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1 Introduction

Singular spectrum analysis (SSA) is a broad methodology of time series anal-
ysis whose applications include e.g. smoothing, noise reduction, extraction of
trend and periodicities, missing data imputation and forecasting. SSA is an
algebraic technique without any statistical model or stationarity assumptions.
SSA is based on the singular value decomposition of an embedded time series
and is thus related to principal component analysis. The original series, decom-
posed into ’eigentriples’ of singular values and their associated eigenvectors,
is regrouped to form various component series, which may be interpreted as a
slowly-varying trend, periodic series and noise.

The origins of SSA are usually associated with the publications Broomhead
and King (1986a) and Broomhead and King (1986b). Work on so-called ’Cater-
pillar’ SSA was done independently among statisticians in St.Petersburg, where
emphasis is placed on the separability of component series from each other.
This is reflected in the monograph Golyandina et al. (2001) on SSA and its
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theoretical foundations. The recent book Golyandina and Zhigljavsky (2013)
on the methodology of SSA is aimed at a wide scientific audience.

SSA can be generalized to multivariate time series and 2D-image analysis
(Golyandina and Usevich, 2010). These generalizations di↵er from the basic
single-variate SSA by using an embedding which reflects the di↵erent nature
of the data matrix. In basic SSA, the embedding of a time series of length N
produces an L ⇥ (N � L + 1) Hankel matrix whose columns are segments of
the original series formed by sliding a window of length L along the series.
In multi-channel SSA (MSSA), the embedding of the multivariate time series
produces a stacked-Hankel matrix, and in 2D-SSA, a Hankel-block-Hankel ma-
trix. SSA is a special case of MSSA, which itself is a special case of 2D-SSA
with an L⇥ 1 rectangular window, if the multivariate time series are of equal
length. These versions of SSA are special cases of shaped-SSA (Shlemov and
Golyandina, 2014), where the data matrix can have omitted values and the
embedded data is a quasi-Hankel matrix. The sums of the elementary matri-
ces corresponding to the grouped eigentriples of these embedded Hankel-type
matrices may not have a Hankel structure, and thus require a re-Hankelization
prior to transforming them into time series or image components via an inverse
embedding. The generalized SSA algorithms are procedurally the same as the
basic SSA, except that the embedding and the re-Hankelization steps deal
with generalized Hankel-type matrices. For more information, see Golyandina
et al. (2015).

SSA is not well-suited to separation of autoregressive red noise. The Monte
Carlo SSA (Allen and Smith, 1996) (MC-SSA) and its multivariate general-
ization (Allen and Robertson, 1996) remedy this with a statistical test of the
eigentriples against a null hypothesis of colored noise by sampling ’surrogate’
data and projecting them onto the eigentriples. As a Bayesian alternative
to MC-SSA, Holmström and Launonen (2013) proposed the Posterior SSA
(PSSA) and it was subsequently applied to paleoclimate reconstruction from
varved lake sediment cores in Ojala et al. (2015). The PSSA method consists of
three separate phases. First, the formulation of the Bayesian posterior model of
the signal and producing a sample from the signal’s posterior distribution. Sec-
ond, the projection of the sample onto the one-dimensional subspaces defined
by the left eigenvectors of the SSA eigentriples of, depending on the context,
the original noisy time series data or the posterior mean of the sample. For
each eigentriple, the projection phase thus gives a projected sample which is
interpreted as a sample from the posterior distribution of the time series SSA
component associated with the eigentriple. The final, third phase of PSSA
makes inferences about the SSA components using the projected samples. In
Holmström and Launonen (2013), this was done by computing a so-called cred-
ibility map for each SSA component and then visually inspecting those maps
for credible features. The credibility maps consist of tapered pillars of black
and white on a gray background at the time points, where the black and white
features show credibly decreasing or increasing slope and gray means neither
holds credibly. The SSA components whose maps are su�ciently colored are
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Multivariate Posterior Singular Spectrum Analysis 3

inferred to be signal and those whose maps are mostly gray are inferred to be
noise. For examples of such credibility maps, see the lower panel of Figure 3.

The PSSA is preferable over other methods, e.g. perturbation (cf. Hassani
et al. (2011)), in the sense that its Bayesian paradigm allows taking into ac-
count the uncertainties involved in a principled and coherent manner while
permitting a flexible posterior model without restrictive model assumptions.
Bayesian modeling is also more flexible than straightforward smoothing of the
data. In the present paper in particular, we use a smoothing prior for the signal
that does not commit to a single fixed smooth. Uncertainty about the prior
smoothing level is extended further by setting a hyperprior for the smoothing
prior’s smoothing parameter �0.

