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Abstract

Let n(k, d) be the order of the largest undirected graphs of maximum degree k

and diameter d, and let M(k, d) be the corresponding Moore bound. In this paper,
we give a positive answer to the question of Bermond and Bollobás concerning the
Degree/Diameter Problem: Given a positive integer c > 0, does there exist a pair k
and d, such that n(k, d) ≤ M(k, d) − c?

1 Introduction

We call a k-regular graph Γ of diameter d a (k, d)-graph. Let n(k, d) denote the largest
order of any undirected graph of maximum degree k and diameter d. It is easy to show
that the order |V (Γ)| of any graph Γ of maximum degree k and diameter d and therefore
also the parameter n(k, d) satisfy the following inequality:

|V (Γ)| ≤ n(k, d) ≤ M(k, d) = 1 + k + k(k − 1) + k(k − 1)2 + ...+ k(k − 1)d−1.

The above number M(k, d) is called the Moore bound. A graph whose order is equal to
the Moore bound is called a Moore graph; such a graph is necessarily regular of degree k.
Moore graphs are proved to be very rare. They are the complete graphs on k+1 vertices;
the cycles on 2d+1 vertices; and for diameter 2, the Petersen graph, the Hoffman-Singleton
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graph and possibly a graph of degree k = 57. For k > 2 and d > 2, there are no Moore
graphs [13].

The main problem addressed in this paper is closely related to the well-known extremal
graph theory problem called the Degree/Diameter Problem:

Given natural numbers k and d, find the largest possible number of vertices n(k, d) in a
graph of maximum degree k and diameter at most d.

The difference between the Moore bound M(k, d) and the order of a specific graph Γ of
maximum degree k and diameter d is called the defect of Γ, and is denoted by δ(Γ). Thus,
if Γ is a largest graph of maximum degree k and diameter d, then n(k, d) = M(k, d)−δ(Γ).
It needs to be noted that very little is known about the exact relation between the Moore
bounds M(k, d) and the corresponding extremal orders n(k, d). While a considerable gap
exists between the orders of the largest known/constructed graphs of maximum degree k

and diameter d and the corresponding Moore bounds, no substantially better bounds are
known. In particular, it is not even known whether the two parameters are of the same
order of magnitude (with computational evidence strongly suggesting that they are not).
Thus, the below stated long open question of Bermond and Bollobás [3] can be viewed as
the natural first attempt at shedding light on the nature of the relation between M(k, d)
and n(k, d). In this paper, we answer in positive the following:

Is it true that for each positive integer c there exist k and d such that the order of the
largest graph of maximum degree k and diameter d is at most M(k, d)− c?

Moore graphs of degree k and diameter d are well-known to be the only (k, d)-graphs
of girth 2d + 1; the girth of any other (i.e., non-Moore) (k, d)-graph is strictly smaller
than 2d + 1. It will also prove useful to note that even though it is not known whether
the extremal graphs of diameter d, maximal degree k, and of the maximal order n(k, d),
are necessarily k-regular, the graphs Γ conatining vertices of degree smaller than k must
satisfy the following stricter upper bound:

|V (Γ)| ≤ M(k, d)− 1− (k − 1)− . . .− (k − 1)d−1 = M(k, d)− (k − 1)d − 1

k − 2
. (1)

The bipartite Moore bound is the maximum number B(k, d) of vertices in a bipartite graph
of maximum degree k and diameter at most d. This bound is due to Biggs [4]:

B(2, d) = 2d, and B(k, d) =
2(k − 1)d − 2

k − 2
, if k > 2, (2)

and is smaller than the Moore bound by (k − 1)d (i.e, M(k, d) − B(k, d) = (k − 1)d, for
k ≥ 3). Bipartite (k, d)-graphs of order B(k, d) are called bipartite Moore graphs. The
bipartite Moore bound represents not only an upper bound on the number of vertices of
a bipartite graph of maximum degree k and diameter d, but it is also a lower bound on
the number of vertices of a regular graph Γ of degree k and girth g = 2d. A (k, g)-cage
is a smallest k-regular graph of girth g, and if a (k, 2d)-cage is of order B(k, d), it is a
bipartite Moore graph [4].
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For degrees 1 or 2, bipartite Moore graphs consist ofK2 and the 2d-cycles, respectively.
When k ≥ 3, the possibility of the existence of bipartite Moore graphs was settled by Feit
and Higman [10] in 1964 and, independently, by Singleton [14] in 1966. They proved that
such graphs exist only for the diameters 2, 3, 4 or 6.

