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ABSTRACT

Generalizing and unifying prior results, we solve the subconvexity problem for the L-functions of GL1

and GL2 automorphic representations over a fixed number field, uniformly in all aspects. A novel feature of the
present method is the softness of our arguments; this is largely due to a consistent use of canonically normalized
period relations, such as those supplied by the work of Waldspurger and Ichino–Ikeda.
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1. Introduction

1.1. The subconvexity problem

We refer the reader who is not familiar with L-functions to §1.2 for an
introduction, in explicit terms, to some of the ideas of this paper.
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Throughout this paper, F denotes a fixed number field and A its ring
of adèles. For π an automorphic representation of GLn(A) (with unitary cen-
tral character, not necessarily of finite order), Iwaniec and Sarnak have at-
tached an analytic conductor C(π) ∈ R>1; it is the product of the usual
(integer) conductor with a parameter measuring how large the archimedean
eigenvalues are. More intrinsically, the logarithm of the conductor is propor-
tional to the density of zeros of the corresponding L-function. See §4.1.

The subconvexity problem is concerned with the size of L(π, s) when
<s = 1/2: it consists in improving over the so-called convexity bound (see
[37] for instance)

L(π, 1/2)�n,F,ε C(π)1/4+ε

for any1 ε > 0. The main result of the present paper is the resolution of this
problem for GL1 and GL2-automorphic representations:

1.1. Theorem. — There is an absolute constant δ > 0 such that: for
π an automorphic representation of GL1(A) or GL2(A) (with unitary central
character), one has

L(π, 1/2)�F C(π)1/4−δ.

Remark. — Contrary to appearance, this also includes the question of
growth along the critical line, i.e. what is called the t-aspect, because

L(π, 1/2 + it) = L(π ⊗ |.|itA, 1/2).

For example, an interesting corollary is a subconvex bound for the L-function
of a Maass form with eigenvalue 1/4 + ν2 at the point t = 1/2 + iν. Another
corollary is a subconvex bound (in the discriminant) for the Dedekind L-
function of a cubic extension of F (cf. [21] for an application of the latter).

The above result is a specialization (by taking π2 to be a suitable Eisen-
stein series) of the following more general result

1.2. Theorem. — There is an absolute2 constant δ > 0 such that: for
π1, π2 automorphic representations on GL2(AF ) we have3 :

L(π1 ⊗ π2, 1/2)�F,π2 C(π1 ⊗ π2)1/4−δ; (1.1)

more precisely, the constant implied depends polynomially on the discriminant
of F (for F varying over fields of given degree) and on C(π2).

1 Recently, Heath-Brown has established a general convexity bound [30], which together with the work

of Luo, Rudnick, Sarnak [46] implies the clean convexity bound L(π, 1/2)�n,F C(π)1/4.

2 independent of the number field F .

3 More precisely we prove the bound L(π1 ⊗ π2, 1/2)�F,π2
C(π1)1/2−2δ. That the latter implies the

former is a consequence of the bounds in [10].
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The value of δ is easily computable. We have not attempted to optimize
any exponent, our goal in this paper being of giving clean proofs in a general
context.

Remark. — The bound generalizes (up to the value of δ) a variety
of subconvex bounds [71,12,29,27,47,17,18,64,22,34,19,42,44,48,6,54,31,9,8,
67,16]. Its main feature, however, is its uniformity in the various possible
parameters (the so-called “conductor”, t-aspect, or “spectral” aspects): such
bounds are sometimes called “hybrid”. The first such hybrid bound is that
of Heath-Brown [29] for Dirichlet character L-functions; recent hybrid bounds
are to be found in the work of Jutila and Motohashi [54] and in the work
of Blomer and Harcos [8]. The present work generalizes these also, again, up
to the value of δ.

However, in saying this we have done an injustice to some of those pa-
pers; in some cases, the very point was to obtain the best exponent, whereas
our emphasis is quite different. For example, let us compare the present re-
sult to that of [54]. This paper gives, in particular, the uniform bound for
the value L(ϕλ,

1
2

+ it)� (|t|+ |λ|)1/3 where ϕλ is a Maass form. This bound
is very strong – the same exponent as the classical Weyl bound; on the other
hand, it fails to be subconvex when t ∼ λ, where the conductor drops. The
present work fills this lacuna and provides a subconvex bound for that “crit-
ical point”; as far as we are aware this subconvex bound is new even over
Q. On the other hand, while our method presumably leads to a respectable
δ, it would not be so strong as the result of [54], one reason being that we
are using the amplification method. It is also worth observing that the phe-
nomena of the conductor dropping often leads to major difficulties, both in
our methods and other treatments.

Remark. — It is reasonable to ask what one hopes by studying hybrid
settings – especially given that many applications of subconvexity do not
require them.

It is generally believed that the analytic behavior of L-functions are
“universal,” in that they are controlled by a single scaling parameter, the
analytic conductor C. Taking C → ∞ in different ways can correspond to
analysis of eigenfunctions of large eigenvalue; analysis of eigenfunctions on a
surface of large volume; or sections of a highly ample holomorphic bundle,
and the reasons why these should all have similar asymptotic behavior is not
clear.

We may hope to achieve some insight into this “universality” by study-
ing hybrid phenomena. Indeed, at many points in the text, the reader will
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note the close parallel between increasing the level at finite primes, and in-
creasing the eigenvalue at archimedean primes.

Our methods were outlined in our ICM announcement [50]. In particular
we do not use trace formulas of any kind. An additional feature (originating
in [48]), is that a special case of Theorem 1.2 (the case of π1 a character)
enters the proof of the full theorem. That special case is proven in Theorem
5.1, and is based (following [67]) on a study of the equidistribution of cycles
on adelic quotients.

We have also tried to make use of the following ideas to simplify the
proof (both notationally and conceptually):

- Sobolev norms (cf. [4]; in the adelic context [67]);
- Canonically normalized period formulas (see [69,33]);
- Regularization of integrals of automorphic forms (we give a self-contained

treatment that avoids truncation).

There remain many interesting questions related to the subconvexity
story even for GL2. For instance, the “approximate functional equation” gives
a way to numerically compute any given L-function at the central point, in
time C1/2+ε, where C is the analytic conductor. An interesting question is
whether some of the ideas that enter into the proof of subconvexity can
be interpreted to give faster algorithms. There is some suggestion of this in
existing fast algorithms for computation of ζ(1/2 + it).

1.1.1. An outline of the proof. — To conclude this section we outline
the proof of the main theorem 1.2; a more elementary discussion is in §1.2
and §1.4. Consider two (generic) automorphic representations π1, π2; for sim-
plicity we assume that both are cuspidal4 and that π2 is fixed. We aim for
a subconvex bound for the Rankin/Selberg L-function central value of the
form

L(π1 ⊗ π2, 1/2)

C(π1 ⊗ π2)1/4
�π2 C(π1)−δ, δ > 0.

By Rankin/Selberg theory we may realize the left-hand side above as a
triple product period

∫
PGL2(Q)\PGL2(A)

ϕ1ϕ2E(g)dg = 〈ϕ1, ϕ2E〉 for suitable

ϕi ∈ πi (i = 1, 2) and E belonging to the Eisenstein series of type “1 � χ,”
where χ is the inverse of the product of the central characters of π1 and π2.
Now |〈ϕ1, ϕ2E〉|2 is bounded by

〈ϕ2E,ϕ2E〉 = 〈ϕ2ϕ2, EE〉, (1.2)

4 However, we devote some time and effort to handling the necessary regularizations in the general
case; to our surprise, these modifications are not ugly but rather beautiful.
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and it suffices to show this is at most C(π1)−δ. Now, EE is not square
integrable and one needs a regularized version of the above inner product;
this is described in §4.3 and §4.4. This being done, we obtain by spectral
expansion (see§4.3.8)

〈ϕ2ϕ2, EE〉reg = 〈ϕ2ϕ2, Φ〉reg +

∫
π

∑
B(π)

〈ϕ2ϕ2, ϕ〉reg〈ϕ,EE〉regdµP (π) (1.3)

where the subscript reg denotes regularized inner products (one has of course
〈ϕ2ϕ2, EE〉 = 〈ϕ2ϕ2, EE〉reg) and Φ is a certain non-unitary Eisenstein series,
which is an artifact of the integral regularization; on the other hand, π varies
over the automorphic dual of PGL2, dµP is a “Plancherel measure,” and ϕ
varies over an orthonormal basis, B(π), of factorizable vectors in π. Now:

1. The term 〈ϕ2ϕ2, Φ〉reg is handled via the amplification method (§5.18).
2. The terms 〈ϕ,EE〉reg are bounded by some negative power of C(π1)

(§5.2.8). Rankin/Selberg theory implies that 〈ϕ,EE〉reg factor into a prod-
uct of local integrals to which bounds for matrix coefficient can be applied
(see below) times the central value L(π, 1/2)L(π × χ, 1/2); we eventually
need only bounds for L(π × χ, 1/2), where π is essentially fixed5 and χ
varying.

