The present paper gives an
overview of the 1954 article, describes its influence, and integrates it into the literature
on related problems. It also describes the state of themathematics department atMcGill
University where the article was written.
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1 Overview over the Butzer-Kozakiewicz paper

Let us first give a short overview of the main results of Butzer-Kozakiewicz [1]. For
an arbitrary real-valued function f the central difference of order s ∈ N with respect
to the increment h > 0 is defined by

�1
2 h f (x) = f (x + h) − f (x − h), �s

2 h f (x) = �1
2 h[�s−1

2 h f (x)].

A tribute to Maurice Dodson, a unique and long-standing friend of the authors (A short biography of
Maurice Dodson can be found as Appendix C)
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The differences can be represented as

�s
2 h f (x) =

s∑

j=0

(−1) j
(
s

j

)
f [x + (s − 2 j)h].

If the limit of the difference quotient

lim
h→0

(2 h)−s�s
2 h f (x)

exists at the point x and is finite, it is called the sth Riemann derivative of f at the point
x . If the ordinary derivative f (s) exists at x , then the above limit is equal to f (s)(x),
i.e., the Riemann derivative exists and equals the ordinary derivative.

The motivation of the paper is the fundamental uniqueness theorem for trigonomet-
ric series (see, e.g., [2, p. 274]) which the author (P.L.B.) learned to know in a course
on Fourier series given at Loyola College, Montréal, in 1947. It states

A. If f is continuous in [a, b] and has at every point of this interval a finite second
Riemann derivative g, with g ∈ L(a, b), then

f (x) =
∫ x

a
dt1

∫ t1

a
g(t2) dt2 + c0 + c1x, a ≤ x ≤ b,

where c0 and c1 are constants.

A first major result is an elementary but apparently powerful method, a theorem
which contains a well-known proposition of Brouwer [3] and Popoviciu [4], which
states

B. If f (x) is continuous for a < x < b and

�s
2 h f (x) = 0, a < x − sh < x + sh < b,

then f is a polynomial of degree at most (s − 1) in (a, b).

As to further notations, let L(a, b) be the space of functions Lebesgue integrable
over (a, b) equipped with the norm ‖ f ‖ = ∫ b

a | f (u)| du. A sequence ( fn) in L(a, b)
is said to be convergent in the mean to f ∈ L(a, b), if limn→∞ ‖ fn − f ‖ = 0. If

⎧
⎪⎨

⎪⎩

‖ fn‖ ≤ M for all n,

lim
n→∞

∫ x

a
fn(t) dt =

∫ x

a
f (t) dt for all x ∈ [a, b],

(1)

then ( fn) is said to be weakly convergent1 to f . Obviously, convergence in the mean
implies weak convergence of fn to f in L(a, b).

1 See the remarks on weak convergence at the end of Sect. 2.
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The Butzer-Kozakiewicz article on Riemann derivatives..

Let L{a, b} be the class of functions integrable over every closed subinterval of
(a, b).

The integral means of order s ∈ N (or repeated averages) play a major role in the
proofs of the following results, they being defined for f ∈ L{a, b} and h > 0 by

A1
h f (x) = 1

2h

∫ h

−h
f (x + t) dt = 1

2h

∫ x+h

x−h
f (t) dt, As

h f (x) = A1
h[As−1

h f (x)].
(2)

Their properties are listed in [1, Lemmas 1–5]. Let us record that

lim
h→0+ As

h f (x) = f (x) (3)

pointwise a. e. on (a, b) and in the norm of L(α, β) for every subinterval [α, β] ⊂
(a, b), and

[As
h f (x)](s) = (2h)−s�s

2h f (x) = As
h f

(s)(x), (4)

where the first equality holds for all f ∈ L{a, b} and the latter provided f (s) exists.

Theorem 1 For f , g ∈ L{a, b} the following assertions are equivalent:
(i) There exists a polynomial Ps−1 of degree not exceeding s − 1 such that

f (x) =
∫ x

c
dt1

∫ t1

c
dt2 . . .

∫ ts−1

c
g(ts) dts + Ps−1(x) (5)

a.e. in (a, b) with a < c < b.

(ii) There holds
(2h)−s�s

2h f (x) = As
hg(x) (6)

for almost every x satisfying a < x − sh < x + sh < b.