The question of Bermond and Bollobás has already been answered in positive for the
more specialized families of vertex-transitive and Cayley graphs [9]. A graph Γ is vertex-
transitive if its automorphism group acts transitively on its set of vertices V (Γ), i.e., for
every pair of vertices u, v ∈ V (Γ) there exists an automorphism ϕ of Γ mapping u to v,
ϕ(u) = v. A vertex-transitive graph Γ is said to be Cayley if its automorphism group
contains a subgroup G acting regularly on V (Γ), i.e., having the property that for every
pair of vertices u, v ∈ V (Γ) there exists exactly one automorphism ϕ ∈ G mapping u to
v, ϕ(u) = v. Due to their high level of symmetry, all vertex-transitive graphs are regular.
If we let vt(k, d) denote the largest order of a vertex-transitive (k, d)-graph, and C(k, d)
denote the largest order of a Cayley graph of degree k and diameter d, then

C(k, d) ≤ vt(k, d) ≤ n(k, d).

Exoo et al. proved in [9] that for any fixed k ≥ 3 and c ≥ 2 there exists a set S of natural
numbers of positive density such that vt(k, d) ≤ M(k, d) − c, for all d ∈ S. The same
holds for Cayley graphs as well. We list the result for the sake of completeness.

Lemma 1.1 ([9]) Let k ≥ 3 and c ≥ 2. Let r be an odd integer, and let p be a prime
such that p > 2k(k − 1)(r−1)/2 > 8k(k − 1)2c2. If 2d + 1 = rp, then any vertex-transitive
(k, d)-graph has defect greater than c.

In this paper, we do not seek to obtain density results. Rather, we prove that for any
c > 0, there exist infinitely many pairs (k, d) for which n(k, d) < M(k, d) − c. Our
approach is a combination of applications of previously known methods and of some new
uses of spectral analysis.

2 Spectral analysis

For many of our arguments, we rely on the techniques of spectral analysis applied to
graphs extremal with respect to the Degree/Diameter Problem. We begin with a brief
review of the basic facts as listed in [13].

Let Γ be a connected (k, d)-graph of order n and defect δ > 0. For each integer i in
the range 0 ≤ i ≤ d, we define the n× n i-distance matrices Ai = Ai(Γ) as follows. The
rows and columns of Ai correspond to the vertices of Γ, and the entry in position (α, β)
is 1 if the distance between the vertices α and β is i, and zero otherwise. Clearly A0 = I
and A1 = A, the usual adjacency matrix of Γ. If Jn is the all-ones matrix and d is the
diameter of a connected graph Γ, then

d
∑

i=0

Ai = Jn.

3



Given a finite k-regular graph Γ, we define the polynomials Gk,i(x) for all x ∈ R recursively
as follows:







Gk,0(x) = 1
Gk,1(x) = x+ 1
Gk,i+1(x) = xGk,i(x)− (k − 1)Gk,i−1(x) for i ≥ 1.

(3)

We note that the entry (Gk,i(A))α,β counts the number of paths of length at most i joining
the vertices α and β in Γ. Regular graphs with defect δ and order n satisfy the matrix
equation

Gk,d(A) = Jn +B,

where B is a non-negative integer matrix with the row and column sums equal to δ. The
matrix B is called the defect matrix, (see [13]).

