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Abstract

Blind deconvolution problems arise in many image restoration applications.
Most available blind deconvolution methods are iterative. Recently, Justen
and Ramlau proposed a novel non-iterative blind deconvolution method. The
method was derived under the assumption of periodic boundary conditions.
These boundary conditions may introduce oscillatory artifacts into the com-
puted restoration. We describe extensions of the Justen-Ramlau method that
allow the use of Neumann and antireflective boundary conditions.

1 Introduction

The blurring of a digital image is often modeled by a linear convolution operation,

g(w,y)Z(k*f)(w,y)=//Qk(m—w,y—£)f(¢,£)d¢df, @y e (1)

where f represents the exact image, g is the resulting blurred image, k is the kernel
function of the blurring operator, and € is a rectangular region in R?. In the
context of digital image restoration, the function k is often referred to as a point
spread function (PSF). Thus, the problem of determining f, given g and k, can be
expressed as a Fredholm integral equation of the first kind

g=Kf. (2)

The solution of equation (2) for f, given g and K, is referred to as deconvolu-
tion. In applications of interest, the kernel k is a smooth function. Then solving
(2) is an ill-posed problem in the sense of Hadamard due to the lack of continu-
ous dependence of the solution f on the data g. The computation of a meaningful
approximate solution of (2) in finite-precision arithmetic is generally only possible
with the aid of regularization methods, such as truncated singular value decompo-
sition or Tikhonov regularization. These methods replace the ill-posed problem (2)
by a nearby problem, whose solution is less sensitive to perturbations introduced by
discretization and computations in finite precision.
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In the case when the point spread function k is not known, the numerical solu-
tion of (2) is referred to as blind deconvolution. Due to the lack of unicity of the
computed solution f, blind deconvolution also is an ill-posed problem. Blind decon-
volution problems arise in many applications in science and engineering, including
astronomical, biological, and medical imaging; see, e.g., [3] for recent discussions of
methods and applications.

Most of the available blind deconvolution methods are iterative; see, e.g., [2,
3, 5,6, 7, 10, 12, 14, 15, 16, 18, 19, 21] and references therein. Recently, Justen
and Ramlau [13] introduced a novel non-iterative method. This method can be
applied when the PSF k satisfies certain smoothness and symmetry conditions.
Justen and Ramlau [13] considered the situation when the PSF k and the data
g are periodic. Advantages of the non-iterative method by Justen and Ramlau
[13], in comparison with available iterative methods for blind deconvolution, include
its simplicity, which makes implementation fairly straightforward, and its speed.
However, the use of periodic boundary conditions (BCs) for the PSF k and the data
g may lead to oscillatory artifacts propagating from the boundaries of the restored
image. These artifacts can be avoided or attenuated by using other BCs. For
instance, reflective (or “Neumann”) BCs impose continuity of the computed solution
across the boundary of the image. Neumann boundary conditions suppress many
oscillatory artifacts in the computed solution that may be present when periodic
boundary conditions are imposed. This paper describes extensions of the Justen-
Ramlau method to reflective and antireflective BCs.

The main contribution of this paper is to present a simple blind deconvolution
method that yields approximations of the original image and of the PSF with fairly
little computational effort. The method in many situations gives better approxima-
tions than the scheme by Justen and Ramlau [13]. This is illustrated in Section 5. It
may in some applications be attractive to use the computed image and PSF as ini-
tial approximations for one of the available iterative methods to enhance the quality
of the computed image further. Having a fairly accurate initial approximation for
the iterative methods reduces the computational effort required by the latter and
may also affect the quality of the computed image; see Carasso [4] for a discussion
on a particular post-processing method. We are presently investigating this kind of
hybrid methods.

In applications that require image deblurring, the available contaminated image
g generally also is corrupted by noise 7, which may stem from imperfections in the
recording of g and from storage in finite-precision. The exact image f then satisfies
the equation

g=Kf+n. (3)

We consider this situation in Section 5, which presents computed examples.

This paper is organized as follows. In Section 2, the convolution operation and
the effects of the boundary conditions on the solution of the associated inverse prob-
lem are discussed in terms of finite-dimensional linear algebra. Section 3 describes
the non-iterative blind deconvolution method of Justen and Ramlau. The periodic
BCs and shift invariance used in this method allow the application of the Fourier
transform to simplify the problem. In Section 4, a modified algorithm that admits
more general BCs, including Neumann and antireflective BCs, is derived. In particu-
lar, a novel decomposition of the blurring matrix that allows efficient computations



is proposed. Numerical examples determined with the modified method are pro-
vided in Section 5 using periodic, reflective and antireflective boundary conditions.
Section 6 contains concluding remarks.

2 The Linear Algebra of Image Deblurring

Consider a discretized restatement of the deconvolution problem, where the func-
tions f, k, and g are represented, respectively, by the finite dimensional matrices
F,K,G € R™*™. Each entry of F' and G represents a pixel in a gray-scale digital
image. The numerical value of each pixel is called the intensity, which determines
the brightness of a small portion of f and g in €. Similarly, the entries of K repre-
sent discrete samplings of the convolution kernel k in €2. In this setting, the blurring
operation (1) takes the form

n m

Gij = Z Z K hj—1Fn, (4)

h=11l=1

involving the matrices K, F, G € R™*"™, Next we introduce two operators that allow
us to represent matrices as vectors, and vectors as matrices.