The phenomenon of reduction to another case of subconvexity was noted
by the first-named author in [48]. We establish this case in Theorem 5.1
(again, in all aspects); the proof generalizes [67], and we refer to the intro-
duction of [67] and to §1.2 for intuition about it.

1.1.2. Local computations. — Let us be more precise about the lo-
cal integrals that occur in, e.g., the Rankin-Selberg method. For our purpose
they must be examined carefully; we are particularly interested in their ana-
lytic properties, i.e., how large or small they can be. This is the purpose of
Part III of the paper; we deal also with the local Hecke integrals.

For example, the local integral occuring in the Rankin-Selberg method
can be interpreted as a linear functional ` on the tensor product π1⊗π2⊗π3

of three representations πj of GL2(k). The space of such functionals is at
most one dimensional; |`|2 is therefore proportional to the Hermitian form

x1 ⊗ x2 ⊗ x3 7→
∫

PGL2

〈x1, g.x1〉〈x2, g.x2〉〈x3, g.x3〉dg,

5 As it turns out, the vector ϕ2 ∈ π2 depends only on π2 (up to archimedean components, this is
just the new vector), as the latter is fixed, the quantities 〈ϕ2ϕ2, ϕ〉reg decay very rapidly as the eigenvalue
or level of ϕ increases. So, we may regard ϕ as essentially fixed.
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and this is of tremendous utility for the analytic theory. Similarly, when
studying the Hecke integral, it is most convenient to study the Hermitian
form defined by x 7→

∫
A(k)
〈a.x, x〉da where A the group of diagonal matrices

(modulo the center).
It is a wonderful observation of Waldspurger (see also [33]) that global

period formulas become very simple when expressed using such canonically
normalized local functionals.

1.1.3. Spectral identities of L-functions. — The identity (1.2), although
evident, is the keystone of our argument. Its usage in the “period” form pre-
sented above seems to have been noticed independently by the present au-
thors in their attempt to geometrize [48], and by Bernstein and Reznikov in
their work on the subconvexity problem for triple product L-functions [5].

However (1.2) also manifests itself at the level of L-functions, and looks
rather striking in this guise: indeed (1.3) may be recognized as an identity
between (weighted) sums of central values of triple product L-functions and
(weighted) sums of “canonical” square roots of similar central values:∫

π1

w(π1)L(π1 ⊗ π2 ⊗ π3, 1/2)dµP (π1)

=

∫
π

w̃(π)
√
L(π2 ⊗ π̃2 ⊗ π, 1/2).

√
L(π3 ⊗ π̃3 ⊗ π, 1/2)dµP (π)

In this form, this identity was discovered already by N. Kuznetsov [43] (with
π2, π3 Eisenstein series see also [53]) and an interesting application of this
result was made by M. Jutila [40]. This period identity has – implicitly or
explicitly – played an important role in the analytic theory of GL2 forms.
We refer to §4.5 for some more discussion of how to convert (1.2) to an
identity of L-functions.

In fact, it was shown by A. Reznikov (in the archimedean setting at
least), that such phenomena is not isolated, and may be systematically de-
scribed through the formalism of strong Gelfand configurations: that is com-
mutative diagrams of algebraic groups

G

H1

⊂

-

H2

�

⊃

F
⊂

-
�

⊃

in which the pairs (F ,Hi) and (Hi,G) are strong Gelfand pairs. The
present paper corresponds to the configuration G = GL2×GL2×GL2×GL2,
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Hi = ∆GL2×∆GL2 with two different diagonal embeddings and F = ∆GL2

(diagonally embedded). As is explained in [61], such strong Gelfand configura-
tions yield naturally to spectral identities between periods and then between
L-functions. We refer to loc. cit. for more interesting examples of that sort.

1.1.4. Structure of the paper; reading suggestions. — The paper splits
into five parts; the first four parts are largely independent of each other, and
contain various results of independent interest. The fifth part brings together
these results to prove the main theorem.

The reader may wish to skip directly to Parts IV and V of the pa-
per; the results of Parts II and III are largely technical and not particularly
surprising.

- In the remainder of Part I, §1.2, §1.4 we consider two corollaries to
our main theorem – which can both be phrased without L-functions – and
we explain how the proofs work in these instances. Indeed, the general
proof is obtained by adelizing and combining these two particular cases.
The corollaries we consider are:

1. In §1.2, we discuss the “Burgess bound,” which relates to the issue
of the smallest quadratic non-residue modulo a prime q.

2. In §1.4, we discuss a problem in analysis on a negatively curved
surface, viz.: how large can the Fourier coefficients of an eigenfunction
along a closed geodesic be ?

- Part II (viz. §2.2 to §2.6) is of more general nature: we discuss a
system of Sobolev norms on adelic quotients, inspired largely by work of
Bernstein and Reznikov. This section exists to give a suitable language
for talking about adelic equidistribution, and the norms are a somewhat
cleaner version of those appearing in [67]. Some of the remarks here are
of independent interest, although they are of technical nature.

- Part III discusses some of the analytic theory of torus-invariant func-
tionals on a representation of GL2(k) (where k is a local field), and of
trilinear functionals on representations of GL2(k).

- Part IV discusses the global theory of torus periods on GL2 and the
diagonal period on GL2×GL2×GL2.

- Part V gives the proof of Theorem 1.2 along with the important inter-
mediary result Theorem 5.1 (a subconvex bound of L-function of character
twist uniform in the character aspect).
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1.2. The Burgess bound and the geometry of SL2(Z)\H

In this section and also in §1.4 we present some of the ideas of the
general proof in the most down-to-earth setting as we could manage. In both
these sections, we have by and large eschewed mention of L-functions.

1.2.1. The Burgess bound. — Let χ be a Dirichlet character to the
modulus q. It is well-known that subconvexity for the Dirichlet L-function
L(χ, 1/2), in the q-aspect, is substantively equivalent to a bound of the na-
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ture: ∣∣∣∣∣
M∑
i=1

χ(m)

∣∣∣∣∣ 6Mq−δ, (1.4)

with M ≈ q1/2 and some absolute constant δ > 0.
In this question, q1/2 is a “threshold”: indeed it is rather easy to es-

tablish (1.4) when M = q0.51 (the Polya-Vinogradov inequality). The bound
(1.4), for M in the range M ≈ q1/2 was proven (in a wider range) by Burgess
[12].

In the present section (see also [68]) – which, we hope, will make sense
to the reader without any knowledge of L-functions – we explain how (1.4)
is related to an equidistribution equation on the space of lattices, and then
discuss how to prove the uniform distribution statement. A key part of the
paper – §5.1 – will implement the discussion of this section in a more general
context.

To simplify that discussion, we assume for the rest of this section that
q is prime and that χ is the Legendre symbol.

1.2.2. The space of lattices. — Put X = SL2(Z)\ SL2(R), the space of
unimodular lattices in R2.

We say a sequence of finite subsets Si ⊂ X is becoming uniformly dis-
tributed if, for any f ∈ Cc(X), we have

1

|Si|
∑
Si

f →
∫
X

f,

the latter integral being taken with respect to the unique SL2(R)-invariant
probability measure on X.

1.2.3. Burgess bound and lattices. — For x ∈ R consider the lattice

Λx =
1
√
q

(
Z.(1, x) + Z.(0, q)

)
∈ X.

As x varies, Λx moves on a horocycle in X – an orbit of the group of
upper triangular, unipotent matrices. This horocycle is in fact closed, since
Λx+q = Λx.

Given 0 < η < 1, let F : X → R be defined by F (L) = |L ∩ [0, η]2| − 1,
i.e. F counts the number of non-trivial lattice points in a small square box.
A simple computation shows that for x ∈ Z, F (Λx) equals the number of
nonzero solutions (α, β) ∈ [0, η

√
q]2 ∩ Z2 to the equation

β ≡ αx mod q.
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It follows that
1

q

∑
xmod q

F (Λx)χ(x) =
1

q

∣∣ ∑
β∈[1,η

√
q]

χ(β)
∣∣2

Now, the Burgess bound would follow if we knew that the right-hand
side was small. The above identity therefore relates the Burgess bound to a
type of equidistribution statement: we must show that the sets

{Λx : x ∈ Z/qZ is a quadratic residue}, (1.5)

and the similar set for quadratic nonresidues, are uniformly distributed6 on
X.

Remark. — This connection between the bound (1.4), and a uniform
distribution statement on the space of lattices, is not an accident: it is a
special case of the connection between L-functions and automorphic forms.
Indeed, the uniform distribution (1.5) encodes much more than (1.4): it en-
codes, at once, subconvex bounds for twists L(1

2
, f × χ) where f is a fixed

SL2(Z)-modular form (of any weight); the latter specializes to the former
when f is an Eisenstein series. Our point above, however, is that the con-
nection between (1.4) and the space of lattices can be made in an elementary
way.

It is possible to visualize the desired uniform distribution statement by
projecting from the space of lattices to Y := SL2(Z)\H (at the price of losing
the group actions). The lattice Λx projects to the class of zx = i

q
+ x.