The modification of the projection phase of PSSA for the various general-
izations of SSA is straightforward. In Holmström and Launonen (2013), the
projecting operators contain the basic SSA embedding and re-Hankelization,
which are replaced by their MSSA, 2D-SSA or shaped-SSA variants in the cor-
responding generalizations of PSSA. However, the inference phase requires a
di↵erent scheme depending on the data type. For multivariate time series, the
method of the credibility maps is similar to that of the single-variate PSSA.
For image analysis, inference on the slope of the components is not possible.
One option of inference for images was considered in Godtliebsen et al. (2004)
in a frequentist scale-space context, where statistically significant gradients
in the image pixels were used to identify significant features, e.g. peaks and
ridges. This relies on a visual inspection of the gradients, which may be cum-
bersome for a large number of image components. A more straightforward
approach was introduced in Holmström and Pasanen (2012), where the credi-
bility of the image pixel values’ sign was evaluated in the context of di↵erence
images. More generally, this inference is suitable for any zero-mean image,
and thus could be applied to centered SSA image components. In this paper,
we restrict ourselves to multivariate time series and present the multivariate
generalization of PSSA (MPSSA).

The rest of the paper is organized as follows. In Section 2, we describe
the MPSSA algorithm in greater detail. In Section 3, we demonstrate MPSSA
with an artificial example and NAO/SOI climate index data, comparing the
results to a previous study. In Section 4, we summarize the results and briefly
discuss various aspects of the MPSSA method.

2 Multivariate PSSA

2.1 Basic SSA

We first describe the basic SSA algorithm following Golyandina et al. (2001)
and Golyandina and Zhigljavsky (2013). Let f = [f1, . . . , fN ]T be a time series
of length N . SSA has four steps, where the first two are called the decompo-
sition stage and the last two the reconstruction stage. Let 1 < L < N be an
integer parameter called the window length. The first step of SSA is the em-
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bedding, where the time series f is transformed to an L⇥K trajectory matrix
X, where K = N � L + 1 and the ith column of X is the lagged subseries
[fi, . . . , fi+L�1] of length L, i.e.

X =

2

6664

f1 f2 · · · fK
f2 f3 · · · fK+1

...
...

. . .
...

fL fL+1 · · · fN

3

7775
.

The trajectory matrix X is a Hankel matrix, i.e., each of its skew-diagonals
(antidiagonals) has a constant value. The embedding is a linear mapping from
RN to the space of L⇥K Hankel matrices ML⇥K . We denote the embedding
function by T .

The second step is the singular value decomposition of the trajectory ma-
trix X. Let

p
�1, . . . ,

p
�L � 0 be the singular values and ui 2 RL and

vi = XTui/
p
�i 2 RK the corresponding left and right singular vectors of

X. Then X = X1+ · · ·+XL, where Xi =
p
�iuivi are rank 1 elementary ma-

trices. The triplet (
p
�i,ui,vi) associated with Xi is called the ith eigentriple.

The third step, starting the reconstruction stage, is the grouping of the
eigentriples. The index set {1, . . . , L} is partitioned into disjoint subsets I1, . . . ,
Im and, for each subset, the elementary matrices with the corresponding
indices are summed to form the resultant matrices XIj =

P
i2Ij

Xi. Then
X = XI1 + · · ·+XIm . The resultant matrix XIj can be calculated by project-
ing the column vectors of X onto the subspace spanned by the eigenvectors
{ui | i 2 Ij}. We denote by PIj 2 RL⇥L the projection matrix corresponding
to this basis.

The final step is the (skew-)diagonal averaging of the resultant matrices
XIj , which transforms them back into time series components. For each resul-
tant matrix, first the values xij of the kth skew-diagonal, where i+ j = k = 1,
are replaced with their average for k = 1, . . . , N . This produces a matrix
with constant skew-diagonals, i.e., a Hankel matrix, which is the trajectory
matrix of some series of length N , since the embedding T is a one-to-one cor-
respondence between RN and ML⇥K . The diagonal averaging of the resultant
matrix XIj thus yields the reconstructed series component f̃j and the origi-

nal series is decomposed as f = f̃1 + · · · + f̃m. Formally, diagonal averaging
is the orthogonal projection of the resultant matrix onto the space of Hankel
matrices ML⇥K , which we denote by the Hankelization operator H. The SSA
decomposition can thus be expressed as the collection of the composite lin-
ear operators T �1HPIjT , j = 1, . . . ,m, where the reconstructed component

f̃j = T �1HPIjT f .

2.2 MSSA

The generalizations of SSA (MSSA, 2D-SSA and shaped-SSA) share a common
scheme with the basic algorithm (Golyandina et al., 2015). First, the data are
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Multivariate Posterior Singular Spectrum Analysis 5

transformed via an embedding to a trajectory matrix, where the embedding
depends on the generalization and the window shape parameter. Then, the
singular value decomposition of the trajectory matrix and the grouping of the
eigentriples are performed similar to the basic algorithm. Last, the multivariate
series or image components are reconstructed by projecting, with respect to the
Frobenius norm, the resultant matrices onto the space of Hankel-type matrices
determined by the embedding, and finally taking the inverse embedding. The
projection corresponds to modified diagonal averaging, depending on the form
of the Hankel-type matrix.

Let f = {f (p) = [f (p)
1

, . . . , f (p)
Np

]T | p = 1, . . . , s} be a multivariate collection
of s time series of lengths N1, . . . , Ns, let L be a common window length for all
the series and denote K =

Ps
p=1

Kp, where Kp = Np �L+1. The embedding

operator TMSSA of MSSA determines the trajectory matrix X 2 RL⇥K by

X = TMSSAf =
⇥
X(1) X(2) · · · X(s)

⇤
,

where T f (p) = X(p) 2 ML⇥Kp is the basic SSA embedding of the pth time
series with window length L. The trajectory matrix X has thus a stacked
Hankel structure determined by L and the time series lengths N1, . . . , Np.