Definition 1. Let A = [a;;] € R™*". Then the vectorization operator

vec : RM*" — R™"

applied to A yields the column vector formed by successively stacking the columns
a; of A. That is

ai
ai
a2

vec(A)=1| . | =1 am
Qnp

Definition 2. Let x = [z;] € R™". Then the matrixization operator
mat : R”" — R™*"

applied to z yields the matrix formed by successive column-wise filling of an m x n
matrix with the elements of x, i.e.,

1 Tm+1 " Tm(n—1)
mat (z) = : :

Tm  T2m LTmn,
The vec and mat operators may be executed in MATLAB using the reshape
command. It follows from Definitions 1 and 2 that for any A € R"™*" and z € R™"

mat (vec (4)) = A and vec(mat (z)) = x.

The purpose of introducing the vectorization operator is to allow for (4) to be written
as a linear system of equations
Az =0, (5)



where z = vec (F') € R™, b = vec (G) € R™, and A € R™ ™" ig a matrix which
encodes the discrete convolution operation.

Since it is assumed that F', G, and K are matrices of the same dimensions,
BCs for the convolution operation must be prescribed, i.e., we have to prescribe
the contribution to the blurred image from pixels outside of the field of view of the
recorded image. Figure 1 shows extensions of a sample image assuming zero-padded,
periodic, reflective, and antireflective BCs. The exact assumptions underlying each
boundary condition are as follows:

(i)

(iii)

Zero-padded BCs, also referred to as Dirichlet BCs: All pixels outside of the
field of view of the recorded image are assumed to have the value zero. Zero-
padded boundary conditions are perhaps most useful in a situation in which
it may be assumed that most of the data has a numerical value near zero
such as in many astronomical images. This results in a blurring matrix with
a Toeplitz structure, but generally cannot be structurally characterized any
further. Consequently, image deblurring problems involving zero-padded BCs
do not involve blurring operators which are quickly diagonalizable using fast
transforms on the components of the recorded image and PSF matrices. While
described for completeness, extension of the Justen-Ramlau method to zero-
padded BCs is not considered in this work.

Periodic BCs: The pixels outside of the field of view of the recorded im-
age are assumed to be a periodic extension of the recorded image. Therefore
F;; = Fitintj. Periodic boundary conditions are computationally very at-
tractive, since the solution to the deconvolution problem may be computed
using fast Fourier transforms. This is due to the fact that the blurring ma-
trix A has a block circulant with circulant block (BCCB) structure. However,
methods for image compression and restoration which compute solutions un-
der the assumption of periodic boundary conditions are known to produce
oscillatory artifacts in the computed solutions [17, 9].

Reflective BCs, also referred to as reflexive or Neumann BCs: Here it is as-
sumed that all pixels outside of the field of view are mirror reflections of the
recorded image about the image boundaries. In other words, F1_;1_; = F; ;.
Reflective boundary conditions do not introduce artificial boundary artifacts,
since continuity at each boundary is enforced. This leads to a somewhat com-
plicated structure of the blurring matrix, which takes the form of a sum of
four block Toeplitz and block Hankel matrices. Nevertheless, a deconvolution
problem involving a symmetric PSF and reflective boundary conditions pro-
duce a blurring matrix which may be diagonalized readily through application
of the 2D discrete cosine (II) transforms [17]. Further discussion of reflective
boundary conditions is provided in Section 4.2.

Antireflective BCs: Here Fl—z',l—j = 2F171 — Fi+1,j+1 and Fm+i,n+j = 2Fm,n —
Frn—in—j;. Antireflective boundary conditions enforce continuity of the normal
derivative at the boundary and lead to a blurring matrix that can be diag-
onalized with the aid of the 2D discrete sine (I) transform and some other
(fast) computations. Further discussion of antireflective boundary conditions
is given in Section 4.3. A more complete discussion of the algebra of blurring
matrices formed from antireflective boundary conditions can be found in [20].



Once boundary conditions have been selected, A may be formed, and the solution
of (5) can be computed.

3 The Justen-Ramlau method

The Justen-Ramlau method is derived under a continuous formulation of the decon-
volution problem, and assumes that only the recorded image ¢ and some estimate k
of the kernel k are available. The method is based upon computing a minimum-norm
solution to a closely related problem described in the following definition:

Definition 3. Given a recorded image g along with image and kernel estimators f
and k, respectively, the pair (fT(g),k" (g)) is said to be an (f, k)-minimum-norm
solution to the problem f x k = g if and only if

[ =l = mim = 712 + = s

f,k:eILQ,f*k:g}.