1.2.4. Equidistribution statements. — We shall try to establish (1.5)
by first proving uniform distribution of a “bigger” set, and then refining that
statement. Consider, then, the following three equidistribution statements, as
q →∞:

(A) The closed horocycle {Λx : x ∈ [0, q]} becomes uniformly distributed
on X;

(B) {Λx : x ∈ Z ∩ [0, q]} becomes uniformly distributed on X;
(C) {Λx : x ∈ Z ∩ [0, q]} becomes u.d. on X, when each point Λx is

weighted by χ(x).

For χ the quadratic character modulo q, we might rewrite (C) as:

(C2) {Λx : x ∈ Z ∩ [0, q], x a quadratic residue mod q} becomes u.d. on
X.

6 Strictly speaking, the function F is not of compact support on X; in fact, it grows at the cusps.
We shall ignore this technical detail for the purpose of explanation.
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FIG. 1.1. — The horocycle x
173

+ i
173

. Gray dots: x ∈ R, plain (resp. empty) square x ∈ Z a quadratic (resp.

non-quadratic) residue mod 173.

We have already discussed informally, and it is true in a very precise
sense, that (C) and (C2) have substantively the same content as the sub-
convexity result that we are aiming for. Note that (C) and (C2) seem “un-
natural” at first; it seems like zx is parameterized by an additive structure,
i.e. Z/qZ; thus it is odd to restrict attention to a “multiplicatively” defined
set. But in truth the examples of (C) and (C2) have – as we shall see – an
underlying “multiplicative” symmetry; the fact that it appears additive is a
reflection of the degeneration of a torus in GL2 to a unipotent group.

Observe that (A), (B), (C2) are asserting the equidistribution of smaller
and smaller sets. So what we need, besides a proof of (A) – which happens
to be an old result of Peter Sarnak – is a method to pass from the equidis-
tribution of a large set, to the equidistribution of a smaller subset. It is
provided by the following easy principle (cf. [68] for a further discussion of
its applicability in this type of context):
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1.3. Ergodic principle. — Suppose a group H acts ergodically on a prob-
ability space (X,µ), and ν is an H-invariant measure which is dominated by
some positive multiple of µ. Then ν is a scalar multiple of µ.

By “ν is dominated by some positive multiple of µ” (written ν � µ) we
mean that there is a constant A such that for any measurable set S ⊂ X,
|ν|(S) 6 Aµ(S). Indeed, if this is so, ν is absolutely continuous with respect
to µ, and thus may be expressed as fµ for some f ∈ L1(µ); then f must
be a H-invariant function, necessarily constant by ergodicity. The principle is
therefore trivial; on the other hand, its consequences in the number-theoretic
context are surprising.

Using the principle, we can pass from the equidistribution of µ to the
equidistribution of ν. (Of course, one needs a more quantitative form of this
principle; we enunciate such a form in the context we need in §2.5.3.)

By applying the ergodic principle to the group {n(t) : t ∈ Z}, we es-
tablish the implication (A) =⇒ (B). To show that (B) =⇒ (C) is a little
more subtle, because the choice of H is not clear; we will need to pass to a
covering to uncover it! We now discuss this in more detail.

1.3.1. The entry of the adèle group and the implication (B) =⇒ (C).
— It is well-known that the inverse limit (over the principal congruence
subgroups)

X̃ := lim←−
q

Γ (q)\ SL2(R)

carries not only an action of SL2(R) but of the much larger group SL2(AQ),

where AQ is the adele ring of Q; there is a natural projection π : X̃ →
SL2(Z)\ SL2(R).

Let ν be the measure implicit in (C), that is to say, ν =
∑q

x=1

(
x
q

)
δΛx .

As we have commented, ν has no apparent invariance.
However, there is a closed subgroup H(1) ⊂ SL2(AQ), and a H(1)-equiva-

riant measure ν̃ on X̃, which projects to ν. In other terms, the measure of
(C) acquires invariance after lifting to the adeles. (The group H(1) admits a
surjection onto (Z/qZ)×, and this surjection is compatible with the natural
action of (Z/qZ)× on the sets in (B), (C)). Now, by a suitable application

of the ergodic principle on X̃, rather than X, we deduce that (B) =⇒ (C).
In this way, the role of adeles in our proof is not merely to provide

a convenient language, but also the group actions that we use simply do
not exist at the level of SL2(Z)\ SL2(R) – or rather, only their shadows, the
Hecke operators, are visible.
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Remark. — (The adeles for dynamicists). A somewhat more intuitive
way of constructing this is as follows: fix a prime p, and consider the pth
Hecke operator Tp on X. It is a multi-valued function.

We can formally turn it into an invertible single-valued function by con-
sidering the space of sequences:

X̃p = (. . . , x−2, x−1, x0, x1, . . . ) ∈ XZ, xi+1 ∈ Tpxi for all i.

Then the “shift” operation S : X̃p → X̃p can be considered as a version of
Tp that has been forced to be invertible.

It can be verified that X̃p is isomorphic to the quotient:

SL2(Z[p−1])\ SL2(R)× SL2(Qp)/M,

where M is the subgroup of diagonal matrices in SL2(Qp) whose entries be-
long to Z×p . Moreover, S is identified with the right action of a diagonal
matrix in SL2(Qp).

If we imitate this procedure for all primes simultaneously, one is natu-
rally led to the space X̃.

1.4. Geodesic restriction problems

In this section, we present another corollary to our main results and
discuss the idea of its proof, again, largely without mention of L-functions.
This section is phrased in the language of analysis on a Riemannian manifold.
Our discussion can be considered a variation on the sketch of proof that was
already presented in our ICM article [50].

1.4.1. Geodesic restriction problems: the results of [11]. — Let M be
a Riemannian surface of finite volume, with Laplacian ∆M , and let ϕλ be
an eigenfunction of ∆M with eigenvalue −λ2. Let G be a closed geodesic of
length L on M ; we fix a parameterization t 7→ γ(t) of G by arc length, so
that γ(t+ L) = γ(t).

In this section, we shall discuss the restriction of ϕλ to G . A theorem
of Burq, Gerard, and Tzvetkov [11], generalizing a result of Reznikov [60],
asserts the following general bound

‖ϕλ‖L2(G )

‖ϕλ‖L2(M)

6 C(G ,M) λ1/4,

the constant C(G ,M) depending only on M and the geodesic γ.
This is in fact the “worst possible behavior” as the following basic ex-

ample shows: let M = S2, embedded as the unit sphere in R3, with the
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induced metric. Let ϕn be the restriction to M of (x, y, z) 7→ (x+ iy)n. Then
ϕn is a Laplacian eigenfunction of L2-norm � n−1/4; on the other hand, when
restricted to the equatorial geodesic z = 0 it corresponds to the function:

γ(t) 7→ eint.

In particular, ϕn|γ is a single Fourier mode, and ‖ϕn‖L2(G ) � n1/4‖ϕn‖L2(M).
Returning to the general case, let ω be an integral multiple of 2π

L
. Con-

sider the “ω-th” Fourier coefficient along G , namely,

a(ϕλ, ω) =

∫ L

0

ϕλ(γ(t))eiωtdt.

It measures the correlation of ϕλ|G with a single Fourier mode. By Cauchy-
Schwarz:

|a(ϕλ, ω)|
‖ϕλ‖L2(M)

6 L1/2 6 C(G ,M)λ1/4.

As the above example shows, this bound is indeed sharp.

1.4.2. Geodesic restriction problems in the arithmetic case. — As was
explained to us by A. Reznikov, a consequence to our main result, Theorem
1.2, is that this behavior never occurs on an surface which is of arithmetic
type and when ϕλ varies amongst a suitable orthogonal basis of Laplacian
eigenfunctions. We give definitions of these concepts below.

In such a situation, we obtain a much stronger result: let {ϕλ} be a
basis of Hecke-Laplace eigenfunctions. Then there is an absolute constant δ >
0 such that

|a(ϕλ, ω)|
‖ϕλ‖L2(M)

6 C(M,G )λ−δ. (1.6)

The bound on the right hand side is independent of ω, and includes the
“difficult” case when ω and λ are close. Thus the Fourier coefficients of an
Laplace/Hecke eigenform along a fixed geodesic decay uniformly: such unifor-
mity is a direct consequence of the hybrid nature of the subconvex bound
proven in Theorem 1.2.

If M is an arithmetic hyperbolic surface, then it is expected that (1.6)
holds for any orthonormal basis of Laplace eigenforms. This comes from the
fact that, in the hyperbolic case, the multiplicities of Laplace eigenvalues are
expected to be small, so that any Laplace eigenfunction could be expressed
as a short linear combination of Laplace/Hecke eigenfunctions.
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1.4.3. The definition of arithmetic hyperbolic manifold. — By an arith-
metic hyperbolic manifold we shall mean the quotient of the upper half-plane
by a lattice that arises from a quaternion algebra over Q. However, for sim-
plicity of exposition, we restrict ourselves to a slight subclass of (M,G ); we
describe this subclass here, and also translate some of our data into automor-
phic language. We strongly suggest skipping this section at a first reading.