(iii) There exists a null sequence (hn) of positive reals such that (2hn)−s�s
2hn

f (x)
converges for n → ∞ weakly to g on every subinterval [α, β] ⊂ (a, b).

(iv) There exists a null sequence (hn) of positive reals such that (2hn)−s�s
2hn

f (x)
converges for n → ∞ in the mean of L(α, β) to g for every interval [α, β] ⊂ (a, b).

Short sketch of the proof We omit the details regarding the ranges of x and h. Put

Iscg(x) =
∫ x

c
dt1

∫ t1

c
dt2 . . .

∫ ts−1

c
g(ts) dts,

τn(x) := (2hn)
−s�s

2hn f (x), σn(x) := τn(x) − g(x).

(i)⇒(iv): One has

∫ β

α

|τn(x) − g(x)|dx ≤
∫ β

α

|τn(x) − As
hn g(x)|dx +

∫ β

α

|As
hn g(x) − g(x)|dx .
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Now the first term on the right is zero by (4), and the second tends to zero for
n → ∞ by (3).
(iv)⇒(iii): This is obvious since strong convergence implies weak convergence.
(iii)⇒(ii): It follows from the definition of weak convergence that A1

hσn(x) converges
dominatedly to zero for n → ∞. Repeating this argument we finally find that

lim
n→∞ As

hσn(x) = 0. (7)

On the other hand, by (4) we deduce

lim
n→∞(2hn)

−s�s
2hn A

s
h f (x) = [As

h f (x)](s) = (2h)−s�s
2h f (x) a. e. (8)

Moreover, applying the operator As
h to both sides of the definition of τn and noting

that �s
2hn

commutes with As
h , we find that

As
hσn(x) = (2hn)

−s�s
2hn A

s
h f (x) − As

hg(x). (9)

Combining now (9), (8) and (7) yields (ii).
(ii)⇒(i): First assume g = 0. Applying the operator As+1

t to both sides of (ii) yields
(2h)−s�s

2h A
s+1
t f (x) = 0, and for h → 0+ we find that [As+1

t f (x)](s) = 0. This
means that Ps−1(x; t) := As+1

t f (x) is a polynomial of degree s − 1 at most, and
letting t → 0+ it follows by (3) that f is also a polynomial of degree s − 1 at most.

Now let g ∈ L{a, b} be arbitrary, and consider the function F(x) := f (x)−Iscg(x).
Then by (4),

�s
2 h F(x) := �s

2 h f (x) − �s
2 hI

s
cg(x) = �s

2 h f (x) − (2 h)s As
2 hg(x) = 0.

The assertion now follows from the case g = 0. This completes the sketch. 	

For functions defined onR, thus those belonging toCloc or L1

loc, results correspond-
ing to those of Theorem 1 can be found in [5, pp. 383–388].

Let us now return toRiemann derivatives and themotivation. The foregoing theorem
can indeed be expressed more directly in terms of Riemann derivatives in the follow-
ing though weaker form; it follows directly from Theorem 1(ii)⇒ (i) by Lebesgue’s
dominated convergence theorem.

Theorem 2 Let f ∈ L{a, b}. If
(i) there exists a null sequence (hn) of positive numbers such that

lim
n→∞(2hn)

−s�s
2hn f (x) = g(x) a. e. in (a, b),

(ii) there exists a function τ ∈ L{a, b} such that

sup
n∈N

∣∣(2hn)−s�s
2hn f (x)

∣∣ ≤ τ(x), a < x − shn < x + shn < b,
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then there exists a polynomial Ps−1 of degree not exceeding s − 1 such that

f (x) =
∫ x

c
dt1

∫ t1

c
dt2 . . .

∫ ts−1

c
g(ts) dts + Ps−1(x) a. e. in (a, b),

where a < c < b.

Theorem 2 may be considered as a certain extension of assertion A from the sec-
ond to higher order Riemann derivatives, but with the additional condition (ii). The
direct generalization of assertion A to higher-order Riemann derivatives would be the
following:

C. If f is continuous on (a, b) and if f (s−2) exists everywhere on (a, b), and f has a
finite sth Riemann derivative g ∈ L{a, b}, then for a < x < b

f (x) =
∫ x

c
dt1

∫ t1

c
dt2 . . .