The analysis of the behavior of the minimum-norm solution of Definition 3 is
closely related to that of iterative alternating-minimization methods for the func-
tional

Foyap (f k) = | f*k— 9”]%2 +a Hf - fH]iz +ao Hk - EH?L? )

where beginning from estimates f and k and some initial iterate f°, the functional
F4, o, is alternatingly minimized for k£ and f. Here oy and o are positive constants.
This alternating-minimization method is shown to converge to a minimizer pair
(f,k) of Fa, 0, for f =k =0 and f° = g [6]. Justen and Ramlau [13] showed that
when g is produced under the assumption of periodic boundary conditions, the phase
of the solution recovered via the alternating-minimization approach is completely
determined by the recorded image

~

sign <f (uJ)> = sign (g (w)) ,

where f and ¢ are the Fourier transforms of f and g, respectively, and sign denotes
the complex sign function. Although a frequency-wise equivalence in phase between
the Fourier transform of an exact image and the Fourier transform of a blurry version
of itself does not occur in general, it does hold in the case of zero-phase blurring
kernels such as Gaussian kernels. In this case, we have

fw) =1 (w)g (w)

for some real positive scalar rf (w). That is, each Fourier frequency of the blurry
image need only be scaled to restore the original image; their phases are equal.

Following Justen and Ramlau [13], we consider the 1D case for notational sim-
plicity with all functions assumed to belong to L2 (R). Using the fact that the
Fourier transform is isometric with respect to the L2-norm, the minimum norm
solution of Definition 3 satisfies

17 = £+ W= FIE = 57 [ £ )= F

‘ 2
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(a) Example image. (b) Extension of image assuming zero-
padded BCs.
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(c) Extension of image assuming peri- (d) Extension of image assuming reflec-
odic BCs. tive BCs.

(e) Extension of image assuming antire-
flective BCs.

Figure 1: An example showing extension of a digital image for a variety of boundary
conditions.



Therefore, it suffices for this functional to be minimized point-wise for each frequency
w?

min : [f W)~ fW)| + k@) - k@), (6)

f(w) k()

2
|+

with f and k satisfying the Fourier convolution theorem f (w)k (w) = § (w). In this
way, the computation of the minimum-norm solution completely decouples under
application of the Fourier transform. Thus, the problem may be restated as

micn: z—f(w)‘Q—i- ‘C—/?:(w)r such that 2¢ = g (w),

for each Fourier frequency w. Since z{ = § (w), we may substitute ( = g (;"), which
gives

+

(7)

‘2

mzin:’z—f(w)

I\

Justen and Ramlau [13] showed that with the solution estimator f (w) = g sign™ (l?: (w)),

where .
, - 1, k(w)=0
sign™ (k = Toa ’
gt (k) { 1, F(w) <o,

uniqueness of the solution of (6) is guaranteed for any symmetric, non-negative, and
suitably bounded kernel k. Substituting this estimator into (7) gives the equivalent
problem

win : (r7 () - lg @)+ (54 -

rf(w)>0

/2(@])2 = -+ (5 —6)2,

r

where r = 7T (w), ¢ = |§(w)| > 0 and b = ‘l?:(w)‘ with 0 < b < 1. A first-order

necessary condition for a scaling factor » > 0 to minimize this expression is
d 2 C 2
K T N
dr |:( ) r Y

rt —erd + ber — 2 = 0.

which yields

It is shown in [13] that this polynomial has a unique positive root for ¢ > 0 and
0 < b < 1 defined as above; thus 7' (w) will be uniquely determined by this method
for each w. Once each 7' (w) has been found, one may set

@) =1 @) g @) sign* (k).

- lic(w), r=0,
]{;T (w) = { Q(w) , ;é 0,

fTw)”
and then compute inverse Fourier transforms of fT and k' to obtain the minimum-
norm solution pair ( ftg), ktf (g)) Finally, Justen and Ramlau [13] considered a
generalization based on minimizing functionals of the form

Fy (f k) =7 ||f = Fllia + |k — K|,

7



for some positive scalar . The purpose of this generalization is to rebalance the
problem in the case when || |2 is much larger than ||k||7,. For this, it was shown
that the minimum-norm solution is given by

(£0.5 0) = (=1 o) K (V3.
ﬁ

Algorithm 1 below summarizes the Justen-Ramlau method in terms of finite-
dimensional matrices. One detail worth noting is that in a discrete 2D setting, the
discrete convolution theorem requires a circulant shift of the matrix of the point-
spread function prior to computation of its Fourier transform [9]. Analysis in [13]
shows that for a noise-free problem, no additional regularization is required. In
the case where the recorded image is contaminated by additive noise, one may
readily apply a spectral filtering method (such as hard thresholding or Tikhonov
regularization) to the components of §. Therefore, inversion and regularization
of the blind deconvolution problem exist as separate tasks under this framework.
Existence and uniqueness of the minimum-norm solution is only dependent on the
choice of periodic boundary conditions through the use of the convolution theorem
and Plancherel’s formula. We say that a matrix is non-negative if all its entries are
non-negative.