Let D be a quaternion algebra over Q, split at ∞. Let G be the al-
gebraic group GL1(D)/Gm, so that the Q-points of G are D(Q)×/Q×. Let
A resp. Af be the ring of adeles resp. finite adeles of Q. Let Kf be an
open compact subgroup of G(Af ) with the property that G(Q) ·G(R) ·Kf =
G(Af ). Writing Γ for G(Q) ∩Kf , we have a natural homeomorphism from
Γ\G(R) to G(Q)\G(A)/Kf . Since G(R) ∼= PGL2(R), it acts on H2 (al-
though only the connected component preserves orientation). We refer to the
quotient Γ\H2 as an arithmetic hyperbolic manifold.

We therefore have a projection:

G(Q)\G(A) = A×D(Q)×\D(A)× −→ Γ\H2,

For simplicity of exposition, we shall also restrict our discussion to
geodesics G that arise as a projection of of a full adelic orbit (T(Q)\T(A)) .g
to Γ\H2, where T ⊂ G is a maximal torus and g ∈ G(A). (In general, such
a projection is the union of G with finitely many closed geodesics, the num-
ber of such geodesics being the class number of a suitable quadratic order;
this restriction, therefore, amounts to the requirement that this class number
is 1; (1.6) however remains true without such requirement).

We now associate automorphic data to our eigenfunctions and frequen-
cies:

- Let πλ be the automorphic representation of G generated by the pull-
back of ϕλ.

- The torus T(Q) is of the form E×/Q×, where E is a real quadratic
field extension of Q.

- Associated to the character γ(t) 7→ eiωt is a character of T(Q)\T(A),
and, in particular, a character ωE of A×E/E

×. Let πω be the automor-
phic representation of GL2 over Q obtained by automorphic induction
from (E,ωE); thus, the L-function of πω coincides with the L-function
L(s, E, ωE).

By a result of Waldspurger, |a(ϕλ, ω)|2 is proportional to the central
value of the completed L-function Λ(π × πω, 1

2
).

1.4.4. Sketch of the proof of (1.6). — As mentioned above, (1.6) is
a consequence of Theorem 1.2. We will now outline a proof of this corollary,
for arithmetic hyperbolic surfaces, in purely geometric terms.
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The function t 7→ ϕλ(γ(t)) oscillates over a length scale of size λ−1. It
therefore stands to reason that the most interesting case of (1.6) is when
ω ∼ λ. This is indeed so, and the key step of the proof of Theorem 1.2
corresponds – in this present language – to the use of certain identities to
switch from the “difficult” range when ω ∼ λ to the “easier” range when λ is
small and ω is large. These identities are extremely specific to the arithmetic
cases under consideration; we do not know how to prove anything like (1.6)
for a general hyperbolic surface M .

Notation as previous. One may construct (for “deep” number-theoretic
reasons) the following auxiliary data:

- another arithmetic hyperbolic surface M̃ , depending only on M ;

- a Laplace/Hecke eigenfunction ϕ̃λ on M̃ of eigenvalue −λ2;
- For each admissible ω, i.e each integral multiple of 2π/L, we associate

a Laplace eigenfunction θω on M̃ with eigenvalue −1
4
− ω2.

moreover, whenever ω1, ω2,
ω1+ω2

2
are admissible, one has

|a(ϕλ, ω1)a(ϕλ, ω2)|2 ∼
∣∣∣∣∫
M̃

ϕ̃λθω1+ω2
2
θω1−ω2

2

∣∣∣∣2 . (1.7)

The ∼ here does not indicate approximate equality, but rather, equality
up to a constant that is precisely computable; it is essentially a ratio of Γ -
functions.

The identity (1.7) has the remarkable feature that the left-hand side
has a “quadrilinear” nature, whereas the right hand side has a “bilinear”
nature. Thus the map ϕλ 7→ ϕ̃λ is in no natural sense linear; rather, it is
defined element-by-element over a special basis of Laplace/Hecke eigenfunc-
tions.

1.4.5. Number-theoretic explanation. — Supposing ω1, ω2,
ω1+ω2

2
admis-

sible,

Λ(π × πω1 ,
1

2
)Λ(π × πω2 ,

1

2
) = Λ(π × πω+ × πω− ,

1

2
), ω± :=

ω1 ± ω2

2
.

(1.7) now follows using the main result of [32]: The manifold M̃ is a quotient
of the unique quaternion algebra D′ which is nonsplit at those places where
εv(π×πω+×πω−) = −1 – if no D′ exists, the left-hand side of (1.7) vanishes –
and ϕ̃λ, θω+ , θω− belong to the Jacquet-Langlands transfer to D′ of π, πω+ , πω− .



THE SUBCONVEXITY PROBLEM FOR GL2. 17

1.4.6. The switch of range from ω ∼ λ to λ = O(1). — Take ω1 =
ω2 = ω, and apply Cauchy-Schwarz to the right-hand side of (1.7) to obtain:

|a(ϕλ, ω)|4 . ‖ϕ̃λ‖2
L2(M̃)

〈θ2
ω, θ

2
0〉L2(M̃).

We shall analyze this by expanding both θ2
ω and θ2

0 into constituents.
Since θ0 is itself a Laplacian eigenfunction with eigenvalue 1/4, all ∆-eigenfunctions
that occur in the spectral expansion of θ2

0 will have “small” eigenvalue. Car-
rying this out7

〈θ2
ω, θ

2
0〉 =

∑
∆ψµ=µ2

µ�1

〈θ2
ω, ψµ〉〈ψµ, θ2

0〉, (1.8)

where the ψµ-sum ranges over a basis of Hecke-Laplace eigenfunctions on M̃ .
It is, in fact, possible to now apply (1.7) once more to understand the

term 〈θ2
ω, ψµ〉; however, we apply it “in the reverse direction.” This shows

that there exists a manifold M̌ and ψ̌µ so that

|〈θ2
ω, ψµ〉|2 ∼ |a(ψ̌µ, 2ω)a(ψ̌µ, 0)|2.

We have achieved our objective and switched the range: starting with
the analysis of a(ϕλ, ω) with λ, ω essentially arbitrary, we have reduced it
to the analysis of a(ψ̌µ, 2ω) where µ may be assumed small relative to ω.
Although we are not done, this allows us to out-flank the most tricky case
of the question: when |λ− ω| = O(1).

1.4.7. The range when ω is large. — We now discuss bounding the
Fourier coefficient a(ϕλ, ω) when ω is very large compared to λ. For sim-
plicity, let us assume in the present section that we are dealing with a
fixed eigenfunction ϕ = ϕλ, and analyze the question of bounding a(ϕλ, ω)
as ω →∞.

We need to be more precise about what is necessary to prove. In this
context, it is evident (by real-analyticity) that a(ϕλ, ω) decays exponentially
with ω; however, this is not enough. For our previous argument we require:8

eπ|ω|/2 |a(ϕλ, ω)| 6 C(ϕλ)|ω|−δ, (1.9)

for some δ > 0.
Now, a(ϕλ, ω) is the integral of ϕλ(γ(t)) against eiωt. To eliminate the

exponential factors, we deform the path: we replace t 7→ γ(t) by a path t 7→

7 In the cases we encounter, there will be difficulties with convergence, and regularization of the
following expression will be needed.

8 The exponential factors arise from, in essence, the Γ -functions that were suppressed in (1.7).
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γ′(t) so that, first of all, γ′(t) approximates – at least locally – a horocycle;
secondly, the deformed integral still determines the original integral, but is
larger than it by a factor of size eπ|ω|/2. Thus, to prove (1.9), we need only
prove polynomial decay for the deformed integral. The deformed integral is
analyzed using dynamical properties of the horocycle flow, especially mixing;
it is related to the analysis in [67, 1.3.4].

2. Norms on adelic quotients

The classical Sobolev norms on Rn, or on a real manifold, measure
the Lp- norms of a function together with its derivatives. For example, let
‖f‖2,k be defined as the sum of the L2-norms of the first k derivatives of
f ∈ C∞(R/Z), and let S2,k be the completion with respect to this norm.
Then:

Sa. Sobolev inequality: The Sobolev norms control point-evaluation, e.g.

|f(0)| � ‖f‖2,1;

Sb. Distortion: If h : R/Z→ R/Z is a diffeomorphism, then

‖f ◦ h‖2,1 6 (sup
x
|h′(x)|)‖f‖2,1.

Sc. Sobolev embedding: The Sobolev norms are compact with respect
to each other: the inclusion of S2,k into S2,k′ is compact for k < k′.

Sc.* Sobolev embedding in quantitative form: if k′ > k + 2, then the
trace of S2,k with respect to S2,k′ is finite. This means that, if Wk is the
completion of C∞(R/Z) with respect to S2,k, then the induced homomor-
phism Wk → Wk+2 is trace-class.

Sd. Fourier analysis:

|S2,k(f)|2 �
∫

(1 + |λ|)2k|f̂(λ)|2,

where f̂(λ) is the Fourier transform.