Let X = X1 + · · ·+Xm be a decomposition of the trajectory matrix into

resultant matrices, where Xj =
h
X(1)

j X(2)

j · · · X(s)
j

i
and X(p)

j 2 RL⇥Kp . The

projection of Xj onto stacked Hankel matrices is then

HMSSAXj =
h
HX(1)

j HX(2)

j · · · HX(s)
j

i
,

i.e., the submatrices X(p)
j of Xj are diagonally averaged. We thus get the

decomposition of f into multivariate time series components f̃j by

f̃j = T �1

MSSA
HMSSAPIjTMSSAf ,

where f (p) = f̃ (p)
1

+ · · ·+ f̃ (p)m for p = 1, . . . , s.
In 2D-SSA, the window is rectangular with two parameters Lx and Ly and

the embedding produces a Hankel-block-Hankel matrix where the trajectory
matrix is formed by Hankel blocks which themselves form a Hankel matrix
(Golyandina et al., 2015). In shaped-SSA, the window need not be rectangular
but a two-dimensional grid shape, which slides along the image to form Hankel
matrices from the pixels in its area. This embedding produces a quasi-Hankel
trajectory matrix.

The MSSA has an advantage over SSA if the multivariate time series con-
tain matching components. The MSSA reconstruction of the common signal is
then more accurate, in the sense of mean squared error, than separate recon-
structions with single-variate SSA (Golyandina and Stepanov, 2005; Golyan-
dina et al., 2015). A time shift between the matching signals has no e↵ect in
MSSA. Thus, for example, sine waves with the same frequency but di↵erent
phase strengthen each other.
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6

2.3 Choice of parameters

The main parameter of SSA is the window length L whose choice is driven
by the concept of separability. Two time series components are said to be
strongly separable if, for any singular value decomposition of the trajectory
matrix X, it holds that X = X1 + X2, where X1 and X2 are the trajectory
matrices of the said components (cf. Golyandina et al. (2001)). I.e., the two
components can be found by a correctly grouping the eigentriples into two
sets within which the elementary matrices are summed to form X1 and X2. In
practice with noisy series, only approximate separability is attainable, where
the weighted so-called w-correlation is small between the series components.
Given a fixed time series length N in basic SSA, the window length value
which gives the best approximate separation of signal from noise is L = N/2
(Golyandina et al., 2001; Golyandina, 2010). More generally, the most detailed
decomposition corresponds to a trajectory matrix X which has maximal rank
(Golyandina et al., 2015). If the s series of a multivariate time series have
equal length N , the choice of window length which maximizes the rank of X
is thus approximately [s/(s+ 1)] ·N .

The grouping of the eigentriples may be considered the second parameter
of SSA. This choice is dictated by the theory encompassing series of finite
rank, such as polynomials and exponentially modulated harmonic series (cf.
Golyandina et al. (2001)). For example, sine waves produce two matching
eigentriples. Noise is described in this framework by not having finite rank,
such that the number of eigentriples in its decomposition tends to infinity as
N grows larger. In Posterior SSA, the eigentriple grouping is postponed and,
instead, the elementary grouping Ij = {j}, j = 1, . . . , L, is used. The orthog-
onal projection onto the ith eigentriple is thus handled by left multiplying X
by the one-dimensional projection matrix Pi = uiuT

i .

2.4 Posterior SSA and its generalization

The Posterior SSA method has three separate phases: posterior modeling and
sampling, sample projection and posterior inference. Let {g(1), . . . ,g(n)} be
a sample of n realizations from the posterior distribution of the signal time
series of interest g. PSSA distinguishes between two ways this sample can be
obtained. In the first case, there is a single noisy observed time series f for
which we build a Bayesian model and sample from the posterior p(g|f). In the
second case, we have data only indirectly related to g which are then used to
construct a Bayesian model and the resulting posterior p(g|data) is sampled.
The second case applies e.g. in the context of proxy data for climate time series
reconstructions. The sample is then projected, in phase space, onto the left
eigenvectors ui of the SSA decomposition of either the noisy series f or the
posterior mean E(g|data), which we denote in the following also by f . In the
case of directly observed data, either may be used, where the choice depends
on the nature of the observed data and the quantity on which the modeler is
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Fig. 1 An example of a credibility map its the associated SSA component (solid line, values
at the time points shown by circles). See the text for further information.

interested in. Section 3.1 presents an example of using the noisy series, while
Section 3.2 deals with the posterior mean. In the case of indirectly observed
data, only the posterior mean is available. For either case, the PSSA method
continues in the same vein and does not concern how the posterior sample was
obtained or which series the SSA decomposition is based on.

The objective of the sample projection phase is to get approximate samples
from the elementary SSA components’ posterior distributions. This is done in
PSSA by applying the operator T �1HPiT to the sample realizations g(k).