Algorithm 1 The Justen-Ramlau method (Periodic BCs)
Input: parameter v > 0, blurry image G € R™*" and estimated symmetric,
non-negative, and normalized PSF matrix K € R™*"

- Compute discrete Fourier transforms: G € C™*" of G and K = cir/csﬁft(K ) €
Can

fori=0—-m—-1do
for j =0 —-n—1do
- Set C=ﬁ’éij , b= ’KU
- Solve 73 (1 — ¢) + ¢ (rb — ¢) = 0 for non-negative root r

~

- Set FZTJ = _sign (Gi]) sign™ (IA(”)

V&l
if r # 0 then
Kij = F:]J
elsg .
Kl =K
end if
end for
end for

- Compute inverse discrete Fourier transforms of F and K to determine the image
F' and PSF KT, respectively

4 Extension to other BCs

To extend the Justen-Ramlau method to non-periodic boundary conditions, we have
to examine the 2D discrete convolution theorem. The role of the Discrete Fourier



Transform in the diagonalization of the discrete convolution operator under periodic
boundary conditions must be generalized in some way to transformations which
diagonalize the convolution operator under other boundary conditions. To this end,
we first consider Lemma 4.3.1 in [11].

Lemma 4.1. Let A € R™™ B € R"™", and v € R™. Then (AQ B)x =
vec (Bmat (x) AT), where A ® B represents the Kronecker product of A and B.

This lemma shows that forward multiplication of a Kronecker product with a
vectorized matrix can be interpreted as a vectorization of a similar transformation
applied to the rows and columns of the matrix directly. As an example, this duality
can be applied to the 2D Discrete Fourier Transform. The 2D Discrete Fourier Trans-
formation of a matrix can either be described as multiplication of a vectorization of
this matrix with the Kronecker product of two 1D Discrete Fourier Transform matri-
ces, or simply as a 1D Discrete Fourier Transform applied to each row of the matrix,
followed by the transformation of each column. Analogous forward transformations
arise when considering the diagonalization of the matrices of certain blurring op-
erators. When this happens, it can be shown that a decoupling relationship exists
between the pixels of a transformed blurred image and the corresponding pixels of
the transformed exact image. A proof of this decoupling relationship is given next.

Theorem 4.2. Consider equation (5), where b = vec(G) and x = vec(F) for
the blurred image matriz G and the exact image matrix F. Assume the boundary
conditions to be such that the matriz A € R™*™" 45 normal. Then AA* = A*A
and

A=U"AU (8)

for some unitary matrizc U € C™™ ™" and diagonal eigenvalue matriz A € C™>™",
Furthermore, assume that U may be factored as a Kronecker product

U= mem & Van7 (9)

where Viyyxm € C™™ and Vg, € C™™ are unitary matrices. Let a; € R™"
represent the first column of A, ey represent the first vector of the canonical basis of
R™ and M € R™ "™ be a matriz containing the eigenvalues of A,

mn
M = mat (AZel) ,
i=1
i.e., the matrix M has the entries
Mi ;= AG-1ynti,(j—1)nti-

Then the components of F, G, and M obey the decoupling relationship

—

N . mat(ay); ; N
Gij= F]% = F;; M, ;, 1<i<m, 1<j<n, (10)
mat (e1); ;

where H denotes the transformation H = mat (Uvec (H)) of a matriz H € R™*",



Proof. We have
UA =AU = Ua; = AU€1,

where a; is the first column of A and e; = [1,0,... ,O]T is the first vector of the
canonical basis of R™". Solving for each eigenvalue \; gives

[Ual]»

— ]

' [Uel]i’

where [z]; denotes the i*! component of the vector 2. For equation (5), we have
x,b € R™" ag vector representations of the matrices F, G € R™*" created by stacking
their respective columns (as discussed in Section 2). These relationships can be
written as

b=vec(G) & G =mat(b),
x=vec(F) < F =mat(z).

Therefore, the mn eigenvalues may be collected in the matrix M with entries

mat (Ua1), ;

“7 7 mat (Ue1), ;
By (5) and (8), we have Ub = AUz, and application of Lemma 4.1, using (9),
yields
Uai = (Vimxm ® Voxn) a1 = vece (Vyxpmat (ay) Vn{m) ,
Uer = (Vinxm ® Vaxn) €1 = vec (Voxpmat (e7) Vn:fxm) .
It follows that we can write the forward discrete transformations Uaq, Ueq, Ub,

and Uz as forward 2D orthogonal transformations applied directly to their matrix
representations:

—

mat (Ua1) = mat(a1) = mat(ar),

mat (Ue;) = mat(é1) = mg(\cq),
mat (Ub) = mat 3) = HW) =G,
mat (Uz) = mat(z) = mgt-a =F.

Since U is a unitary matrix, this transformation is isometric with respect to the 2-
norm. This provides the component-wise decoupling of the deconvolution problem
(10). O

For our purposes, equation (10) may be interpreted as a generalization of the
Fourier convolution theorem for the applied boundary conditions. It must be noted,
however, that not all boundary conditions used in digital image deblurring problems
correspond to a normal blurring matrix.

10



4.1 Generalizing the Justen-Ramlau method

The following analysis of our generalization of the Justen-Ramlau method is re-
stricted to finite-dimensional linear algebra for simplicity, i.e., we let F, K, G € R™*"
and A € R™M™»*™"  Extension to infinite-dimensional Hilbert spaces is straightfor-
ward.