∫ ts−1

c
g(ts) dts + Ps−1(x),

where a < c < b.

Whereas for s = 2 the result is classical, for s = 3, 4 it is due to Verblunsky [6,
7] and Saks [8]. Our conjecture in 1954 was that it would also be valid for s ≥ 5.
The Indian expert in the broad area of various higher order derivatives, Satya Narayan
Mukhopadhyay, Burdwan University, India, managed to give a partial answer to con-
jecture C, the mathematical formulation being quite involved that we leave it to the
reader; see [9, 10]. In his recent book Mukhopadhyay [11, Section 2.23] proves the
result for s = 3 and 4 in the setting of his general approach to symmetric Riemann
(and de la Vallée Poussin) derivatives.

That one must assume the existence of f (s−2) for s ≥ 3 even in case g(x) = 0 can
be seen from the counter-example f (x) = |x |x (s−3). In fact, the first s − 3 ordinary
derivatives exist, but f (s−2)(0) does not at x = 0, while the Riemann sth derivative is
everywhere zero.

The importance of assertion C lies in the fact that it is used in proving the result
that if a trigonometric series converges, except in an enumerable set to a finite square-
integrable function g, then it is the Fourier series of g (see, e.g., [2, p. 274]).

In 1954, the authors believed that no previous attention had been given to results of
the type showing a relation between the class of functions defined on a finite interval
(a, b) having an sth order Riemann derivative and polynomials of degree s.

Dutta and Mukhopadhyay [9] succeeded in establishing all results of [1] in the
setting of Peano derivatives; in fact, since they used the same notation it is easy to
follow up their careful arguments. At the same time, they extended the results of the
latter to a wider class of functions and even by replacing polynomials of degree s − 1
by s-convex functions. This procedure was already indicated in the last section of [1]
and has been used by most authors working in the broad area of Riemann derivatives
not later than Verblunsky [6, 7] and Saks [8], one following [1] being Kassimatis
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[12]. The wider class is expressed by the scale of Cr P-integrals defined by Burkill
[13], upper and lower Riemann derivatives also being essential. Observe that since a
function is both s-convex and s-concave if and only if it is a polynomial of degree
s − 1, these results contain the more classical ones. They finally apply their results
to trigonometric series. Here Riemann’s method of summation comes into play; see,
e.g., [5, p. 54].

In a main result of his article Kemperman [14, pp. 81, 82] makes “essential use of a
special case of a result of Butzer and Kozakiewicz” in his study of generalized convex
functions.

As recorded in [1], every one of the theorems given there is valid not only for the
forward and backward differences but also for the above associated Peano difference.

2 Influence of the paper

The Butzer-Kozakiewicz paper [1] deals with the basic question: What are the nec-
essary and sufficient conditions in order that a given integrable function f be a. e.
equal to an indefinite repeated integral of another function g. A main result, namely
Theorem 1, gives this condition in terms of a difference quotient, which leads to the
characterization in terms of the Riemann derivative in Theorem 2

The paper is the basis to Sections 2.1.2 to 2.2.3 of [15, pp. 92–111], dealing with
Taylor, Peano, and Riemann operators in the setting of semigroup theory, they being
generalizations of the classical scalar-valued derivatives. These sections are largely
taken from [16].

Let E(X) the algebra of all bounded linear transformations of a Banach space X
into itself, and T = {T (t); 0 ≤ t < ∞} be a semi-group of class (C0) in E(X), i.e.,
T (t) : X → X satisfies the semigroup equation

T (t1 + t2) = T (t1)T (t2), T (0) = IdX ,

for all real t1, t2 ≥ 0 together with the (C0)-property

s-lim
t→0+ T (t) f = T (0) f = f ( f ∈ X),

where s-lim denotes the limit in the norm topology of X .
The (infinitesimal) generator A of T is defined by the strong limit

A f = T ′(0) f = s-lim
t→0+ t−1[T (t) f − f ]

onD(A), the domain of A, the set of all f ∈ X for which this limit exits. The operator
A is closed with D(A) = X . The powers Ar for r ∈ N are defined inductively by
Ar := A(A(r−1)) with A0 = IdX , their domains being D(Ar ).