It is very convenient to have a system of norms on adelic quotients
with corresponding properties. We shall present them in terms of a list of
axiomatic properties they satisfy, before giving the definition (§2.3). These
properties are intended to be analogous to (Sa) – (Sd) above. Prior to doing
this, we need to first recall L2-spectral decomposition (§2.2).

We strongly recommend that the reader ignore the definition of the
Sobolev norms and rather work with its properties.
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2.1. Notation

2.1.1. On implicit constants. — We use throughout the notation A�
B of Vinogradov to mean: there exists a constant c so that A 6 cB. If we
write A �δ cB, it means that the constant c is permitted to depend on δ,
and so on. We shall also use a modification of this notation: A� B? means
that there exist constants c1, c2 so that A 6 c1B

c2 .
Although the notation A � B is generally understood to mean that

the implicit constant is absolute, it is extremely convenient in our context
to allow it to depend on certain predetermined parameters (e.g., the num-
ber field over which we work) without explicit comment. We gather together
at this point references to where these conventions are introduced, for the
convenience of the reader. To wit: in Part II, constants may depend on the
isomorphism class of (G, ρ) over the number field F ; in Part III, the con-
stants may depend on the discriminant of the local field (§3.1.3); in Parts
IV and V, they may depend on the isomorphism class of the ground field
F .

For Parts IV and V, we shall in fact make a more stringent use of the
notation where we require certain implicit constants to be polynomial; see
§4.1.5.

Later in the text we shall use indexed families of norms – the Sobolev
norms Sd. They will depend on an indexing parameter d, as the notation
suggests. In a similar fashion to the Vinogradov convention, we allow our-
selves to write inequalities omitting the parameter d; see §2.3.1 and §3.1.9
for a further discussion of this point.

2.1.2. Let F be a number field. We denote by ξF the complete ζ-
function of F . It has a simple pole at 1; the residue is denoted by ξ∗F (1).

2.1.3. Let G a reductive algebraic F -group. Choose a faithful repre-
sentation G ↪→ SL(F r) for some r > 1; we shall suppose that it contains a
copy of the adjoint representation. Henceforth we shall feel free to identify
G with a matrix group by means of this embedding. In the case of GL2, we
shall fix the faithful representation to be

ρ : g 7→
(
g 0
0 (gt)−1

)
∈ SL4,

where, as usual, gt denotes the transpose.
Let g be the Lie algebra of G; if v is a place of F , we write gv = g⊗F

Fv. We also fix a basis for g. In that way, we regard the adjoint embedding
as a map Ad : G→ GL(dim g).
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Let

X := G(F )\G(A).

We denote by C∞(X) the space of smooth functions on X; the space X can
be understood as an inverse limit of quotients of real Lie groups by discrete
subgroups, and a smooth function simply means one that factors through a
smooth function on one of these quotients.

2.1.4. We fix a maximally F -split torus T ⊂ G and, correspondingly,
a minimal parabolic F -subgroup B containing T.

2.1.5. For v non-archimedean and m > 0 an integer, we denote by
Kv[m] the open-compact (principal congruence) subgroup

Kv[m] := G(Fv) ∩
{
g ∈ GLr(Ov), g ≡ Idr ($m

v )
}
,

where $v is a uniformizer in Fv.
Choose, for each place v, a maximal compact subgroup Kv so that :

1. Kv ⊃ Kv[0] when v is nonarchimedean (this implies that Kv = Kv[0]
for almost all v);

2. For v nonarchimedean, Kv is special, i.e. it is the stabilizer of a
special vertex in the building of G(Fv).

This entails, in particular, that if Pv is the set of Fv-points of any parabolic
subgroup, then PvKv = G(Fv).

There exists a constant A, depending on G and the chosen faithful
representation, so that

(1 + A/qv)
−1 6

[Kv : Kv[mv]]

q
mv dim(G)
v

6 (1 + A/qv). (2.1)

We denote by m : v 7→ mv any function on the set of places of F to
the non-negative integers, which is zero for almost all v. Write ‖m‖ =

∏
v q

mv
v

(we take qv = e = 2.718 . . . for archimedean places); we note that

|{m : ‖m‖ 6 N}| = O(N).

For such m, we set

K[m] :=
∏

v finite

Kv[mv].

We also put K =
∏

vKv.



THE SUBCONVEXITY PROBLEM FOR GL2. 21

2.1.6. We now fix a normalization of left-invariant Haar measures on
the various groups: the Fv and A-points of G, as well as any parabolic
subgroup P ⊂ G, as well as of any Levi factor M ⊂ P; and finally, on Kv,
for every v. These measures should have the following properties:

1. The measures on adelic points should be the product of local mea-
sures;

2. The projection P(F )\P(A)→M(F )\M(A) corresponding to the de-
composition P = MN is measure-preserving (for the left Haar measures!)

3. For all v, the measure on Kv has mass 1. For nonarchimedean v, it
is the restriction of the measure from G(Fv).

4. The map P(F )\P(A)×K → G(F )\G(A) should be measure-preserving
(i.e., the preimage of any set has the same measure as the set).

It is not difficult to construct such measures; we shall make an ex-
plicit choice, in the case of G = GL2, in §3.1.5. It is worth observing that,
since we are only concerned with upper bounds in this paper, and not ex-
act formulas, precise choices are never of importance, so long as they re-
main consistent. With any such choice, it follows from (2.1) that ‖m‖−ε �
vol(K[m])‖m‖dim(G) � ‖m‖ε; in fact, one can replace the upper and lower
bounds by constants in the case that G is semisimple.

Finally, put on X the corresponding quotient measure.
If H is any locally compact group, we define the modular character

δH : H → R× via the rule µ(Sh) = δH(h)−1µ(S), where µ is a left Haar
measure on H, and S is any set with µ(S) > 0. In other words, if dlh is a
left Haar measure, then dl(hh

′) = δH(h′)−1dlh.

2.1.7. For g ∈ G(Fv), we define ‖g‖ = supij |ρij(gv)|; in the adelic case,
we take the product over all places. We set ‖Ad(g)‖ to be defined as ‖g‖,
but with ρ replaced by the adjoint embedding. (The “functional” difference
between these two norms lies in the fact that ‖Ad(g)‖ is invariant under the
center, whereas ‖g‖ is not.)

For g ∈ G(A), define the height by

ht(g)−1 := inf
x∈F r−{0}

∏
v

sup
i=1...r

|(Ad(g).x)i|v.

This descends to a function on X, and – if the center of G is anisotropic –
the map ht : X→ R>1 is proper.

Lemma. — Fix x0 ∈ X. For any x ∈ X, there exists g ∈ G(A) with
x0g = x and ‖Ad(g)‖ 6 ht(x)?.

Proof. — This is well-known; see e.g. [20], footnote 15 for a proof in
the case of real groups, from which the stated result is easily deduced. ut
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2.1.8. Throughout this paper the phrase “π is a unitary representation
of the group G” will be understood to mean that the underlying space of π
is a Hilbert space and G acts by isometries on that space.9

Let V be a unitary representation of G(Fv). The space of smooth vec-
tors V ∞ is defined, in the case when v is nonarchimedean, as the subspace
of V comprising vectors whose stabilizer is open; in the case when v is
archimedean, it is that subspace for which the map g 7→ g.v defines a smooth
map from G(Fv) to V . It is always dense in V .

Let V be a unitary representation of G(A). It factorizes as a tensor
product of unitary representations of G(Fv), and we define the smooth sub-
space V ∞ as the (image in V of the) tensor product of the local smooth
subspaces.

2.2. Structure of adelic quotients and the Plancherel formula

In the present section we are going to recall the “Plancherel formula”
for L2(X), that is to say, its decomposition into irreducible G(A)-repre-
sentations.

2.2.1. Eisenstein series. — There is a standard parameterization of
the automorphic spectrum via the theory of “Eisenstein series” that we shall
now recall. See also [1] for a résumé of the theory, and [51] for a detailed
treatment.

Let X denote the set of pairs (M, σ), where M is a F -Levi subgroup
of a F -parabolic subgroup, containing T, and let σ be an irreducible sub-
representation of the space of functions on M(F )\M(A), which is “discrete
series” in the following sense: all f ∈ σ are square-integrable with respect to
the inner product

f 7→ ‖f‖2
σ =

∫
ZM(A)M(F )\M(A)

|f |2,

where ZM(A) denote the center of M(A).

We can equip X with a measure in the following way: We write

X =
⊔
M

XM,

9 In some contexts, unitary representation is used to mean “unitarizable”, i.e., such that there exists
some inner product. We shall always understand it to mean that we have fixed a specific inner product.
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indexed by Levis containing T. We require that for any continuous assign-
ment of χ ∈ XM to fχ in the underlying space of χ,∫

M(F )\M(A)

∣∣∣∣∫
χ

fχdχ

∣∣∣∣2 =

∫
χ

‖fχ‖2
σdχ.

This uniquely specifies a measure dχ on XM, and so also on X .
There exists a natural equivalence relation ∼ on X : declare (M, σ)

and (M′, σ′) to be equivalent if there exists w in the normalizer of T with
Ad(w)M = M′ and Ad(w)σ = σ′. There is a natural quotient measure on
X/ ∼.

