Skip to main content
Log in

Genetic structure of island populations of Prunus lannesiana var. speciosa revealed by chloroplast DNA, AFLP and nuclear SSR loci analyses

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The wild flowering cherry Prunus lannesiana var. speciosa is highly geographically restricted, being confined to the Izu Islands and neighboring peninsulas in Japan. In an attempt to elucidate how populations of this species have established we investigated the genetic diversity and differentiation in seven populations (sampling 408 individuals in total), using three kinds of genetic markers: chloroplast DNA (cpDNA), amplified fragment length polymorphisms (AFLPs), and 11 nuclear SSR polymorphic loci. Eight haplotypes were identified based on the cpDNA sequence variations, 64 polymorphic fragments were scored for the AFLP markers, and a total of 154 alleles were detected at the 11 nuclear SSR loci. Analysis of molecular variance showed that among-population variation accounted for 16.55, 15.04 and 7.45% of the total detected variation at the cpDNA, AFLPs, and SSR loci, respectively. Thus, variation within populations accounted for most of the genetic variance for all types of markers, although the genetic differentiation among populations was also highly significant. For cpDNA variation, no clear structure was found among the populations, except that of the most distant island, although an “isolation by distance” pattern was found for each marker. Both neighbor-joining trees and structure analysis indicate that the genetic relationships between populations reflect geological variations between the peninsula and the islands and among the islands. Furthermore, hybridization with related species may have affected the genetic structure, and some genetic introgression is likely to have occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnold ML, Emms SK (1998) Molecular markers, gene flow, and natural selection. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. DNA sequencing. Kluwer, Dordrecht, pp 442–458

    Google Scholar 

  • Barrett SCH (1998) The reproductive biology and genetics of island plants. In: Grand PR (ed) Evolution on islands. Oxford University Press, Oxford, pp 18–34

    Google Scholar 

  • Barton NH (1998) Natural selection and random genetic drift as causes of evolution on islands. In: Grand PR (ed) Evolution on islands. Oxford University Press, Oxford, pp 102–123

    Google Scholar 

  • Brunsfeld SJ, Soltis DE, Soltis PS (1992) Evolutionary pattern and processes in Salix sect. Logifoliae: evidence from chloroplast DNA. Syst Bot 17:239–256

    Article  Google Scholar 

  • Cain SA (1944) Foundations of plant geography. Harper & Sons, New York

    Google Scholar 

  • Carlquist S (1974) Island biology. Columbia Univ Press, Columbia, 660 pp

  • Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L.) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    Article  CAS  Google Scholar 

  • Coart E, Vekemans X, Smulders MJM, Wagner I, Van Huylenbroeck J, Van Bockstaele E, Roldán-Ruiz I (2003) Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by AFLP and microsatellite markers. Consequences for conservation. Mol Ecol 12:845–857

    Article  CAS  PubMed  Google Scholar 

  • Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    Article  CAS  PubMed  Google Scholar 

  • Dieringer D, Schlotterer C (2003) MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  CAS  PubMed  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259

    Article  Google Scholar 

  • Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP––phylogeny inference package (Version 32). Cladistics 5:164–166

    Google Scholar 

  • Fineschi S, Salvini D, Turchini D, Pastorelli R, Vendramin GG (2005) Crataegus monogyna Jacq. and C. laevigata (Poir.) DC. (Rosaceae, Maloideae) display low level of genetic diversity assessed by chloroplast markers. Plant Syst Evol 250:187–196

    Article  CAS  Google Scholar 

  • Goldstein DB, Schlötterer C (1999) Microsatellites. Evolution and application. Oxford University Press, New York

    Google Scholar 

  • Gornitz V (1995) Monitoring sea level changes. Clim Chang 31:515–544

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm

  • Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with interspecific variation. Mol Ecol 8:521–523

    CAS  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forests 6:95–124

    Article  Google Scholar 

  • Hedrick PW (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318

    Article  Google Scholar 

  • Iwata H, Kamijo T, Tsumura Y (2006) Assessment of genetic diversity of native species in Izu Islands for a discriminate choice of source populations: implications for revegetation of volcanically devastated sites. Conserv Genet 7:399–413

    Article  Google Scholar 

  • Japan Meteorological Agency (2005) National catalogue of the active volcanoes in Japan, 3rd edn. National Printing Bureau (in Japanese)

  • Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543

    Article  CAS  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol 5:187–189

    Article  CAS  Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398

    Google Scholar 

  • Maguire TL, Peakall R, Saenger P (2002) Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theor Appl Genet 104:388–398

    Article  CAS  PubMed  Google Scholar 

  • Makino T (1961) Makino’s new illustrated flora of Japan. Hokuryukan Publishing, Tokyo (in Japanese)

    Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Mariette S, Cottrell J, Csaikl UM, Goikoechea P, König A, Lowe AJ, Van Dam BC, Barreneche T, Bodénès C, Streiff R, Burg K, Groppe K, Munro RC, Tabbener H, Kremer A (2002a) Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (MATT.) LIEBL. and Q. robur L. stands. Silvae Genet 51:72–79

    Google Scholar 

  • Mariette S, Le Corre V, Austerlitz F, Kremer A (2002b) Sampling within the genome for measuring within population diversity: trade-offs between markers. Mol Ecol 11:1145–1156

    Article  CAS  PubMed  Google Scholar 

  • McCauley DE (1995) The use of chloroplast DNA polymorphisms in studies of gene flow in plants. Trends Ecol Evol 10:198–202

    Article  Google Scholar 

  • Mohanty A, Martín JP, Aguinagalde I (2000) Chloroplast DNA diversity within and among populations of the allotetraploid Prunus spinosa L. Theor Appl Genet 100:1304–1310

    Article  CAS  Google Scholar 

  • Mohanty A, Martín JP, Aguinagalde I (2001) A population genetic analysis of chloroplast DNA in wild populations of Prunus avium L. in Europe. Heredity 87:421–427

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Takezaki N (1994) Estimation of genetic distances and phylogenetic trees from DNA analysis. In: Smith C (ed) Proceedings of the 5th World Congress of Genetics Applied to Livestock Production. University of Guelph, Canada, pp 405–412

    Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Newton AC, Allnutt TR, Gillies ACM, Lowe AJ, Ennos RA (1999) Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol Evol 14:140–145

    Article  PubMed  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Ohba H, Kawasaki T, Tanaka H (2007) Flowering cherries of Japan, New Edition. Yama-to-Keikoku-Sha, Tokyo (in Japanese)

    Google Scholar 

  • Ono M, Sugawara T (1981) An analysis of the flowering plant flora of the Ogasawara (Bonin) Islands with regard to their mode of dispersal. Ogasawara Res 4 & 5:25–40 (in Japanese)

    Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  CAS  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Wen W, Falush D (2007) Documentation for STRUCTURE software: version 2.2. University of Chicago, Chicago, USA. http://pritch.bsd.uchicago.edu/

  • Raymond M, Rousset F (1995) GENEPOP: population genetics software for exact test and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rieseberg LH, Soltis DE (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evol Trends Plants 5:65–84

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin, Version 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva

    Google Scholar 

  • Smulders MJM, van der Schoot J, Geerts RHEM, Antonisse-de Jong AG, Korevaar H, van der Werf A, Vosman B (2000) Genetic diversity and the reintroduction of meadow species. Plant Biol 2:447–454

    Article  Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H (1971) Fossa Magna element plants. Res Report Kanagawa Prefect Museum. Nat History 2:1–63

    Google Scholar 

  • Terachi T (1993) Structural alterations of chloroplast genome and their significance to the higher plant evolution. Bull Inst Natl Land Util Dev Kyoto Sangyo Univ 14:138–148

    Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus percica L. Batsch) and its use fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Tsuda Y, Kimura M, Kato S, Katsuki T, Mukai Y, Tsumura Y (2009) Genetic structure of Cerasus jamasakura, a Japanese flowering cherry, revealed by nuclear SSRs: implications for conservation. J Plant Res 122:367–375

    Article  CAS  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vos P, Hoger R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weising K, Gardner R (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  CAS  PubMed  Google Scholar 

  • Whittemore AT, Schaal BA (1991) Interspecific gene flow in oaks. Proc Natl Acad Sci USA 88:2540–2544

    Article  CAS  PubMed  Google Scholar 

  • Wolfe AD, Liston A (1998) Contribution of PCR-based methods to plant systematics and evolutionary biology. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. DNA sequencing. Kluwer, Dordrecht, pp 43–86

    Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian J Bot 129:157

    Google Scholar 

Download references

Acknowledgments

We thank Michihal and Junko Kato, Yoshinari Moriguchi and Tomokazu Takahashi for their practical help with the sample collection, and Jungo Yuzurihara and Yasuomi Ota for their help with preserving the samples. This study was partly supported within the research budget of the Forest Recovery Project for the Disaster Area on Miyake Island, provided by the Tokyo Metropolitan Government, as well as a grant for Research on genetic guidelines based on molecular population analysis of plants for restoration projects from the Ministry of Environment, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuri Kato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21.3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, S., Iwata, H., Tsumura, Y. et al. Genetic structure of island populations of Prunus lannesiana var. speciosa revealed by chloroplast DNA, AFLP and nuclear SSR loci analyses. J Plant Res 124, 11–23 (2011). https://doi.org/10.1007/s10265-010-0352-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-010-0352-3

Keywords

Navigation