The paper [16] (see also [15, Cor. 2.2.17]) deals with the so-called fundamental
saturation theorem for a family of operators, namely,
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D. Let X be a reflexive Banach space and T = {T (t); 0 ≤ t < ∞} be a semi-group
of class (C0) in E(X) with infinitesimal generator A. The family of operators

Cr
t f := T (t) f −

r−1∑

k=0

tk

k! A
k f (t > 0).

defined on D(Ar−1) is saturated with order O(tr ) for t → 0+, i.e.,

‖Cr
t f − f ‖ = o(tr ) for t → 0+ ⇒ Cr

t f = f for all t > 0,

and
‖Cr

t f − f ‖ = O(tr ) for t → 0+ ⇐⇒ f ∈ D(Ar ).

The method of proof in [16] is that of [1]. Indeed, the operators

Bs
t f = t s

s!
{
T (t) f −

s−1∑

k=0

tk

k! A
k f

}
= t s

s! C
s
t f (t > 0)

here take the place of the sth integral means As
t f of (2). In fact, in case T is the

translation semigroup, i.e., T (t) f (x) = f (x + t), then the operators

Bs
t f (x) = t s

s!
{
f (x + t) −

s−1∑

k=0

tk

k! f
(k)(x)

}
(t > 0)

tend to f (s)(x) for t → 0+, which presents exactly the sth Peano (or Taylor) derivative
of f ; see [17].

One of the most important applications of semi-group theory is defining fractional
powers of the infinitesimal generator. It concerns derivatives of fractional orders in the
semi-group setting, e.g., by Riemann or Peano derivatives; see [15, Section 2.2.1]. A
large literature is attached to this broad problem, very early papers are [18–20].

In her remarkable and understandable paper [21] Westphal develops a systematic
approach to fractional powers of order α > 0 of infinitesimal generators based of
Laplace transforms in the setting of the operational calculus ofL. Schwartz. She applies
her new fractional calculus to Marchaud-type representations of fractional powers
(−A)α as well as to Liouville-Grünwald-Butzer-Westphal representations [22]. In
[23] the equivalence of theWeyl with theMarchaud fractional derivative onR together
with their connection to Riesz derivatives are treated. For U. Westphal see also [24,
Section 13.2].

A basic application of those fractional powers is PDEs. One first example is
Cauchy’s problem for linear partial differential equations containing derivatives of
fractional order, which includes as a particular case a boundary-value problem of the
heat conduction equation. For the state of the art in 1966 see, e.g., the discussion in
[15, pp. 153–156]. A monumental study in this respect is the three-volume treatise by
Lions and Magenes [25].
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The Butzer-Kozakiewicz paper is the foundation to the Peano, Riemann, and Taylor
derivatives, in the scalar-valued form. An alternative, fully different approach to this
question is the Fourier transform method, the basis of which is an elegant, complete,
and systematic theory.

First results in this direction, namely that the Riemann derivatives of all orders are
equal to the Peano derivatives, provided they exist, can be found in [17]; see also [26].
The complete theory for strong as well as weak derivatives in C2π , C(R), L p

2π and
L p(R) for 1 ≤ p < ∞ is treated in Section 5.1.4 and in the full Chapter 10 of [5].
The present authors are not aware of the fact whether such results have been (or can
be) established for functions defined on a finite interval.

Let us return to the work of Mukhopadhyay, already mentioned in connection
with assertion C. He treats the matter using neither semi-group nor Fourier transform
theory. In the short introduction to his bookHigher Order Derivatives [11] he devotes
four lines to “Riemann derivatives of higher order [which] are the special study by
P.L. Butzer and W. Kozakiewicz …” Here he cites his paper [9] as well as 16 further
papers by authors from four countries including [27]. As to the contents of his book, he
studies a variety of derivatives of integral order for real-valued functions, thus Peano,
de la Vallée-Poussin, Cesàro, Borel, Abel, and Laplace derivatives. Concerning the
relations among them, he concentrates on the question of whether they are equal,
provided they exist finitely pointwise.