For χ = (M, σ) ∈ X , we denote by I(χ) the unitarily induced repre-

sentation Ind
G(A)
P(A)σ, where P is any parabolic subgroup containing M. (Its

isomorphism class is – not obviously – independent of the choice of P.) It
consists of functions G(A) → Vσ (where Vσ is a vector space realizing the
representation σ) satisfying the transformation property

f(pg) = δ1/2(p)σ(mp)f(g),

where δ is the modular character (cf. §2.1.6) and p 7→ mp the projection
P→M. We define a norm on I(χ) by

‖f‖2
Eis :=

∫
K

‖f(k)‖2
Vσdk,

where K is equipped with the Haar probability measure.
There exists a natural intertwiner (the “unitary Eisenstein series”, ob-

tained by averaging over P(F )\G(F ) and analytic continuation):

I(χ)
Eis→ C∞(X).

The map Eis is an isomorphism away from a set of parameters χ of
measure zero; we call the latter the set of singular parameters. For instance
in the case of GL2 the parameters are pairs of unitary characters (χ+, χ−)
for M = GL1×GL1 ↪→ B (the standard Borel) and the singular ones are
the ones for which χ+ = χ−; for this reason, we shall define for this case a
variant Eis∗ of Eis which is non-zero (see §4.1.10.)

In any case, to almost every χ ∈ X is associated an automorphic repre-
sentation – the image of I(χ) – denoted Eis(χ). The resulting automorphic
representation depends only on the class of χ in X/ ∼. If Eis is an isomor-
phism – as is so away from a set of χ of measures 0 – we equip Eis(χ) with
a norm by requiring Eis to be an isometry. Whenever defined, we call this
norm the Eisenstein norm on the space Eis(χ). 10

10 The terminology may be slightly misleading; if π ⊂ L2(X) is, e.g., a cuspidal representation, then
(G, π) ∈ X , and the Eisenstein norm on π is simply the restriction of the L2-norm.
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Theorem. — (Langlands). The map
∫
χ∈X I(χ)→ L2(X), defined by inte-

grating the map Eis, extends to an isometric isomorphism of the Hilbert space∫
X I(χ)dχ and L2(X).

For a slightly more precise formulation, we refer to [1].
We shall call any automorphic representation that occurs as an Eis(χ), χ ∈

X , a standard automorphic representation. Not every automorphic represen-
tation is standard. For example, every standard automorphic representation
is abstractly unitarizable. The standard automorphic representations are pre-
cisely those needed for unitary decomposition.

The set of standard automorphic representations will be denoted by
ĜAut and the push-forward of the measure dχ on X to ĜAut will be denoted
by dµP.

Remark. — The Plancherel decomposition of a function in, e.g., C∞c (X)
is pointwise defined; explicitly, for ϕ ∈ C∞c (X), we have the equality of con-
tinuous functions,

ϕ =

∫
χ∈X

∑
f∈B(χ)

〈ϕ,Eis(f)〉Eis(f) dχ,

where B(χ) is an orthogonal basis for I(χ), and the right-hand side is abso-
lutely convergent. This is not a triviality; it follows, for example, from the
results of W. Müller [55]; it may be that there is a more elementary proof
also.

2.2.2. The canonical norm for GL2. — In the case of GLn for generic
standard representations – although not necessarily cuspidal – it is possible to
give a simple description of a canonical norm on the space of any standard
automorphic representation. We explain for GL2; the general case is obtained
by replacing the role of a(y) below with g ∈ GLn−1 ⊂ GLn embedded as
usual.

Suppose π is generic. Let Wπ = ⊗vWπ,v be the Whittaker model of π.
There are two natural inner products that one can equip Wπ,v with, namely
– see §3.1.5 for the measure normalizations –

〈Wv,W
′
v〉 =

∫
F×v

Wv(a(y))W ′
v(a(y))d×y, 〈Wv,W

′
v〉reg (2.2)

=

∫
F×v

Wv(a(y))W ′
v(a(y))d×y

ζv(1)Lv(π,Ad, 1)/ζv(2)
.
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The latter inner product has certain good normalization properties, eg.

〈Wv,Wv〉reg = |Wv(1)|2

for almost all v.
We define an inner product on Wπ, by its value on pure tensors W =∏

vWv.

‖W‖2
reg := Λ∗(π,Ad, 1)×

∏
v

〈Wv,Wv〉reg; (2.3)

where

Λ∗(π,Ad, 1) = lim
s→1

Λ(π,Ad, s)

(s− 1)r
,

with Λ(π,Ad, s) =
∏

v L(πv,Ad, s) denotes the completed L-function and r is
taken to be the largest non-negative integer for which the limit is nonzero.
The regularized value L∗(π,Ad, 1) satisfy ([24])

L∗(π,Ad, 1) = C(π)o(1), as C(π)→∞. (2.4)

Finally, we define the canonical norm on the space of π by the rule

‖ϕ‖2
can =

2ξF (2)(discF )1/2

ξ∗F (1)
‖Wϕ‖2

reg, (2.5)

where ϕ 7→ Wϕ is the usual intertwiner (4.2). The terminology is justified by

2.2.3. Lemma. — Suppose π generic and standard. Then, for ϕ ∈ π,
‖ϕ‖2

can = ‖ϕ‖2
L2(X) if π is cuspidal; and ‖ϕ‖2

can = 2ξF (2)‖ϕ‖2
Eis if π is Eisen-

stein and nonsingular.

The verification of this equality for cusp forms is a consequence of the
Rankin-Selberg method (cf. §4.4.2); the Eisenstein case is detailed in §4.1.7.

Remark. — One unfortunate consequence (perhaps unavoidable) is that
the canonical norm does not always behave continuously in families. It is
possible to have a family of automorphic forms φ(s) belonging to standard
generic automorphic representations so that ϕ(s)→ ϕ(0) pointwise on X, but
the canonical norms do not converge. This happens when the order of pole
of the adjoint L-function jumps, e.g. at singular parameters.
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2.3. Norms on adelic quotients

2.3.1. We shall set up two families of Hilbert norms, valid for any
d ∈ R:

- A notion of “Sobolev norm” SVd on any unitary G(A)-representation
V .

- A finer notion of “Sobolev norm” SX
d for functions on X.

We shall follow the following convention: If ` ∈ V ∗ is a functional
and we write |`(f)| 6 SV (f), without a subscript d, it means there exists
a constant d, depending on only the isomorphism class of G over F , so that
|`(f)| 6 SVd (f). In particular, ` is continuous in the topology defined by the
family of norms SVd .

1. We would like to warn the reader that the constructions are not
totally formal. Namely, some of the subtler features of the norms rely on
Bernstein’s uniform admissibility theorem as well as Müller’s theorem [3,
55]. Indeed, one of the properties of the norms is established only for the
group G = GLn. In fact, for the purpose of the present paper, none of
these deep results are important.

2. We observe that all our norms can take the value ∞. (In precise
terms, we understand a norm N on a vector space V to be a function
N : V → [0,∞] that satisfies the usual axioms; equivalently, we could
regard N to be a pair consisting of a subspace W ⊂ V , and a (usual,
finite-valued) norm on W .)

SVd will always take finite values on V ∞; SX
d will always take finite

values on the space of compactly supported smooth functions C∞c (X). We
shall sometimes refer to the completion of V ∞ in the norm induced by SVd
as the Hilbert space associated to SVd . Similarly for SX

d .

2.3.2. The Sobolev norms on a unitary representation. — Let V be a
unitary admissible representation of either G(Fv) (some place v) or G(A).
We shall define, in both contexts, a generalized Laplacian operator ∆ : V ∞ →
V ∞. This being so, we define the dth Sobolev norm via

SVd (f) := ‖∆df‖V . (2.6)

The Laplacian will have the property that ∆ is invertible, and a suitable
power of ∆−1 is trace class from V to itself.
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2.3.3. Local. — Let v be a place and V an unitary admissible rep-
resentation of G(Fv). We shall make a certain (Hilbert) orthogonal decom-
position V = ⊕m>0V [m]; roughly speaking, vectors in V [m] have “higher fre-
quency” as m grows.

- If v is a finite place, we define V [m] to be the orthogonal comple-
ment of the Kv[m−1]-invariants vectors inside the Kv[m]-invariants vectors.

- If v is archimedean, fix a basis {Xi} for the Lie algebra gv := g⊗FFv
and let C :=

∑
i(1−X2

i ); let V [m] be the direct sum of all C-eigenspaces
with eigenvalue in [em, em+1) (here e = exp(1) = 2.718 . . . ).

The space V [m] is finite dimensional. Write ev[m] for the projector onto
V [m], and put:

∆v =
∑
m>0

qmv ev[m].

Note that
∑

m ev[m] is the identity.

2.3.4. Global. — In the global setting, we use, as before, the notation
m for a function v 7→ mv from places to non-negative integers, and set

e[m] :=
∏
v

ev[mv], ∆A =
∑
‖m‖e[m]

Note that one has
∑

m e[m] = 1.