Assume that the boundary conditions and the PSF matrix K are such that
the blurring matrix admits a spectral factorization (8) with an eigenvector matrix
that satisfies (9). Also let the kernel matrix K be symmetric, non-negative, and
normalized as described below. Similarly as in the previous section, let U define a
forward discrete 2D orthogonal transform X for any matrix X € R™*"_ Then the
decoupling relationship R R

Gij = F; jM; ;

holds as discussed in the previous section. Let an estimate of the eigenspectrum M
be given by
mat (dl) i
’i,j - —_ ’
mat (e1); ;
where @, is the first column of the blurring matrix A, determined from the chosen
kernel estimate K using the selected BCs. Note that it may not be necessary to

construct A in order to have access to the components of a1, because

1 0 --- 0
a; = Ae; = Avec 0 0 . ,
o ... --- 0

i.e., the first column of A is the vectorization of a unit impulse response of A,
centered at the first row and first column with values wrapped around the matrix
according to the specified boundary conditions. By definition, the unit impulse
response of A is exactly the PSF matrix K. Thus, if the boundary conditions are
such that all pixels of K are available after wrapping (such as in the case of periodic
boundary conditions), then all of the values of K are explicitly available in @; and
vice-versa. If the boundary conditions are such that only a portion of K remains
after wrapping (such as in the case of reflective and antireflective BCs), then the
values of K are only known completely in a; if K obeys some symmetry conditions.
Thus, certain combinations of boundary conditions and symmetric PSF matrices
allow for @; to be easily constructable from the components of K. This is examined
further in Sections 4.2 and 4.3.
Consider the matrix functional

F(F,M)=||F - F|+||M - M|,

where F is an a priori estimate for the exact image F and M is an estimate of
the matrix M of eigenvalues of the blurring operator. From this, we may define
a minimum-norm solution for the problem of blind deconvolution of G with eigen-
value matrix estimate M under the assumptions stated above to be the matrix pair

11



(FT, MT) such that

F (FT,MT) —  min {}"(F, M)|Gig = FipMig, 1<i<m, 1<5< n}
F,MeRmx*n
(11)

We may now proceed to directly solve for a minimum-norm solution as before.
However, note that in this case, we are not recovering an estimate of the exact point
spread function KT but instead an estimated matrix of eigenvalues of A, denoted
by M. The following theorem discusses the solution of this minimization problem.
The condition on the eigenvalues of A will be commented on below.

Theorem 4.3. Let G € R™*™ be a recorded blurry digital image with K € R™*"
being a symmetric, non-negative, bounded, estimate of the associated blurring kernel.
Assume that the applied boundary conditions and blurring kernel are such that the
blurring operator A € R™*™" 4s o normal matriz with spectral factorization A =
U*AU, where U admits a Kronecker product factorization U = Vyxm @ Vaxn and
the eigenvalues are bounded by one in magnitude. Let the solution estimator be

Fo=rt (w)uézk sign™ (Mzk) . (12)
Then there exists a unique minimum-norm solution (FT,MT) of (11).

Proof. Just as in the Justen-Ramlau method, a complex sign invariance is assumed
to hold between the components of £ and G, so that we may proceed by searching for
F such that (12) holds for each component F,J Isometry of the forward transform
defined by U with respect to the 2-norm implies that for each 1 <i <m,1 < j < n,
a minimum-norm solution must minimize

min : ‘z —Fi;

2 _ .
! + ‘C — Mi,jf such that 2( =G,
2,

or, equivalently,
2

Gik

z

2
+

min : ‘Z - F@j - Mi,j
z

By assumption, for each i, k, we are searching for z such that
z=rl (W), ;Gijsign®™ (M),

with initial image estimate F ik = G’” signt (M; ;). Hence, it suffices to solve

2

Gz‘,k‘

. 2
min : (r— ‘Gi’kD +

mi — [ M)

r

By assumption, ‘Mm! < 1. Therefore, the search for a minimum-norm solution
under general boundary conditions simplifies to the search for a positive root of a
quartic polynomial of the same form as in the Justen-Ramlau method with periodic
boundary conditions. Since this polynomial has been shown to possess exactly one

positive root for each possible ‘sz‘ and |Mzk , each component of F' T and MT is

completely determined; thus, a unique minimum-norm solution exists. O

12



The following corollary provides sufficient conditions for the eigenvalues of the
matrix A in Theorem 4.3 to be of magnitude at most one. Other sufficient conditions
also can be formulated. We comment on the conditions of the corollary in our
discussions of the boundary conditions below.

Corollary 4.1. Let G € R™ ™ be a recorded blurry digital image and let K € R™*"
be a symmetric estimate of the associated blurring kernel such that

ZZ K, ;] < 1. (13)
i=1 j=1

Assume that the blurring operator A € R™*™" that determines G satisfies

m n
Al < D2 Kl (14)
i=1 j=1
where || - ||so denotes the matriz norm induced by the uniform vector norm in R™".

Then the eigenvalues of A are bounded by one in magnitude.

Proof. The result follows from the fact that the spectral radius of A is bounded by
[[Alloo- O

The exact instances in which the assumed complex sign invariance occurs in
practice is a subject worthy of further study. A sufficient condition would be for the
exact blurring matrix A to be positive definite. This would imply that M; ; > 0 for
each 1 <7 <m and 1 < j <n, which would give a component-wise sign invariance

A~

sign (le> = sign (F”M”) = sign (sz’) ,

as required. However, this condition is not assumed here, only that the relationship
(12) holds.