As to the definition of weak convergence. The usual definition reads:

A sequence ( fn) in L(a, b) is said to be convergent weakly to f ∈ L(a, b), if

lim
n→∞

∫ b

a
fn(u)ϕ(u) du =

∫ b

a
f (u)ϕ(u) du for all ϕ ∈ L∞(a, b). (10)

This definition of weak convergence is different from that given in (1) (cf. [1]).
Indeed, the conditions of (1) are necessary for weak convergence in the sense of (10),
but not sufficient; see [28, p. 82] in this respect.

Using this notion of weak convergence the classical definition of a weak Riemann
derivative reads:

If for f ∈ L(a, b) there exists Ds
w f ∈ L(a, b) such that

lim
h→0

∫ b

a
(2h)−s�s

2h f (u)ϕ(u) du =
∫ b

a
Ds

w f (u)ϕ(u) du for all ϕ ∈ L∞(a, b),

(11)
then Ds

w f is called the weak derivative of f of order s.

It is clear that if
lim
h→0

‖(2 h)−s�s
2 h f − Ds

s f ‖ = 0,

thus if the strong Riemann derivative Ds
s f exists, so does the weak one and Ds

s f =
Ds

w f .
Now, since (1) is necessary for (10), the existence of Ds

w f on some interval [α, β]
in the sense of (11) implies the assertion of Theorem 1(iii). This in turn implies
Theorem 1(iv), i.e., the strong Riemann derivative Ds

s f exists on [α, β]. This means
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that Theorem 1 remains valid if the weak convergence in Theorem 1(iii) is understood
in the sense of (10).

The particular case g = 0 of Theorem 1 can be slightly generalized as follows. For
simplicity, we assume a = −∞ and b = ∞.

Corollary 3 Let f ∈ L{−∞,∞} and s ∈ N. If for every fixed h > 0 the relation

�s
2 h f ∈ Pn (12)

holds in the sense that the left-hand side equals for almost every x ∈ R a function
in Pn, the space of all polynomials not exceeding n, then there exists a polynomial
pn+s ∈ Pn+s such that f (x) = pn+s almost everywhere in (−∞,∞).

Conversely, each qn+s ∈ Pn+s satisfies relation (12) for all x ∈ R.

The proof is an easy consequence of the fact that the difference operator
�1

2h decreases the degree of a polynomial by at least one. Hence, by iteration,
(�n+1

2h pn)(x) = 0 for each pn ∈ Pn . So, it follows from (12) that

(�n+s+1
2 h f )(x) = (�n+1

2 h

(
�s

2 h f )
)
(x) = 0 (13)

for almost every x ∈ R, which yields the assertion by Theorem 1 with g = 0.
The converse is obvious, again by the degree decreasing property of the difference

operator.
For an entirely different approach to the case s = 1 of this result see [29,

Lemma 2.5]. This lemma inspired us to deduce the above result from Theorem 1.

Appendix A: Paul Butzer’s reminiscences of the mathematics depart-
ment at McGill University from 1945 to 1959 and the spirit of the
collaboration withW. Kozakiewicz

In 1951, when Professor Wacław Kozakiewicz came to McGill University, Montréal,
he was highly respected in Canada as an expert, versatile mathematician, not only
in his research area, mathematical statistics but also in probability and real variable
theory. His foregoing stations had been the Dominion Bureau of Statistics (= DBS),
Ottawa), the University of Sasketchevan (Saskatoon), and the Université de Montréal;
see [30, 31] and Appendix B.

When McGills’ Principal Dr. Frank James and Dr. Herbert Tate McGills Chairman
of Mathematics (from ca. 1935 to 1964?) decided to create a graduate school in 1945,
their chief aim was to attract first-class mathematicians of senior rank. The first to
come was Hans Zassenhaus from the University of Hamburg, who was appointed
Peter Redpath Professor of Mathematics in 1949 (my brother Karl Butzer received
his BSc in mathematics in 1954, Dr. Zassenhaus being the advisor); cf. [32]. The
mathematical analyst Charles Fox, from Birkbeck College, London, since 1949 at
McGill, who was promoted to professor in 1956, was a pleasant colleague. He raised
the question whether there exist processes which simultaneously approximate and
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interpolate a given function. Such a process is the Fejèr-Hermite interpolation process,
not aware to approximation theorists in North America at the time.