Thus, for each f̃i, we get a projected sample {g̃(k)
i }nk=1

. The generalization of
the projection phase of PSSA is straightforward as it only involves replacing
the embedding and the Hankelization operators T and H of basic SSA with
their counterparts in MSSA, 2D-SSA or shaped-SSA.

The posterior inference phase of PSSA makes inference about the credibil-
ity of the features of the SSA components. The credible features are indicated

by a so-called credibility map which is computed from the sample {g̃(k)
i }nk=1

.
For an example of a detailed credibility map together with the associated SSA
component, see Figure 1. The horizontal axis of a credibility map contains the
time indices t2, . . . , tN and the vertical axis specifies a finite set of posterior
credibility levels ↵ contained in ]0.5, 1] (for our purposes, we use the credibility
levels 0.5 + 1/n, 0.55, 0.6, 0.65, . . . , 1). At each pixel corresponding to a time
index and a credibility level, the map has one of three colors white, black or
gray. The credibility map is interpreted as follows. First, fix a credibility level
↵ on the vertical axis and look at the colors on that line along the time indices.
A white or black pixel indicates an increasing or decreasing slope, respectively,
at the time index with a joint posterior probability of at least ↵. If a pixel is
gray, the slope is neither increasing nor decreasing at the credibility level ↵.
A feature such as a ’credible’ local extremum located in a band of gray time
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Algorithm 1 MPSSA

We assume a posterior model for the signal g of the multivariate time series f = {f
(p)

}
s
p=1

and a sample {g
(k) = {g

(p,k)
}
s
p=1}

n
k=1 drawn from it. A separate posterior model can

be used for each component f
(p). Depending on the context, the multivariate series from

which the MSSA eigentriples are calculated can be either the noisy series f or the posterior
mean E(g|data) of the model. We denote both by f .

1: Input : Multivariate series f , sample {g
(k)

}
n
k=1.

2: Find a suitable window length L and apply MSSA to f . This produces the eigentriples
(
p
�i,ui,vi) and the one-dimensional projections Pi = uiu

T
i , i = 1, . . . , d. Here d is

the number of time series components considered in posterior analysis.
3: for all i = 1, . . . , d  L do

4: Compute the projected sample {g̃
(k)
i = T

�1
MSSAHMSSAPiTMSSAg

(k)
}
n
k=1.

5: end for

6: for all p = 1, . . . , s do

7: for all i = 1, . . . , d  L do

8: Compute the component f̃i = T
�1
MSSAHMSSAPiTMSSAf and plot f̃

(p)
i .

9: Compute and plot the credibility map of the component part f̃
(p)
i by using the

sample {g̃
(p,k)
i }

n
k=1 or all the samples for simultaneous inference (cf. Algorithm 2).

10: end for

11: end for

12: Output : An atlas of the MSSA components f̃
(p)
i and a corresponding credibility atlas

for each p = 1, . . . , s.

Use the plots of the components and their associated credibility maps to identify interesting
credible features in the time series considered. Compare the credibility atlases 1, . . . , s for
matching credible components. Separate the credible components into groups according to
SSA guidelines.

indices is thus indicated by white on one side and black on the other of the
band.

The set of white and black pixels having at least the joint probability ↵,
for each of the chosen credibility levels, was determined in Holmström and
Launonen (2013) by a ’Highest Pointwise Probabilities’ (HPW) algorithm,
first proposed in Erästö and Holmström (2005). The credibility maps thus
consist of a gray background filled by tapered white and black pillars, which
cut o↵ at the horizontal line where the credibility ceases to hold (specifically,
at the mid-point between two credibility levels ↵i and ↵i+1, where the pixel is
credible at the level ↵i but not at ↵i+1). We call this inference simultaneous
within a credibility map, since HPW calculates a joint probability. The HPW
can also be computed over the combined stacked time indices 1, . . . , N � 1
of all or a subset of components f̃i. In this case, we calculate a single HPW
credibility map, which is then segmented into separate maps corresponding
to the individual components for easier visual representation. This type of
inference is useful to suppress false positives, and we call it simultaneous over
an atlas of credibility maps. On the condition that the posterior sample is of
a su�ciently high quality, the credibility maps of the signal components are
expected to show a plethora of white and and black pixels, while the maps of
the noise artifacts are expected to be mostly gray. We represent the inference
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visually by plotting the SSA components in a grid in descending order with
respect to their singular value magnitude, and then plot the atlas of credibility
maps underneath in a similar grid (cf. Figure 3).

The posterior inference of the multivariate time series is similar to the

single-variate case. Now, for each multivariate SSA component f̃i = {f̃ (p)i }sp=1

there is a projected multivariate series sample {{g̃(p,k)
i }sp=1

}nk=1
. For each

p = 1, . . . , s, we pick the single-variate samples {g̃(p,k)
i }nk=1

for i = 1, . . . , L

and calculate the atlas of the single-variate component parts f̃ (p)i and their

associated credibility maps computed from {g̃(p,k)
i }nk=1

. The visual exposition
of MPSSA is thus similar to PSSA, except that a complete atlas is shown for
each p = 1, . . . , s. Also, the HPW can be computed over the combined time
indices of all the component parts, making inference simultaneous over an at-
las and between atlases 1, . . . , p of credibility maps. In Section 3, we use solely
this fully simultaneous inference for multivariate series, and call the inference
just simultaneous. The algorithmic structure of the MPSSA is described in
Algorithm 1.