2.3.5. Sobolev norms on C∞(X). — On C∞(X) we shall introduce
an increasing system of Sobolev norms SX

d which will take into account the
noncompactness of the space X. Let H be the operation of “multiplication
by 1 + ht(x).” Put:

SX
d (f) := ‖Hd∆d

Af‖2
2.

2.4. Properties of the Sobolev norms.

This section enunciates the properties of the Sobolev norms, defined in
the prior section.

2.4.1. Properties of the unitary Sobolev norms. — Write G for either
G(A) or G(Fv).

S1a. (Sobolev inequality) For f ∈ C(G) and a fixed smooth function
ω : G→ C of compact support with ω(1) = 1,

|f(1)| �ω SL
2(G)(f · ω).
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S1b. (Distortion property) There is a constant κ, depending only11 on
(G, ρ), so that, for V a unitary representation of G,

SVd (gf)� ‖Ad(g)‖κdSVd (f).

S1c. (Embedding) For each d, there exists d′ > d so that the trace of
SVd w.r.t. SVd′ is finite. (See [4]*Appendix for definitions; this means that
the inclusion from the Hilbert space associated to SVd , to the Hilbert space
associated to SVd′ , is trace-class.

S1d. (Linear functionals can be bounded place-by-place.) Let π = ⊗πv
be a unitary representation of G(A); let ` =

∏
v `v, `v ∈ π∗v be a factoriz-

able functional with the property that |`(xv)| 6 1 when xv ∈ πv is spherical
and of norm one.12 Then:

|`v| 6 ASπvd for all v =⇒ |`| 6 A′Sπd′
where d′ depends on d, and A′ depends on A, d.

2.4.2. Properties of the X-Sobolev norms . —

S2a. (Sobolev inequality) There exists d0 so that SX
d0

majorizes L∞-
norms.

S2b. (Distortion property) There exists a constant κ2, depending only
on (G, ρ), so that

SX
d (gf)� ‖Ad(g)‖κ2dSX

d (f), f ∈ C∞(X), g ∈ G(A).

S2c. (Embedding) For each d, there exists d′ > d so that the trace of
SX
d w.r.t. SX

d′ is finite.

2.4.3. Relationship between unitary Sobolev norms on L2(X) and X-
Sobolev norms . —

S3a. We have a majorization

SL
2(X)

d � SX
d .

S3b.
SX
d (f)� SL

2(X)
d′ (f), f ∈ L2

cusp

where d′ depends on d, and L2
cusp is the cuspidal subspace of L2(X). 13

11 If the representation ρ contains the adjoint representation, one may take κ = 1.

12 If this condition is satisfied not for all v, but for all v /∈ T , where T is some fixed finite set of
places, then the constant has to be replaced by A1+|T |.

13 A stronger and more natural statement is: the truncation operator ∧T of Arthur is continuous from

the SL2(X)-topology to the SX topology. This statement is actually a quantitative form of [2, Lemma 1.4],
which proves the same result but with the finite level fixed.
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S3c. Let ` a linear form on C∞(X). Suppose, for each standard auto-
morphic representation π, we have |`|π∞| 6 Sπd , where the unitary structure
on π is the Eisenstein norm. Then

|`(v)| � SX
d′ (v),

whenever both sides are defined; d′ depends only on d.

2.4.4. Other properties. — Suppose ` is a linear functional on either
C∞(X) or a unitary G(A)-representation, and let A(d) be the operator norm
of ` with respect to Sd.

S4a logA(d) is convex with respect to d. 14

S4b. Given d and j > 1, there exists d′ > d and common orthogonal

bases e1, e2, . . . for Sd,Sd′ with the property that Sd(ei)
Sd′ (ei)

6 (1 + |i|)−j.
S4c. SVd and SV−d are self-dual;
S4d. If ` : V → W is any linear functional from V to another normed

vector space:

`(v) 6 A‖∆dv‖V (v a ∆-eigenfunction) (2.7)

=⇒ |`(v)| 6 A′SVd′ (v), all v ∈ V , some d′ > d.

S4e. SX
d (fg)�d SX

d (f)SX
d (g).

(S4d) is a consequence of the fact that a suitable power of ∆−1 is trace
class.

2.5. Examples.

We shall now discuss a number of examples of using the Sobolev norms
to quantify mixing or uniform distribution. The essence of all our examples
is well-known. We simply want to make the point that the axioms of Sobolev
norms make it simple to derive the results in great generality.

In the sequel we will use the following notation: for S?? one of the
families of Sobolev norms discussed previously, we will write A 6 S?(f)B to
mean that there is a constant d > 0 so that A 6 S?d(f)B.

2.5.1. Bounds for matrix coefficients and canonically normalized func-
tionals: local bounds. — For any place v, we denote by Ξv(g) the Harish-
Chandra spherical function on Gv := G(Fv), i.e. Ξv(g) := 〈gv, v〉 where v is

14 This will be helpful in bounding operator norms when d is not integral, for, like the case of Rn,
the Sobolev norms are most accessible when d ∈ Z>0.
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the Kv-invariant function in the representation of Gv unitarily induced from
the trivial character of a minimal parabolic subgroup.

It follows from [13] (as extended to reductive groups in [56]) that, if πv
is a tempered representation of G(Fv) one has, for any x1, x2 ∈ πv, g ∈ Gv

and some constant d > 0 depending on G only

|〈gx1, x2〉| 6 AvSπvd (x1)Sπvd (x2)Ξv(g),

where Av = [Kv : Kv[0]] is equal to 1 for almost all v. 15

Indeed, [13] implies, in fact, that |〈gx1, x2〉| 6 [Kv : Kv[m]]Ξv(g) for
x1, x2 ∈ V [m]. Now (2.1) and (2.7) establish the desired statement.

In the case of non-tempered representations, one has a corresponding,
but weaker, bound. In this paper we will only use the special case of G =
GL2; and moreover, πv will always be a local constituent at v of a generic
automorphic representation of G(A). In that case, one has

|〈gx1, x2〉| 6 AvSπvd (x1)Sπvd (x2)Ξv(g)1−2θ, (2.8)

for some absolute constant θ < 1/2. This is due to Selberg for F = Q, and
[25] in general. As of now, it follows from the work of Kim and Shahidi [41],
that (2.8) holds for θ > 3/26.

It will be convenient, for the purpose of this document, to allow θ to
be any number in ]3/26, 1/4[. More precisely, any statement involving θ will
be valid for any choice of θ in this interval. This notational convention will
suppress εs at a later point. The reader may safely substitute 3/26 + ε every
time he/she sees the symbol θ.

2.5.2. Bounds for matrix coefficients and canonically normalized func-
tionals: global bounds. — Let ι : G̃ 7→ G be the simply connected covering
of G. For f ∈ C∞(X), set

Pf(x) =

∫
g∈G̃(F )\G̃(A)

f(ι(g)x)dg (2.9)

for x ∈ X; here dg is the invariant probability measure on G̃(F )\G̃(A).
The endomorphism P realizes the orthogonal projection onto locally constant
functions on X, and is in particular L2- and L∞-bounded; note also that it
commutes with the G(A)-action (cf. [67]).

Take g ∈ G(A) and f1, f2 ∈ C∞(X). Then there exists β > 0 and d,
both depending only on the isomorphism class of G over F , so that

|〈g.f1, f2〉 − 〈g.Pf1,Pf2〉| � ‖Ad(g)‖−βSX
d (f1)SX

d (f2). (2.10)

15 Indeed, if x1, x2 are both stabilized by a subgroup of Kv [0] of index ♥, the bound may be taken
to be ♥‖x1‖‖x2‖Ξv(g); we shall use this later.
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This is a consequence of property (τ), which has been established through
the work of many people; the proof was completed (together with the most
difficult case) by L. Clozel [14]. Property (τ) was put in a quantitative form
in [28], and the quoted statement16 follows from Lemma 3.3 and Theorem
3.10 of loc. cit. Here we will need (2.10) only for the case of G = GL2:
it follows from (2.8) that the exponent β = 1/2 − θ is admissible, any θ as
above.

Remark. — Let us explain one of the reasons that (2.10) is so useful
in the context of the present paper. It has been observed J.-L. Waldspurger
[69] and greatly extended by Ichino-Ikeda [32,33] that a wide variety of pe-
riod functionals can be expressed by integrating matrix coefficients; roughly
speaking, there exists a variety of pairs (H ⊂ G) so that, with suitable choice
of measure and suitable regularization,∣∣∣∣∫

H(F )\H(A)

ϕ dh

∣∣∣∣2 =

∫
H(A)

〈h.ϕ, ϕ〉dh. (2.11)

The right-hand side is usually divergent, and is interpreted by a suitable
regularization; in many situations, almost every local factor is equal to the
local factor of a suitable L-function, which suggests a regularization involving
a special value of that L-function.

In any case, (2.11) was used in [15] and [21] in order to reduce equidis-
tribution results for H(F )\H(A) – or translates thereof – to bounds for ma-
trix coefficients. We shall use the same technique in §4.2.1 of the present
paper.