We have observed that when the blurring matrix is far from normal and has
complex eigenvalues, our restoration method may yield poor images. This is the
situation when the available image is contaminated by motion blur.

The condition (14) is satisfied when each row of A represents some combination
of the components of K (without duplicates). This is clearly satisfied under periodic
boundary conditions for any K, due to the block circulant structure which emerges
for the blurring matrix A.

It is straightforward to extend Theorem 4.3 to allow for a trade-off parameter
7 for the case when ||F||, > || M]||,. This extension is used in Algorithm 2, which
describes our method.

4.2 Reflective boundary conditions

Consider a deconvolution problem with reflective boundary conditions. Assume that
the PSF matrix obeys the symmetry conditions

Kij=K-ij = Ki—j = K_i—j. (15)

13



Algorithm 2 The generalized Justen-Ramlau method

Given v > 0, blurry image G € R™*" and symmetric, non-negative, and bounded
kernel PSF estimate K € R"™*"™: -
mat(a1); ;

- Compute discrete transforms: G € C™*", M € C™ " with ]\Zk = e

mat(e1); ;

fori=0—m—1do ’
for j=0—-n—-1do

- Set C:\/’V’Gij‘ , b= Mz

- Solve 73 (r — ¢) + ¢ (rb — ¢) = 0 for non-negative root r

A

- Set Fjj =L Sign (GU) sign+ (MZ])

\/,-7
if r # 0 then
T Gij
Mij = ETJ]
else R
M, = Mj;
end if
end for
end for

- Compute inverse discrete transforms to recover image estimate F'T and eigenvalue
matrix estimate M7

Then the matrix A is normal. It is shown in [17] that A is the sum of a block-
Toeplitz-Toeplitz-block matrix, a block-Toeplitz-Hankel-block matrix, a block-Hankel-
Toeplitz-block matrix, and a block-Hankel-Hankel-block matrix, and that matrices
of this type admit the spectral factorization

A=CTAC,

where C' € R™X™% is the matrix of the 2D discrete cosine transform. The matrix

C can be factored as
C=CneCy,

where C,,, € R™*™ and C,, € R™™™ are 1D discrete cosine transform matrices. The
components of C,, are given by
1 o
\/; , 1 =0,

\/gcos (W» i #0.

The assumed symmetry condition implies that each row of A represents a combina-
tion of the elements of K. Therefore, the bound (14) holds. It follows that deblurring
problems under reflective boundary conditions with PSF matrices obeying equation
(15) fall within the framework of the extended Justen-Ramlau method.

Let

[Cn]i,j =

B = DCT2D (B)

represent the discrete cosine transform of a matrix B. After selection of a PSF
estimate K, one may begin construction of the estimated eigenvalue matrix M by
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first computing mg(\cq)i,j directly. The components of A can be computed from
the components of K, without requiring the explicit construction of A; see, e.g., [9].
This is done by shifting the values of the pixels in the PSF matrix so that the center
pixel is the value of the first entry of the matrix (first row and first column). Rather
than wrapping the pixel values circulantly around the matrix, the pixel values are
wrapped according to reflexivity of the boundary conditions and bounded to satisfy

(13). This gives the matrix mg(\al). The matrix mat(a;) can be computed as
mat (a)) = Z1KZ] + Z\KZL + Z,KZ] + Z,K ZT

where Z; and Z, are shift matrices. If the estimated PSF K has its center at pixel
(i,1), then Z; is the shift matrix with components given by

1, ] =1+ 17
(Zl)i,j - { 0, otherwise,

and Z5 has the components

1 j=1+2
Z L. = ’ ’
( 2)”7 { 0, otherwise;

see [9] for further details. Once the matrix of estimated eigenvalues M is available,
the computation of (FT, M T) proceeds just as in Algorithm 2.

4.3 Antireflective boundary conditions

Consider an image deblurring problem in which antireflective boundary conditions
have been assumed. Just as in the case of reflective boundary conditions, assume
that the PSF matrix K obeys the symmetry condition (15). Then the blurring
matrix A will generally fail to be normal, but will have the diagonalizable structure

21 + ag 0O --- 0 0
zo + ay 0
. a
A= | zm+ama A Zm T Gm—1 |
am :
0 Z2 + a1
0 0 -~ 0 =z +ag

where each a;, z; are block matrices and A is a highly structured sum of a Toeplitz
matrix, a Hankel matrix, and a rank-two correction matrix. This matrix has a block
structure that is diagonalized by the discrete sine (I) transform (DST), which may
be implemented essentially through use of the fast Fourier transform; see Serra-
Capizzano [20]. A linear transformation may be defined to compute the eigenvalues
of A using the components of G and K without explicit construction of A, defined
mostly through use of the DST; see [20, 1] for details. However, it does not follow
from the definition of the boundary conditions that the bound (14) holds for sym-
metric, non-negative, and suitably bounded kernels. It is also important to note that
this transformation fails to be unitary, since the first and last columns of the matrix
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Figure 2: The original unblurred Kent and Galazy images.

that defines this transformation are not necessarily orthogonal. However, pairwise
orthogonality holds for all other columns of this matrix. Thus, if it is assumed that

argmin |7 |3+ [0 12} = awgin {7 L+ 313}
FM M 2

and that the spectrum of A is inside the unit circle, then one may still consider
searching for an (F, ]\_4) minimum-norm solution (FT,MT) to F(F, M) through
component-wise minimization under application of the forward 2D antireflective
transformation. With these assumptions, extension of the Justen-Ramlau method
to antireflective BCs follows.