2.5 Construction of credibility maps

To describe map construction in more detail, consider a sample {g̃(k)
i }nk=1

from
the posterior distribution of the ith elementary MSSA component. While our
examples deal with time series observed on an equispaced time grid, the grid in
general does not have to be uniform. In such a case the time indices j actually
correspond to times tj where the distances tj+1 � tj may vary with j. We
formulate map construction in this slightly more general setting.

Let D 2 R(N�1)⇥N be the matrix that computes di↵erence quotients,
that is, for z = [z1, z2, . . . , zN ]T 2 RN , the slope of z is Dz = w with
wj = (zj+1 � zj)/(tj+1 � tj), j = 1, . . . , N � 1. Compute a sample of slopes
of the ith elementary MSSA component time series parts p = 1, . . . , s at

the time points t2, . . . , tNp by the di↵erence quotient vectors {�(p,k)i }sp=1
=

{[�(i,p,k)
1

, �(i,p,k)
2

, . . . , �(i,p,k)Np�1
]}sp=1

= {Dg̃(p,k)
i }sp=1

, k = 1, . . . , n. Algorithm 2
describes how a simultaneous MPSSA credibility atlas is now constructed
based on the posterior distribution of these slopes. The posterior probabili-
ties in steps 3 and 4 of Algorithm 2 can be estimated using this sample.

3 Experimental results

3.1 Two noisy artificial series with a shared sinusoid

Let N = 51, gj = sin(2⇡!tj), j = 1, . . . , N , where ! = 1/15 and tj = 2(j� 1),
and let f = g + ", where " ⇠ N(0, 1.42I51). Figure 2 shows the artificial
time series f (1) and f (2), which contain two realizations from the multivariate
Gaussian noise. Our aim is to demonstrate MPSSA in a case where the noise
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Algorithm 2 Construction of simultaneous MPSSA Credibility Maps
1: Index the time series parts by p = 1, . . . , s and the elementary MSSA components by

i = 1, . . . , d. Select a set of credibilities 0.5 < ↵1 < · · · < ↵M  1.
2: for all ↵ 2 {↵1, . . . ,↵M} do

3: Decompose the index set
s
[

p=1
{1, . . . , Np � 1}⇥ {1, . . . , d}⇥ {p} into three subsets,

I+ = {(j, i, p) | P(�(i,p)j > 0 | data) � ↵},

I� = {(j, i, p) | P(�(i,p)j < 0 | data) � ↵},

I0 =
s
[

p=1
{1, . . . , Np � 1}⇥ {1, . . . , d}⇥ {p} \ (I+ [ I�).

4: Let E(j,i,p) denote the event �
(i,p)
j > 0 | data, when (j, i, p) 2 I+ and �

(i,p)
j < 0 | data,

when (j, i, p) 2 I�. Let q1, . . . , qS be an ordering of the triplets in I+ [ I� such that

P(Eq1 ) � P(Eq2 ) · · · � P(EqS ) � ↵

and let
k = max{` | P(Eq1 & · · ·& Eq` ) � ↵}.

5: Color pixels (q1,↵), . . . , (qk,↵) white or black depending on whether q` 2 I+ or
q` 2 I�, and color the rest of the pixels (q,↵) gray.

6: end for

7: The credibility map of the ith elementary MPSSA component for the time series
part p is given by the colors of the pixels ((1, i, p),↵1), . . . , ((1, i, p),↵M ), . . . , ((Np �

1, i, p),↵1), . . . , ((Np � 1, i, p),↵M ).

level is too high for the proper separation and credible identification of the
signal g with single-variate PSSA.

In MPSSA, we must first define a posterior model of the signal. We use
the additive model f = g + " described in Erästö and Holmström (2005),
where the likelihood is normal, f ⇠ N(g,�2I), and the variance �2 is unknown
with a scaled inverse chi-squared prior, �2 ⇠ Scale-inv-�2(⌫0,�2

0
), where the

degrees of freedom ⌫0 determines how tight or loose the prior is. The signal
g has a Gaussian smoothing prior conditional on the variance �2 and a prior
smoothing parameter �0,

p(g|�2,�0) /
✓
�0

�2

◆N�2

2

exp
�
� �0

2�2 kCgk2
�
, (1)

where C 2 R(N�2)⇥N is the second order di↵erencing matrix for series of
length N . For a fixed �0, the marginal posterior of g has a multivariate-
t distribution, g|f ⇠ t⌫0+N�2(S�0f ,⌃0), where S�0 = (I + �0CTC)�1 is a
discrete spline smoothing matrix and the covariance is

⌃0 =

✓
kfk2 � fTS�0f + ⌫0�2

0

⌫0 +N � 2

◆
S�0 .