WhileWacław came in 1951, PhilipR.Wallace, a doctoral student of Leopold Infeld
at Toronto, was a theoretical physicist and one of the bright lights of the mathematics
department already since 1946.

AfterDr. Tate hadheard thatDr. Zassenhaus hadofferedmeaposition in his research
group in spring 1952 (I had received my PhD in mathematics, minor physics, at the
University of Toronto in 1951, Dr. George Lorentz being the advisor), he counter-
offered with a regular lectureship (with promotion to Assistant Professor in 1953).
During my 3 years at McGill I gave graduate courses on the theory of divergent series
(Dr. Loyd Williams, who had taught it regularly, passed this course on to me before
his retirement 1954) and Lebesgue integration (Jean Maranda being one of my good
students; he received his PhD under Dr. Zassenhaus).

Until 1945, mathematics had been almost wholly a service department, mainly for
engineering, with only seven faculty members. Dr. Zassenhaus had alone nine PhD
students during his 10 years atMcGill, seven until 1954. The first in 1950 was Joachim
Lambek (1922–2014), who was born in Leipzig and spent 2 years in a Canadian
internment camp. He was the first PhD in mathematics granted at McGill, even the
first in the Province ofQuebec. (The total number of students and PhDs inmathematics
was not available to me for the period.)

All in all, the establishment of a graduate school in mathematics was a full success.
For the year 1964, it is known to have some 40 newcomer students in the graduate
school per year, half of them masters, the other half being doctors. According to the
“QS The World University Ranking,” released June 2023, McGill ranks 30 (Toronto
21).

This was the state of mathematics when Wacław and I wrote our joint paper in late
fall of 1952. At the time Wacław was a well-established mathematician in Canada, a
product of the unique generation of mathematicians born in Poland between the two
World Wars, with nine papers to his credit, in the broad area of probability theory
(the first of 1933), while I had just two on approximation theory; he was 41, I just
24, a youngster in the Canadian mathematical community. We worked in Wacław’s
home in Montréal-Westmount, while his spouse kindly prepared tea or hot chocolate
with sandwiches or cakes. She was a refined, reserved, but friendly lady, who was
always concerned that Wacław may excerpt himself too much; he seemed to have
health problems. They had a son, John (Christopher), who often wanted to play with
us while we were working.

Wacław, who was a polite, contemplative, very helpful, and kind person, never
made me feel like a youngster during our many sessions. We tackled a problem, new
for us two, in close cooperation.

In contrast, Dr. Lorentz2 (who claimed that through his mother, who was a member
of the large Prince Chergodaev family, he was a descendant of Genghis Khan the
fearsome Mongol warrior of the 13th century) had suggested a thesis topic, namely
generalizing a theorem of A.O. Gelfond in a complex function theory setting. I saw
no way and have not seen such a generalization since. There was no constructive

2 For an orbituary of G.G. Lorentz see [33].
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help on his part—just criticism. I thought of my own topics; the approach of one of
them, on linear combinations of Bernstein polynomials, was applied by some dozens
of authors to a variety of approximation processes, in particular under the heading
“linear combinations”; see [34]. The papers [35–37] were chapters of my Toronto
dissertation. [38] was completed shortly after them. It is quite often cited in the more
recent literature.

Let me emphasize that the kind, helpful, and cooperative wayWacław worked with
me became the model for my work with my many students I later had in Aachen.

Appendix B: A short biography of Wacław Kozakiewicz

Wacław Kozakiewicz was born in Warsaw on 23 January 1911, and baptized in the
village Złotniki in the Jędrzejów district. He was the son of Jan Kozakiewicz (1882–
1945) and Taida Maria Anna, née Trószyńska. His brother was Stefan Kozakiewicz,
later professor of art history at Warsaw University.

From September 1920 he was a pupil at the Mikołaj-Rey Grammar School in
Warsaw, where his father was mathematics and physics teacher and director; see
https://www.rej.edu.pl/dyrektorzy_szkoly/. He received his school-leaving certificate
(humanistic type) in May 1929.