5 Numerical examples

In this section, numerical examples of the extended Justen-Ramlau method are com-
puted. All examples have been computed using code implemented in the Python!
programming language, making use of the Numpy?, Scipy?, and Matplotlib* pack-
ages.

5.1 Test images

The two test images used in the numerical examples are the 128 x 128 pixel Kent
image and the 304 x 304 pixel Galaxy image. The full exact images are each shown
in Figure 2. When the exact image F' is available, the quality of a restored image
F' can be measured by the Peak Signal-To-Noise Ratio (PSNR) defined for 8-bit
gray-scale images as

Y

www.python.org
WWW.Nnumpy.scipy.org
WWW.SCIpy.org

1
2
3
4www.matplotlib.sourceforge.net
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Figure 3: Tllustration of the Independence of the central portions of a blurred image when
the nonzero part of the PSF matrix is confined to a small central region.

where RMSE (F , F T) is the Root Mean Squared Error function. It is computed as

RMSE (F, F') = \/nin > (R - FT])2

),

where F, FT have dimensions m x n, as above. We used the PSNR to measure the
quality of the restored images.

5.2 Creating blurred images

To illustrate how realistic test data can be created in image deblurring problems,
consider a problem in which the non-zero components of the PSF matrix K are
concentrated in a small portion near the center of the matrix. Many PSF matrices,
such as those corresponding to mild Gaussian blurring, essentially have this prop-
erty. Next, consider the largest p X ¢ submatrix centered at the center of the PSF
such that the component of smallest magnitude is of magnitude larger than some
chosen threshold. In such a case, the values of pixels within the central region of
the resulting blurred image contain negligible contribution from pixels outside of
the field of view of the image inferred by the boundary conditions. This region is
the (m — p) X (n — ¢) submatrix at the center of the matrix G = K * F' representing
the blurry image. Thus, the components of this submatrix of the blurred image
will change only negligibly if blurred using different boundary conditions. Perhaps
more importantly, the possible solutions of a deblurring problem posed using only
this central region as a test image will be unbiased to the particular BCs used to
construct the image. In this way, one can create blurred images which are realis-
tic approximations of blurred images taken from some infinite scene [9]. Figure 3
illustrates this principle. Shown in this figure are a full PSF, a central submatrix
extracted from the full PSF, a full-sized image blurred using the full PSF, and the
central portion of the blurred image whose values are nearly BC independent. The
(green) rectangles in two of the above images show where the image directly to the
right is extracted. All numerical examples which follow are computed used blurred
images synthetically generated in this manner.

5.3 Test PSFs

As a blind deconvolution method, it is worth testing the quality of the recovered
minimum-norm solution when the estimated PSF is of a type different from the
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exact PSF used in the construction of the blurred image. To this end, three separate
types of PSFs are used in the numerical examples which follow. Each PSF type is
parametrized by some specified positive scalar o. A standard Gaussian blur PSF
can be defined by constructing the matrix

- (-5 09}

In a similar way, a PSF constructed as a 2D extension of the density function of
the Laplacian probability distribution can be constructed using the matrix whose

components are given by
5|+ 5]]
i— = ——1]¢-
AR

~ 1 1
Kiv‘:zoe@{‘g[

Finally, we determine a PSF using the Cauchy probability distribution. In this case,
we construct the matrix

- 1 /. m\2 1 /. n\2 -1
K@J’Z(“[”M“g) +02<J‘2)]> -

In each case, the resulting PSF is normalized as

Ki;
Kip=—u.
> K
i

Figure 4 shows 80 x 80 pixel examples of each PSF type, as well as a plot comparing
cross sections of each. These cross sections are given by a column near the center of
each PSF. Note the difference in peakedness exhibited by the Gaussian and Cauchy
PSFs when compared with the Laplacian PSF. Note also the thickness of the tails
of the Cauchy PSF and Laplacian PSFs versus the Gaussian PSF.

5.4 Example of non-blind deconvolution

The sensitivity of non-blind deconvolution to variation in the PSF is demonstrated
next, to motivate the topic of blind deconvolution. Consider a case where an image
has been blurred with a Laplacian PSF (with no additive noise), but is to be restored
using a Gaussian PSF (via Tikhonov regularization). That is, the restored image
was computed by solving

& = argmin { || 4z — b]3 + afl2/13}
x
with A, x and b defined as in (5). The regularization parameter a > 0 was chosen
to provide the most visually accurate solution. The result is shown in Figure 5. The

sensitivity of deconvolution to changes in the structure of the PSF is apparent in
Figure 5; the optimal restoration has severe artifacts and is unfocused.
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Figure 4: Examples of Gaussian (top), Laplacian (left), and Cauchy (right) PSFs as well
as their central cross-sections and contours.