Before sampling from the posteriors p(g|f (1)) and p(g|f (2)) can take place,
the hyperparameters of �2 and the fixed �0 need to be set. We used a maximum
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likelihood algorithm, proposed in Appendix A of Holmström and Pasanen
(2012) in the context of image analysis, to estimate the prior means of �2.
The estimated values were about 1.52 and 1.452 for f (1) and f (2), respectively.
We then chose a loose prior with degrees of freedom ⌫0 = 10 and chose �2

0

such that the prior means were the estimated variances. The algorithm also
estimated �0, but these values gave extremely smooth posteriors due to the
high level of noise. We thus settled to pick �0 on a subjective basis by inspecting
the scale-derivative maps of f (1) and f (2). The scale-derivative map is a visual
tool introduced by Pasanen et al. (2013) that helps to pick a value of �0 for
which much of the noise is smoothed out by the smoother S�0 but the signal is
left intact. The scale-derivative maps suggested a value of the order 100, and
we chose �0 = 5 for both f (1) and f (2).

We drew a sample of 1000 realizations from the multivariate-t posteriors of
f (1) and f (2) and projected the combined bivariate sample on the left eigenvec-
tors of the bivariate time series’ MSSA eigentriples, calculated with a window
length L = (2/3) · 51 = 34. The credibility maps for the MSSA component
parts corresponding to f (1) and f (2) were then computed with the respective
parts of the projected bivariate samples, using simultaneous inference over
the first 25 maps of both series. The first 25 MSSA components of f (1) and
their credibility atlas are shown in Figure 3 and the components and credi-
bility atlas of f (2) are shown in Figure 4. The titles of the components show
wavelength values which are determined as the maxima of the components’
Lomb-Scargle periodograms. The first two MSSA components shown in the
upper panels of Figures 3 and 4 reconstruct the true signal sin(2⇡(1/15)t),
where the wavelength approximation is 15.38 for f (1) and 14.81 for f (2). Their
respective credibility maps, shown in the lower panels of Figures 3 and 4, have
high credibility values at the time points where the components’ slope is non-
zero. The other MSSA components pertaining to noise have only haphazard
credible features.

For comparison, the single-variate SSA components and their simultaneous
credibility atlas are shown in Figure 5 for f (1) and in Figure 6 for f (2). The
window length with which the components were calculated was L = 25, half
the length of the series rounded down. Compared to the MSSA components,
the signal does separate from noise as well. The third SSA component of
f (1) in the upper panel of Figure 5 has approximately the same wavelength
and the functional form as the signal, but no sinusoidal pair. Its credibility
map shows credible features, but so does the false pair of the 4th and 5th
components with a wavelength of 20. In the upper panel of Figure 6, the
1st and 5th SSA components of the series f (2) have a wavelength of 15.38,
but their functional form is not correct. The credibility atlas of f (2) shows
only some credible features. We conclude that in this artificial example, the
superior performance of the MPSSA compared to single-variate PSSA is due
to the better identification of the correct signal subspace with MSSA, since
the relatively high noise level confounds the single-variate SSA.
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Fig. 2 The signal sin(2⇡(1/15)t) (solid line) and the artificial noisy series f (1) (upper panel,
dashed line) and f

(2) (lower panel, dashed line).

3.2 NAO and SOI

The NAO (North Atlantic Oscillation) index and SOI (Southern Oscillation
Index) are two well-studied time series, defined as the normalized monthly
mean sea level pressure di↵erence between two locations in the North Atlantic
and equatorial Pacific, respectively. For SOI, we use the data provided by
the Australian Bureau of Meteorology, cf. http://www.bom.gov.au/climate/
current/soi2.shtml, that consist of monthly pressure di↵erences between
Tahiti and Darwin beginning from January 1876. For NAO, we use the Uni-
versity of East Anglia data, cf. http://www.cru.uea.ac.uk/cru/data/nao/,
where the pressure di↵erence is calculated between Gibraltar and South-West
Iceland. The NAO data extend to instrumental records from 1821 with some
missing values, compiled by Jones in Jones et al. (1997) and updated from
2000 to May 2015 by Tim Osborn, cf. http://www.cru.uea.ac.uk/~timo/
datapages/naoi.htm. The two series spanning the years 1876 to 2014 are
shown in the bottom panels of Figure 7.

NAO and SOI have several multiyear oscillations attributed to them. SOI
is particularly thought to indicate El Niño and La Niña warming and cooling
events. Feliks et al. (2013) examined NAO, SOI and Indian monsoon rainfall
records for interactions between their oscillatory modes. They used single-
variate Monte Carlo SSA on each time series and did pairwise comparisons of
the series with MC-MSSA coupled with a varimax rotation of the eigenvec-
tors for enhanced separation of oscillations. The monthly data were forward-
backward filtered with a Chebyshev type 1 filter to cut o↵ frequencies more
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Fig. 3 MPSSA analysis of the artificial bivariate series. Upper panel: The f
(1) part of the

bivariate MSSA components, calculated from the bivariate series {f
(1), f (2)} with window

length L = 34. Lower panel: The simultaneous credibility atlas for f
(1).
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Fig. 4 MPSSA analysis of the artificial bivariate series. Upper panel: The f
(2) part of the

bivariate MSSA components, calculated from the bivariate series {f
(1), f (2)} with window

length L = 34. Lower panel: The simultaneous credibility atlas for f
(2).
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Fig. 5 PSSA analysis of the artificial series f
(1). Upper panel: The SSA components of

f
(1), where L = 25. Lower panel: The simultaneous credibility atlas corresponding to the
components.
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Fig. 6 PSSA analysis of the artificial series f
(2). Upper panel: The SSA components of

f
(2), where L = 25. Lower panel: The simultaneous credibility atlas corresponding to the
components.
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than 0.45 cycles per year, after which annually subsampled July values were
used for analysis. Using MC-SSA separately on each series with a window
length of 40 years, they found statistically significant oscillatory modes of 6-7,
5, 3.6 and 2.5 years for SOI, and 7.8, 5.9, 5, 4.2 and 2.7 years for NAO. Using
MC-MSSA with varimax rotation on NAO and SOI with a window length
of 50 years, the statistically significant oscillatory modes for the multivariate
system were 7.8, 5.8 and 3.6 years.