In October 1929, he began his studies of mathematics at the University of Warsaw.
At first he was interested in the theory of analytical functions, then in probability
theory and mathematical statistics. He attended lectures by Wacław Sierpiński, Jan
Łukasiewicz, StanisławSaks,OttoNikodýmandAleksanderRajchman, amongothers,
but was mainly a student of Stefan Mazurkiewicz. He worked in the student Math-
ematical and Physical Circle and was its vice-president for 1 year. On 7 November
1933, he was awarded the Master’s degree.

In the academic year 1933/34, he studied at the Faculty of Humanities of the Uni-
versity of Warsaw as part of the Pedagogical Year Study.

From November 1933 to October 1938 he was a senior assistant in the Department
of Mathematical Statistics at the Faculty of Horticulture of the Warsaw University of
Life Sciences (SGGW) in Warsaw, headed by the statistician Jerzy Spława-Neyman.
He received his doctorate in mathematics from the University of Warsaw in 1936, his
thesis being supervised by Stefan Mazurkiewicz.

At the onset of the war, he joined the Polish armed forces in France and served
until the surrender of France in June 1940. As he could not leave France, he taught
mathematics at the Polish lyceum for the next 4 years. When he was ordered to report
for forced labor in Germany, he fled via Spain to Canada, where he arrived in October
1944.

There he first joined the staff of the Dominion Bureau of Statistics (DBS) in Ottawa,
and in the autumn of 1945, he became an associate professor of mathematics at the
University of the Province of Saskatchewan in Saskatoon, Canada, where he became
a close friend of W. J.R. Crosby, who valued him most highly. In 1949, the Université
de Montréal wanted to establish a program in mathematical statistics and they were
therefore looking for a mathematician trained in the French tradition. They offered
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Kozakiewicz this position, which he accepted. In 1951 he migrated to McGill Univer-
sity.

He died of a heart attack inMontréal on 8March 1959, leaving his wife Naomi, née
Pelletier (who died in her home on March 27, 2014, at the age of 102), a Canadian,
and their son John. He had met Naomi at the DSB, they were married in the winter of
1947.

This biography is based on that of Krysko [30] and the obituary [31], which also
contains a list of his publications.

Appendix C: A short biography of Maurice Dodson

Michael Maurice Dodson and his twin brother George Guy Dodson were born in
PalmerstonNorth,NewZealand on 1 January 1937.Maurice graduated fromAuckland
University in 1957 with a BSc, and in 1958 with an MSc in Maths (1st Class Honors)
and the Mathematics Prize. He went to Cambridge in 1959 and graduated with a BA
in Maths in 1962. He studied Number Theory under Harold Davenport and obtained
his PhD in additive Number Theory in 1965. His brother Guy studied chemistry and
went on to Oxford in 1961 to work with the eminent Professor Dorothy Hodgkin, who
was awarded a Nobel Prize in chemistry in 1964.

Maurice joined the just 1-year-old University of York in 1964. His research inter-
ests broadened from Diophantine equations and approximation in number theory to
catastrophe theory, and through a connection with X-ray crystallography, came to
include Fourier series, harmonic analysis, and applications to sampling in 1985 when
he first met Rowland Higgins. He also had become interested in chaos, biology, and
dynamical systems. According toMathSciNet, Maurice was the author of 90 scientific
publications in these fields.

As for sampling,Maurice focused on sampling in abstract spaces. In this regard, see
his chapter “Abstract harmonic analysis and the sampling theorem” in [39,Chapter 10],
written togetherwithM.G.Beaty.Hewas an invited speaker at the SampTAconference
held at Samsun, Turkey, 2005, with the lecture “The Whittaker-Kotel’nikov-Shannon
sampling theorem in abstract harmonic spaces”; see [40]. He contributed to the work-
shop “Approximation Theory and Signal Analysis” in Lindau 2009 to celebrate Paul
Butzer’s 80th year with “Approximating signals in the abstract” [41]. See also [42,
Section 11.2] and [43, Sections 6.2 and 6.3].

Maurice was invited to the British-Russian Workshop in Functional Analysis, held
at theEuler InternationalMathematical Institute (associatedwith the Steklov Institute),
St. Petersburg, from 13 to 17 October 1996. There were about 30 participants from
different parts of the former Soviet Union and from England, Scotland, and Wales.