Next, we follow the line of argument that originally appeared in [5]. Since Γ is regular
and connected, the all-ones matrix Jn is a polynomial of A, say, Jn(A). From now on,
we adopt the convention that matrices will be denoted by upper-case bold-face characters
while their corresponding polynomials will be denoted by the same character but not
bold-faced. Thus, B = B(A) = Gk,d(A) − Jn(A), and Jn = Jn(A) = Gk,d(A) − B(A).
It follows that if λ is an eigenvalue of A, then Gk,d(λ)−B(λ) = Jn(λ) is an eigenvalue of
Jn. Substituting the value k for λ yields the eigenvalue n of Jn, Gk,d(k)− B(k) = n. An
easy calculation yields that Gk,d(k) = M(k, d), and therefore B(k) = M(k, d)− n = δ is
an eigenvalue of B. Since each row and column of B sums up to δ, every eigenvalue of
B has value at most δ. If λ 6= k is another eigenvalue of A, then Gk,d(λ)−B(λ) must be
the zero eigenvalue of Jn. Therefore, Gk,d(λ)−B(λ) = 0, and since |B(λ)| ≤ δ, we obtain
|Gk,d(λ)| ≤ δ. Thus, the value |Gk,d(λ)| is a lower bound for the defect δ(Γ). In summary,
if Γ is a graph of diameter d, degree k, and order M(k, d)−δ, then every eigenvalue λ 6= k

of Γ satisfies
|Gk,d(λ)| ≤ δ. (4)

Since A is symmetric, all eigenvalues of A are real. Let λ0 ≥ λ1 ≥ . . . ≥ λn−1 be the
eigenvalues of Γ and let λ be the eigenvalue with the second largest absolute value. It is
well known from Perron-Frobenius theory (e.g., [11]), that λ0 = k and k is of multiplicity
one if and only if Γ is connected. Moreover, if Γ is non-bipartite, then λn−1 > −k.
Therefore, if Γ is a connected and non-bipartite graph, λ = max{λ1, |λn−1|}. Studying
the second largest eigenvalue of a given graph is related to the existence of the Ramanujan
graphs. We call a k-regular graph a Ramanujan graph if its second largest eigenvalue (in
absolute value) is at most 2

√
k − 1 [12].

In this paper we use a result obtained by Alon and Boppana in [1], which provides
a lower bound on λ for graphs of very large order. Let Xn,k be a k-regular graph on n

vertices and let λ(Xn,k) denote the eigenvalue of the second largest absolute value. Our
proof is based on the following restatement of this result.

Theorem 2.1 ([12]) lim infn→∞ λ(Xn,k) ≥ 2
√
k − 1.
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3 Main result

The following theorem is the main result of this paper.

Theorem 3.1 Let c > 0 be a fixed integer and let k ≥ 3 be larger than c. Then there
exists at least one large enough even d > k such that any (k, d)-graph Γ has defect greater
than c, i.e., n(k, d) ≤ M(k, d)− c.

Proof. Let c ≥ 1 and k ≥ 3, k > c. In order to prove the theorem, we divide the class of
graphs of degree not exceeding k into disjoint subclasses which we then treat separately,
choosing subsequently larger and larger diameters d satisfying the desired claim until we
find a diameter d that works for the entire class.

As argued in the introduction, Moore and bipartite Moore graphs exist only for very
limited diameters d. Therefore, assuming that d > 6, yields the non-existence of Moore
or bipartite Moore (k, d)-graphs (and hence the non-existence of (k, d)-graphs of girth
2d + 1). In addition, due to (1), taking d > logk−1(c(k − 2) + 1) makes the order of
any non-regular graph of maximum degree k and diameter d smaller than M(k, d) − c.
Similarly, due to (2), taking d > logk−1(c) makes the order of any bipartite (k, d)-graph
smaller than M(k, d)−c. Because of our assumptions on c and k, both logk−1(c(k−2)+1)
and logk−1(c) are smaller than 6, and thus, considering d > 6 yields the non-existence of
graphs of orders larger than M(k, d)− c in the families of (k, d)-graphs of girth 2d+1, the
non-regular graphs of maximum degree k and diameter d, and the bipartite (k, d)-graphs.
Therefore, from now on, we will assume that d > 6 and Γ is k-regular, non-bipartite and
of girth smaller than 2d+ 1.