Our aim is to compare these previous results with Posterior MSSA of the
NAO and SOI. First, we build a posterior model of the signal for the monthly
NAO and SOI records. We use the additive model f = g+", where " ⇠ N(0,⌃)
and where the noise covariance matrix ⌃ is determined by the red noise AR(1)
process "t = �"t�1+�zt, zt ⇠ N(0, 1). The correlation parameter � is assumed
to have a uniform prior on the interval [�1, 1] and the variance �2 a scaled
inverse chi-squared prior. As in the independent error model of Section 3.1,
we assume a Gaussian smoothing prior for g. However, where dividing the
smoothing parameter �0 by �2 in (1) makes possible the simple closed form
posterior, the dependent error structure complicates such an approach and
the smoothing parameter is therefore left unscaled (cf. Erästö and Holmström
(2007)). We also treat �0 as unknown and assign a gamma prior to it. Assuming
prior independence of the model parameters, their joint posterior is

p(g,�0, �,�
2|f) / p(f |g,⌃) · p(g|�0) · p(�0) · p(�) · p(�2),

where

f | g,⌃ ⇠ N(g,⌃)

g | �0 ⇠ �
N�2

N
0

exp(��0
2
kCgk2)

�0 ⇠ Gamma(⌘0,�0)

� ⇠ Unif(�1, 1)

�2 ⇠ Scale-inv-�2(⌫0,�
2

0
).

The hyperparameters ⌘0 and �0 are the shape and rate of the gamma prior of
�0. For both NAO and SOI, we chose a loose prior for �2 with ⌫0 = 3. The
choice of �2

0
was such that the prior mean was centered at an AR(1) noise

variance value which was estimated from the residuals of the NAO and SOI
series. The residuals were obtained by smoothing the data with the discrete
spline smoother S = (I + CTC)�1, where the smoothing level  was cho-
sen so that the residual resembled AR(1) noise reasonably well in exploratory
analyses, where we looked at the sample autocovariance and partial autoco-
variance plots of the data and the scatterplot and the Q-Q plot of the fitted
residual. For the hyperparameters ⌘0 and �0 of the gamma prior of �0, we
chose ⌘0 = 1, making the prior an exponential distribution, and �0 = 1/ so
that the prior mean is .

We sampled from the posterior distribution with a Metropolis-Hastings
within Gibbs algorithm, tuned separately for NAO and SOI, since the form of
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the posterior does not permit direct sampling. The starting values for �0 and
g were  and Sf , and the starting values for � and �2 were their estimates
from the residual. We restricted the monthly NAO and SOI series to the years
1876-2014 and, after discarding burn-in period and thinning the sample by
a factor of 1000, obtained a sample of 1000 realizations for both series. As
in Feliks et al. (2013), we subsampled annual July values from the posterior
realizations of g to get series of length 139. However, we didn’t low-pass filter
prior to subsampling, since the posterior realizations of g were already smooth.
The posterior sample means of gNAO and gSOI, shown in Figure 7, were then
used as the multivariate series on which Posterior MSSA was based. We chose
window length L = 50 and projected the combined NAO and SOI sample S =

{{S(1)

NAO
,S(1)

SOI
}, . . . , {S(1000)

NAO
,S(1000)

SOI
}} on the left eigenvectors of the bivariate

posterior mean’s 50 eigentriples. We then calculated the credibility atlases for
the bivariate MSSA components, simultaneously over all the credibility maps.
The NAO part of the MSSA components and their credibility atlas is shown
in Figure 8 and the SOI part is shown in Figure 9. The titles of the component
plots show the dominant wavelengths of their Lomb-Scargle periodograms.

The pair of components 1 and 4 has a wavelength of about 13-14 years and
their NAO maps show high credibility at nearly all time points. Their SOI
maps have some non-credible gaps between the time points. In Feliks et al.
(2013), the 7th and 8th varimax rotated eigenvectors of the MSSA of NAO
and SOI had a wavelength of 13.4 and 13.5 years, respectively, but they were
not statistically significant in the Monte Carlo analysis. The component pair 2
and 3 shows a wavelength of about 6.5 years and is credible for SOI but not for
NAO. This is in line with Feliks et al. (2013), who found such a periodicity for
SOI with a single-variate MC-SSA. The dominant wavelength of components
5 and 6 is about 7.5 years and has credible features for about the first half of
the series, which compares to the 7.8 year cycle in Feliks et al. (2013). The 5.8
year cycle might correspond to the pair of components 10 and 11, which have
a wavelength of about 5.6 years. Looking at their credibility maps, they seem
credible for the most part for SOI but not for NAO. A credible wavelength
corresponding to the 3.6 years cycle in Feliks et al. (2013) seems absent in the
Posterior MSSA components.