In 1988, the authors participated in Maurice’s “Symposium on Fourier Analysis,
Interpolation and Signal Processing” in York. A large number of prominent mathe-
maticians were present, including Walter Hayman from Imperial College, who had
invited me (PLB) to a lecture at his university during my first trip to England and Scot-
land in 1973, together with my parents, a tour organized by Lionel Cooper. Jointly
with Jim Clunie, Maurice organized an even larger follow-up conference in 1993.
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During the 1988 symposium, Maurice suggested that the University of York and
RWTH Aachen join forces in establishing the Aachen-York “Alcuin Symposia,” a
series of conferences on mathematics, history, electrical engineering, and on bio-
chemistry. It was Johannes Erger, chairman of the external institute of the RWTH (see
[24]) who succeeded in incorporating its core into the Erasmus Student Mobility pro-
gram of the EU, a student exchange program that ultimately involved 22 universities
from seven EU countries. Many students from Aachen and most of those going from
the Lehrstuhl A für Mathematik, went to the University of York, especially because
Maurice took care of them; see also [44]. In connection with the Erasmus program, he
took part in workshops in Segovia (Spain), Orleans (France), Thessaloniki (Greece),
and Assisi (Italy).

The first of the “Alcuin symposia,” conducted by the authors, was held in Aachen
in 1989, followed by one in York 1 year later and the symposium “Science and History
in Western and Eastern Civilisation” in Aachen in 1991; the proceedings appeared in
[45]. The Alcuin Symposia on biochemistry were held as joint workshops on insulin
and related proteins between the groups of Guy Dodson in York and the groups of
Dietrich Brandenburg and AxelWollmer in Aachen. The last one took place in Aachen
in 2000; for the proceedings see [46].

Mauricewas due to retire in 2004, but the closure of theDepartment ofMathematics
at the nearby University of Hull, announced in late in 2004, led the two Universities
agreeing that the York Department would adapt and take on those whom it could.
This was a very complicated and delicate operation at a time when York, like many
universities in the UK, was also experiencing cuts. Moreover, the Head of Department
was due for a year’s leave. In view of his competence and international reputation, the
Vice-Chancellor appealed to Maurice to postpone his retirement and serve as Head of
Department for a year. The many problems of staff and student accommodation were
managed by Maurice, the new program started on time and Maurice finally retired for
good, now as Professor Emeritus in 2005.

In 1974, he married Haleh Afshar, an Iranian who became a professor of politics
and women’s studies at the University of York, was awarded an OBE for her work on
women and Islam and was elevated to the House of Lords in 2008, as Baroness Haleh
Afshar of Heslington. She died too early on 12 May 2022.

At a convocation ceremony at the University of York in July 1997, three persons
were honored with a Doctorate from the University, the retired Archbishop of York,
John Habgood, the renowned president of the European Commission, Jacques Delors,
and I (PLB) myself; see [44]. Maurice proposed and organized in full the honorary
doctorates for Christopher Zeeman3 andmyself, and together with his Number Theory

3 Erik Christopher Zeeman was born in Japan on 4 February 1925. His family moved to England 1 year
after his birth. He studied mathematics at Christ’s College, Cambridge, and received an MA in 1950 and a
PhD in 1954 (the latter under the supervision of Shaun Wylie) from the University of Cambridge. Zeeman
was elected as a Fellow of the Royal Society in 1975 and was awarded the Society’s FaradayMedal in 1988.
He was the 63rd President of the London Mathematical Society in 1986–88. He was awarded the Senior
Whitehead Prize of the Society in 1982. Between 1988 and 1994 he was the Professor of Geometry at
Gresham College. He received a knighthood in the 1991 Birthday Honors for “mathematical excellence and
service toBritishmathematics andmathematics education” (extracted from [47], see also https://warwick.ac.
uk/newsandevents/knowledgecentre/science/maths-statistics/zeeman and https://mathshistory.st-andrews.
ac.uk/Biographies/Zeeman/).
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colleagues Richard Hall and Terence Jackson that for Paul Erdős. My deep thanks are
due to Maurice for this special honor.

Rudolf and Paul always have fond memories of their visits to York, where they
were often invited byMaurice to his cozy house and hosted by him and his wife Haleh
at a huge wooden table with extraordinary warmth; see also [44]. Rudolf and Paul
would like to express their profound gratitude to Maurice for his true friendship over
the many years.
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