The proof of the non-existence of such graphs of orders larger than M(k, d) − c for
sufficiently large d’s splits into two cases: The case when Γ is a non-bipartite (k, d)-graph
of girth 2d or 2d− 1, and the case when Γ is a non-bipartite (k, d)-graph of girth smaller
than 2d− 1.

Let us begin with the case when the girth of Γ is 2d or 2d − 1. In this case, it is
easy to see that the order of Γ satisfies |V (Γ)| ≥ 1 + k + k(k − 1) + . . . + k(k − 1)d−2.
This clearly implies that the order of (k, d)-graphs Γ increases to infinity when d does.
Theorem 2.1 yields that for a fixed δ > 0, there exists N > 0, such that for all graphs Γ
on n > N vertices holds λ(Γ) ≥ 2

√
k − 1 − δ. Thus, for a fixed δ > 0 all (k, d)-graphs Γ

with arbitrary large diameter satisfy at least one of the conditions λ1 ∈ [2
√
k − 1−δ, k) or

λn−1 ∈ (−k,−2
√
k − 1 + δ] (recall that Γ is assumed connected and non-bipartite, hence

the half-open intervals). Since Gk,d(x) is a continuous function on the closed interval
[−k, k], it follows that Gk,d(x) is uniformly continuous on [−k, k]. It implies that for
every ǫ > 0 there exists δ > 0, such that for every x, x0 ∈ [−k, k] holds

|x− x0| < δ ⇒ |Gk,d(x)−Gk,d(x0)| < ǫ.

Therefore, fixing x0 = 2
√
k − 1 and a small ǫ > 0, it implies the existence of δ > 0 such

that for x ∈ (2
√
k − 1 − δ, 2

√
k − 1] we have Gk,d(x) > Gk,d(2

√
k − 1) − ǫ. Similarly we

obtainGk,d(x) > Gk,d(−2
√
k − 1)−ǫ for x ∈ [−2

√
k − 1,−2

√
k − 1+δ). These conclusions

lead to the fact that the values of Gk,d(x) on [−2
√
k − 1,−2

√
k − 1 + δ) ∪ (2

√
k − 1 −

δ, 2
√
k − 1] can be estimated based on the values Gk,d(±2

√
k − 1).
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In order to take advantage of (4), we will derive explicit formula for Gk,d(x). Fixing
the variable x makes the last equation of (3) into a second order linear homogeneous
recurrence equation for Gk,d(x) with respect to the parameter d subject to the initial
conditions Gk,0(x) = 1 and Gk,1(x) = x+1. Since we only need to calculate the values of
Gk,d(x) for x ∈ (−k,−2

√
k − 1] ∪ [2

√
k − 1, k), we only need to consider the recurrence

relation in the case when the roots of the corresponding second degree polynomial equation
t2 − xt + (k − 1) = 0 are real, with a double-root when x = ±2

√
k − 1. Solving this

recurrence equation for a fixed x ∈ (−k,−2
√
k − 1)∪ (2

√
k − 1, k), we obtain the explicit

formula

Gk,d(x) =
x+ 2 +

√
x2 − 4k + 4

2
√
x2 − 4k + 4

(

x+
√
x2 − 4k + 4

2

)d

−

−x+ 2−
√
x2 − 4k + 4

2
√
x2 − 4k + 4

(

x−
√
x2 − 4k + 4

2

)d

.

In the case when x = ±2
√
k − 1, the second degree polynomial equation has a double

root and we obtain:

Gk,d(2
√
k − 1) = (d+ 1)

√
k − 1

d
+ d

√
k − 1

d−1
,

Gk,d(−2
√
k − 1) = (−1)d((d+ 1)

√
k − 1

d − d
√
k − 1

d−1
).