4 Summary

In Section 2, we described MSSA and Posterior SSA, and showed how PSSA
can be generalized to a multivariate version. The projection phase of PSSA
was generalized by replacing the embedding and the Hankelization operators
of the composite projection operator by their multivariate SSA variants, where
the trajectory matrix had a stacked-Hankel structure. The inference of MPSSA
was done similarly as in PSSA. We computed a credibility map for each single-
variate SSA component part of the multivariate SSA components, using the
corresponding single-variate part of the projected sample. We argued that the
further generalization of the projection phase into 2D-SSA and shaped-SSA is
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Fig. 7 The upper part shows the July values of the posterior sample means of NAO (first
panel) and SOI (second panel). The lower part shows the raw NAO (third panel) and SOI
(fourth panel) monthly time series used in posterior modeling for the years 1876 to 2014.
The July values of the posterior means are superimposed over the data.
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Fig. 8 MPSSA analysis of the NAO time series. Upper panel: The NAO part of the bivariate
MSSA components, calculated from the bivariate posterior mean. Lower panel: The NAO
components’ simultaneous credibility atlas.
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Fig. 9 MPSSA analysis of the SOI time series. Upper panel: The SOI part of the bivariate
MSSA components, calculated from the bivariate posterior mean. Lower panel: The SOI
components’ simultaneous credibility atlas.
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similarly straightforward, but the inference requires a di↵erent scheme suited
for image data, as discussed in Section 1.

In Section 3, we demonstrated the MPSSA algorithm with an artificial
example and NAO and SOI climate index series. We compared MPSSA with
the single-variate PSSA in the artificial example, where the performance of
MPSSA was better. The reason for this was that the single-variate SSA, unlike
MSSA, could not locate the signal subspace properly due to the high level
of noise compared to the length of the series. The results of the NAO and
SOI example were compared with those by Feliks et al. (2013). We found
evidence for some harmonic features with a similar wavelength as those deemed
statistically significant in Feliks et al. (2013), who analyzed the data with
Monte Carlo MSSA and SSA combined with varimax rotation and Chebyshev
type 1 pre-filtering and subsampling of the index series.

The posterior modeling and sampling of the signal plays a crucial role
in MPSSA. If the model is not satisfactory, the credibility maps may show
white and black false positives or gray false negatives even though the signal
subspace is found with MSSA. In the artificial example of Section 3.1, the
posterior model, which is based on smoothing, breaks down faster than MSSA
if the noise is too high. This is because the sampling is done individually for
both series and cannot take advantage of the common signal, which benefits
MSSA. One topic for future work is to consider a joint Bayesian model for the
component time series. Such a model could also explicitly take into account
the spatial dependence between the time series.

The hierarchical model in Section 3.2 based on an AR(1)-noise assumption
contains the random parameters �0, � and �2 for the prior smoothing, auto-
correlation and the noise variance, respectively. Furthermore, �0 and �2 have
a gamma and a scaled inverse chi-squared prior, respectively, while � has a
uniform prior. The values of �0 and �2 can be estimated and set as the prior
means, such that the modeler is left only to decide the vagueness of the priors
by choosing the shape ⌘0 for the gamma prior and the degrees of freedom
⌫0 for the scaled inverse chi-squared prior. Concerning the occurrence of false
positives in the credibility maps, the parameter �0 is paramount. We tested
the model with pure AR(1)-noise for various autocorrelations and found that
the posterior values of �0, with the shape hyperparameter ⌘0 ranging from 1 to
2, were about an order of magnitude less than the ML-estimate of �0 (103 ver-
sus 104). Some low-frequency components may thus be suspect when inference
is based on the model in Section 3.2, producing false positive features in the
credibility maps. However, using a fixed ML-estimate of �0, the low-frequency
features were eliminated in the resulting t-posterior of the signal and the false
positives disappeared.

Comparing MPSSA to the Monte Carlo MSSA, MPSSA is pronouncedly
a time-domain method which gives information about the credibility of time
series component features at multiple time points, where the component may
have credible features at some time intervals but not at others. Unlike Monte
Carlo MSSA, MPSSA can point out components which may be common for
only a proper subset of the multivariate series, when the credibility maps are
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gray for some of the single-variate component parts with the same singular
value magnitude ordinal number. However, the MPSSA as such is not suitable
for the analysis of a large number of time series, since the computational bur-
den and the manual burden of the visual inspection of the credibility maps may
grow too large. The computational burden grows in particular if the inference
is simultaneous between credibility atlases. The computational complexity of
the Hankelization, up to a quasi-Hankel matrix, can however be brought down
to O(N logN) with a fast Fourier transform implementation (Korobeynikov,
2010; Golyandina et al., 2015). The analysis of a large set of data with MPSSA
would likely require an inference limited to the L eigentriples of the trajectory
matrix instead of the s · L multivariate time series components.
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