Figure 5: An example of a restoration computed using an incorrect PSF. The top row (from
left to right) shows the exact image, the blurred images, the exact PSF, and the assumed
PSF. The image in the second row shows the optimal Tikhonov regularized restoration,
using the assumed PSF.
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Figure 6: Kentimage subjected to mild blurring, and the corresponding restorations. Rows
1 through 3 represent blurred images constructed using Gaussian, Laplacian, and Cauchy
PSF's, respectively. The first column of each row represents the blurred image. Columns
2 through 4 represent the recovered solutions using periodic, reflective, and antireflective
BCs, respectively.

5.5 Results

The primary purpose of the next series of numerical examples is to compare the
quality of the solutions provided by the Justen-Ramlau method using periodic BCs
to solutions recovered under the assumption of reflective and antireflective BCs.
Also of interest is the suitability of the Justen-Ramlau method under reflective and
antireflective BCs as a truly blind deconvolution method. With these considerations
in mind, a first set of test images were blurred, with no additive noise, using each
of the three described PSF types. The images were subjected to blur at a mild
or heavy intensity level, which was set by varying the parameter o. Each of the
resulting images was then restored by using a Gaussian PSF with the generalized
Justen-Ramlau method. For each restoration, periodic, reflective, and antireflective
boundary conditions were used for comparison. Numerical experimentation with the
original Justen-Ramlau method led to the observation that the spread of exact PSF
must not be underestimated by the estimated PSF. Following this observation, the
estimated PSF K for each restoration was a Gaussian PSF with an overall spread
similar to that of the exact PSF. Just as in the original work [13], an optimal value
of the parameter v was determined for each restoration by maximizing the PSNR
between the restored image and an extracted central portion of the corresponding
exact image.
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Figure 7: Kent image subjected to heavy blurring, and the corresponding restorations.
Rows 1 through 3 represent blurred images constructed using Gaussian, Laplacian, and
Cauchy PSFs, respectively. The first column of each row represents the blurred image.
Columns 2 through 4 represent the recovered solutions using periodic, reflective, and antire-

flective BCs, respectively.
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Figure 8: Galazy image subjected to mild blurring, and the corresponding restorations.
Rows 1 through 3 represent blurred images constructed using Gaussian, Laplacian, and
Cauchy PSFs, respectively. The first column of each row represents the blurred image.
Columns 2 through 4 represent the recovered solutions using periodic, reflective, and antire-
flective BCs, respectively.
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Figure 9: Galary image subjected to heavy blurring, and the corresponding restorations.
Rows 1 through 3 represent blurred images constructed using Gaussian, Laplacian, and
Cauchy PSFs, respectively. The first column of each row represents the blurred image.
Columns 2 through 4 represent the recovered solutions using periodic, reflective, and antire-
flective BCs, respectively.
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In Figures 6 through 9, each row represents blurring according to a different type
of PSF. The first image in each column shows the blurred image to be restored, and
the columns which follows show the image recovered under (in order from left to
right) periodic, reflective, and antireflective BCs. It is notable how the solutions
recovered under periodic boundary conditions become overly contaminated with
waveform artifacts as the blurring is intensified. In comparison, these artifacts are
less prevalent in the solutions computed under reflective and antireflective BCs. For
both mild and heavier blurring, it is also notable that the antireflective boundary
conditions appear to be the best overall when the images have been blurred with
a Gaussian and Cauchy PSF, but the solutions recovered under reflective BCs are
far clearer with Laplacian blurring. The PSNR-value for each restoration is shown
in Table 1. To keep the example section reasonably short, we do not show restored
PSFs. Illustrations for periodic boundary conditions can be found in [13].

Next, a series of restorations were performed with blurry images with additive
noise present. Gaussian PSFs were used in the construction of these images at
a mild blurring intensity. Restorations at 1% and 3% relative noise levels were
performed using periodic, reflective, and antireflective BCs. Due to noise, additional
regularization is performed via a smoothing operation on g, as described in [13]. This
is done by replacing § by

5 Gij

R.gi; =

5, l=<ism, 1<j<n,
1+a<1+)\22’j)

where the ); ; are eigenvalues of the discrete Laplacian operator under the applied
BCs. Figures 10 and 11 show the blurred and noisy images, along with the recovered
solutions. In the case of blurred and noisy data, it is noted that the antireflective
boundary conditions seem to perform better than periodic or reflective ones at low
noise levels, while reflective BCs seem to perform better at higher noise levels. We
note that the method does not perform as well for blurred images with higher noise
levels. The PSNR-value for each restoration is displayed in Table 2.

6 Discussion and Conclusion

The numerical examples of the previous section demonstrate that the Justen-Ramlau
method can be more effective when BCs other than periodic ones are used to restore
a blurred image. With reflective and antireflective boundary conditions, the method
is a viable non-iterative blind deconvolution method. The global shape of the exact
PSF need not be known in order to obtain a quality reconstruction.
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