It is easy to see from (3) that the function Gk,d(x) is a polynomial of degree d in x,
and thus differentiable. Calculating the derivative of Gk,d(x), for x ∈ (−k,−2

√
k − 1) ∪

(2
√
k − 1, k), we have

G
′

k,d(x) =
d(x−

√
x2 − 4k + 4)d(x+ 2−

√
x2 − 4k + 4)

2d+1(x2 − 4k + 4)
+

(x−
√
x2 − 4k + 4)d+1

2d+1(x2 − 4k + 4)
+

+
x(x−

√
x2 − 4k + 4)d(x+ 2−

√
x2 − 4k + 4)

2d+1(x2 − 4k + 4)
3

2

+
d(x+

√
x2 − 4k + 4)d(x+ 2 +

√
x2 − 4k + 4)

2d+1(x2 − 4k + 4)
+

+
(x+

√
x2 − 4k + 4)d+1

2d+1(x2 − 4k + 4)
− x(x+

√
x2 − 4k + 4)d(x+ 2 +

√
x2 − 4k + 4)

2d+1(x2 − 4k + 4)
3

2

.

The behavior of Gk,d(x) differs in the intervals (2
√
k − 1, k) and (−k,−2

√
k − 1). First,

let us suppose that λ1 ∈ (2
√
k − 1, k). The assumption x ∈ (2

√
k − 1, k) yields the

inequalities x2 − 4k + 4 > 0, x >
√
x2 − 4k + 4, and d > k > x.

We note that five of the terms of G
′

k,d(x) are positive numbers. Clearly, if x2−4k+4 ≥
1, then d(x+

√
x2−4k+4)d(x+2+

√
x2−4k+4)

2d+1(x2−4k+4)
>

x(x+
√
x2−4k+4)d(x+2+

√
x2−4k+4)

2d+1(x2−4k+4)
3
2

and thus we easily see

that G
′

k,d(x) > 0.

Now, let us suppose that 0 < x2−4k+4 < 1. If x2−4k+4 → 0, that is, if x → 2
√
k − 1,

then

lim
x→2

√
k−1

x(x−
√
x2 − 4k + 4)d(x+ 2−

√
x2 − 4k + 4)

2d+1(x2 − 4k + 4)
3

2

=

= lim
x→2

√
k−1

x(x+
√
x2 − 4k + 4)d(x+ 2 +

√
x2 − 4k + 4)

2d+1(x2 − 4k + 4)
3

2

.
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Moreover, if x → 2
√
k − 1, then the other four terms of G

′

k,d(x) are positive and tend to

infinity. Thus, we get G
′

k,d(x) > 0.
If 0 < x2 − 4k + 4 < 1 and x2 − 4k + 4 9 0, then we always can choose large

enough d such that d > x√
x2−4k+4

. It implies the inequality d(x+
√
x2−4k+4)d(x+2+

√
x2−4k+4)

2d+1(x2−4k+4)
>

x(x+
√
x2−4k+4)d(x+2+

√
x2−4k+4)

2d+1(x2−4k+4)
3
2

, and hence G
′

k,d(x) > 0.

Using these inequalities we can deduce that the functions Gk,d(x) and G
′

k,d(x) are both

positive on the interval (2
√
k − 1, k). Since Gk,d(x) is continuous on [2

√
k − 1, k] (being

a polynomial), and differentiable on (2
√
k − 1, k), Gk,d(x) is increasing on [2

√
k − 1, k].

This provides us with a lower bound on the defect of Γ in this case:

δ(Γ) ≥ |Gk,d(λ1)| = Gk,d(λ1) ≥ Gk,d(2
√
k − 1) = (d+ 1)

√
k − 1

d
+ d

√
k − 1

d−1
> c.

Next, let us suppose that λn−1 ∈ (−k,−2
√
k − 1). If x ∈ (−k,−2

√
k − 1), then 0 >

x + 2 +
√
x2 − 4k + 4 > x + 2 −

√
x2 − 4k + 4, and since d is assumed to be an even

number, (x −
√
x2 − 4k + 4)d > (x +

√
x2 − 4k + 4)d > 0. Based on these inequalities,

we observe that the function Gk,d(x) is positive on (−k,−2
√
k − 1). Moreover, using the

above inequalities again, we can deduce that G
′

k,d(x) is negative on (−k,−2
√
k − 1). Thus,

if d is an even number, then Gk,d(x) is decreasing on [−k,−2
√
k − 1]. This implies the

bound

δ(Γ) ≥ |Gk,d(λn−1)| = Gk,d(λn−1) ≥ Gk,d(−2
√
k − 1) =

= (−1)d((d+ 1)
√
k − 1

d − d
√
k − 1

d−1
) > c.

The two above inequalities yield that any non-bipartite (k, d)-graph Γ of diameter d > D

and girth 2d or 2d− 1 is of defect large than c.
Finally, let us assume that the girth g(Γ) of Γ is at most 2d−2, i.e., 3 ≤ g(Γ) ≤ 2d−2.

The main idea of this part of the proof is the observation that a small girth forces a loss
of an entire branch of the potential Moore tree of (k, d)-graph with the number of ‘lost’
vertices being roughly of the order of magnitude of (k − 1)d−g/2. Assume that b ∈ V (Γ)
lies on a g-cycle of length at most 2d− 2 and let us define

NΓ(b, i) = {v | v ∈ V (Γ), dΓ(b, v) = i}, 0 ≤ i ≤ d.

It is easy to see that |NΓ(b, 0)| = 1, |NΓ(b, 1)| = k, and |NΓ(b, i)| ≤ k(k−1)i−1 for 2 ≤ i ≤
d−2. Since b lies on a g-cycle, where g ≤ 2d−2, we obtain |NΓ(b, d−1)| ≤ k(k−1)d−2−1.
Hence |NΓ(b, d)| ≤ k(k − 1)d−1 − (k − 1). This implies the inequality

δ(Γ) = M(k, d)−|V (Γ)| = (1+k+k(k−1)+ . . .+k(k−1)d−1)− (|NΓ(b, 0)|+ |NΓ(b, 1)|+

+ . . .+ |NΓ(b, d− 1)|+ |NΓ(b, d)|) ≥ k > c.

Since the above considered classes cover all graphs of maximum degree k, and in each
case we have been able to show that the defect of the graphs in these classes is greater
than c, it follows that the defect of all graphs Γ of degree at most k and even diameter
d > D is greater than c.
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Remark 3.2 The above calculations allow us to estimate the defect δ(Γ) of any k-regular
graph Γ with sufficiently large even diameter d and girth at least 2d − 1. Recall that this
girth assumption yields a lower bound on |V (Γ)| which can be used to obtain an upper

bound on the defect: δ(Γ) = M(k, d) − |V (Γ)| ≤ k(k−1)d−2
k−2

− k(k−1)d−1−2
k−2

= k(k − 1)d−1.

Therefore, the defect δ(Γ) of any k-regular graph of sufficiently large even diameter d and

of girth at least 2d−1 belongs to one of the intervals [(d+1)
√
k − 1

d−d
√
k − 1

d−1
, k(k−

1)d−1] or [(d+ 1)
√
k − 1

d
+ d

√
k − 1

d−1
, k(k − 1)d−1].

This observation is related to the concept of a generalized Moore graph [6]: A k-
regular graph Γ of diameter d and girth at least 2d − 1 is called a generalized Moore
graph. As argued above, the defect of any generalized Moore graph is bounded from above
by k(k−1)d−1. For example, both Moore graphs and bipartite Moore graphs are generalized
Moore graphs, with the Moore graphs having the defect 0 and the bipartite Moore graphs
having the defect (k−1)d. It has been conjectured that the diameter of a generalized Moore
graph cannot exceed 6 (e.g., notes from a talk delivered by L.K. Jørgensen in Bandung,
2012). Our lower bounds on the defects of non-bipartite generalized Moore graphs do not
seem to contribute to the resolution of this conjecture.
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[9] G. Exoo, R. Jajcay, M. Mačaj and J. Širáň, On the defect of vertex-transitive graphs of
given degree and diameter, submitted for publication.

[10] W. Feit and G. Higman, The nonexistence of certain generalized polygons, Journal of

Algebra 1 (1964) 114-131.

[11] L. Lovász, Eigenvalues of graphs, manuscript (2007).

8



[12] A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan Graphs, Combinatorica 8 (3) (1988)
261-277.
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