We note, however, that this technique is not universally applicable, and
in many instances the correct formulation of a result analogous to (2.11)
remains mysterious.

2.5.3. A quantitative form of the Ergodic principle II. — Next, let us
give a quantitative form of the Ergodic principle 1.3 from §1.2.

Lemma. — Suppose H ⊂ G(A) is noncompact, and χ : H → C× a
unitary character. Suppose that X has finite measure, i.e., that the center of
G is anisotropic.17

16 It should be noted that we could not follow the quantitative arguments of [28] in the case which
relies on Clozel’s work; however, their argument certainly furnishes a bound.

17 The lemma could be easily adapted to the general case by introducing a character; but we will only
use it for G = PGL2.
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Let ν be a (possibly signed) χ-equivariant measure on X, i.e. νh = χ(h)ν
for h ∈ H. Let µ be the G(A)-invariant (Haar) probability measure, and
suppose that, for some d > 0, we have the majorization:

|ν|(f)� µ(f) + εSX
d (f) (f > 0).

Let σ be any probability measure on H. Then, for any f with Pf = 0,

|ν(f)− δχ=1µ(f)|2 �
(
ε‖σ‖2

d′ + ‖σ ? σ̌‖−β
)
SX
d′ (f)2.

Here δχ=1 is 1 if χ is trivial and zero otherwise,

‖σ‖d :=

∫
h

‖Ad(h)‖ddσ(h),

and similarly for ‖σ ? σ̌‖, σ̌ denote the pullback of σ by g 7→ g−1, β is as in
(2.10), and d′ depends only on d.

This is indeed a quantitative form of the Ergodic principle 1.3: if, e.g.,
ε = 0, we see at once that that the left-hand side may be made arbitrarily
small to choosing σ to have large support.

Proof. — We may assume that µ(f) = 0. For σ a probability measure
on H we set

f ?χ σ :=

∫
H

χ(h)(h · f)dσ(h).

We see:

|ν(f)|2 = |ν(f ?χ σ)|2 6 |ν|(|f ?χ σ|2) 6 εSX
d (|f ?χ σ|)2 + ‖f ?χ σ‖2

2,

The required bound now follows from (S2b), (S4e) and from the bounds for
matrix coefficients of §2.10. ut

Remark. — In the context of the subconvexity problem for L-functions,
this amounts to the amplification method ([36]) and the measure σ play the
role of the amplifier.

2.5.4. Uniform distribution of horocycles. — As a final example, we
discuss the uniform equidistribution of horospheres. A result of Peter Sar-
nak proves that a closed horocycle of length L on a hyperbolic surface be-
comes uniformly distributed as L approaches ∞. What we present below is
an adelized version of the result for general groups, but only in the easiest
version: where “closed horocycle” is replaced by (in more explicit language
than what follows) “closed orbit of a maximal horospherical subgroup.”
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Let us fix N to be the unipotent radical of a minimal proper parabolic
subgroup B of G; for f ∈ C∞(X) let

fN(g) :=

∫
N(F )\N(A)

f(ng)dn,

denote the constant term. Then for f ∈ L2
0(X) ∩ C∞(X), and b ∈ B(A)

|fN(b)| � δB(b)1/2SX(f), (2.12)

here by L2
0(X), we mean the orthogonal complement of locally constant func-

tions (i.e. the kernel of (2.9)), and δB : B(A)→ R>0 is the modular charac-
ter (cf. §2.1.6).

Proof. — By Property (3c) of Sobolev norms, it is enough to verify
(2.12) when f belongs to an standard automorphic representation π ⊂ L2

0(X).
The constant term is zero unless (notation of §2.2) π = Eis(M, σ), where M
is a minimal Levi subgroup. Let B be a parabolic subgroup with unipotent
radical M. As an abstract unitary representation, π is isomorphic to the space
Vπ of functions from G(A) to the representation space of σ, satisfying:

f(bg) = σ(b)δB(b)f(g), b ∈ B(A),

equipped with the inner product
∫
K
‖f‖2. (Here K is the fixed maximal com-

pact subgroup of G(A).)
Let ω be a smooth compactly supported bi-K-invariant function on

G(A) so that ω(1) = 1. Consider res : Vπ → L2(G(A)) defined by f 7→ ωf .

Apply (S1a) to see |f(1)| � SL2(G(A))(ωf). The map res is L2-bounded, and
commutes with the action of the finite part of K; moreover, if D is any
element of the universal enveloping algebra U of g, then Dω =

∑
i ωiDi for

various Di ∈ U and ωi smooth, compactly supported on G(A). It follows

SL2(G(A))(ωf)� SVπ(f). ut

2.6. Proofs concerning Sobolev norms.

In this section, which can be safely skipped in the course of reading
the paper, we give the proofs that the Sobolev norms defined in §2.3 have
the good properties indicated in that section.

The proof of the distortion properties, (S1b), (S2b) are elementary, and
we omit them. Similarly we omit the proof of properties (S4a) – (S4d).
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2.6.1. We will establish (S1a), from which (S2a) follows easily. We will
establish (S1a) in the adelic setting; the local setting is easier.

Let ω be as in (S1a). Take f ∈ L2(G)[m], where, as usual, m is a
function from places of F to non-negative integers.

The function f factors through the dim(G)[F : Q]-dimensional manifold
G(A)/K[m]; this has around vol(K[m])−1 connected components. We can ap-
ply the usual Sobolev inequality (for real manifolds) to the connected compo-
nent of the identity. It shows that f(1) is bounded by the L2-norm, on the
connected component of the identity, of (e.g.) the first dim(G) derivatives of
fω.

From this it follows that:

|f(1)| � vol(K[m])−1
∏
v|∞

‖mv‖[F :Q] dimG‖fω‖L2 � ‖m‖d0‖f‖L2

where we take any d0 > 2[F : Q] dim(G). This, in view of (2.7), implies
(S1a).

To deduce (S2a), take f ∈ L2(X). Fix x0 ∈ X. By pull-back of functions,

we immediately deduce from (S1a) that |f(x0)| � SL
2(X)

d0
(f). Now, by the

Lemma of §2.1.7, for any x ∈ X, there exists g ∈ G(A) with x0g = x and
‖g‖ 6 ht(x)?. Therefore, the distortion properties imply that

|f(x)| = |f g(x0)| � SL
2(X)

d0
(f g)� ht(x)?SL

2(X)
d0

(f). (2.13)

Thus (S2a).

2.6.2. We prove (S3b). It suffices to check that for any m > 1 there
exists d so that

|f(x)| �m (htx)−mSL
2(X)

d (f), f ∈ L2
cusp. (2.14)

It suffices, by (S4d), to establish this estimate for f ∈ L2
cusp[m].

Let x ∈ X. Let T be as in §2.1.4. It is a consequence of reduction the-
ory that there exists a compact subset Ω ⊂ G(A) and R > 0 and a ∈ T(A)
so that x = G(F ).aω, where ω ∈ Ω, and a ∈ T(A) is so that there exists
at least one simple root α with |α(a)|A > ht(x)?. Let U be the unipotent
radical of the maximal proper parabolic subgroup associated to α.

We choose a sequence Z0 = Z ⊂ Z1 ⊂ Zj = U where Zj+1/Zj is central
in U/Zj for j > −1 (we interpret Z−1 to be trivial). Now expand f in a
Fourier series along Z0, i.e.

f(x) =
∑
ψ

fψ(x), fψ(x) :=

∫
Z(F )\Z(A)

f(ux)ψ(u)du;
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the measure is the invariant probability measure, whereas the ψ sum extends
on characters of Z(A) trivial on Z(F ).

Only those characters ψ which are trivial on Z(A) ∩ K[m] contribute
to this summation, and the number of such characters is bounded by �
‖m‖dimZ. Let u be the Lie algebra of Z(F ⊗Q R). To any ψ as above, we
may associate its differential dψ ∈ u∗. Fix a norm on u∗. Integrating by parts,
we conclude that for any n > 1,∑

ψ 6=1

fψ(x)�n |α(a)|−nA ‖m‖
? sup
u∈U(A),D∈D

|Df(ux)|,

where D is a finite set of G(A)-invariant differential operators. Applying

(2.13), we deduce that the sum is �n ht(x)−n‖m‖a(n)SL
2(X)

d(n) (f).

It remains to estimate the term fψ for ψ = 1. For this, we expand it in
a Fourier series along Z1/Z0. Proceeding in this way, we arrive inductively
at the conclusion.

ut

2.6.3. We prove (S1d). First of all,

Lemma. — Let πv be an irreducible admissible representation of G(Fv).
Then the image of ev[m] has dimension bounded above by A1q

A2m
v , where A2

depends only on the isomorphism class of G.

This follows (for v nonarchimedean) from Bernstein’s proof of uniform
admissibility [3] and (for v archimedean) since any irreducible representation
of a maximal compact subgroup occurs in πv with a multiplicity bounded by
its dimension (a consequence of e.g. the subrepresentation theorem; recall we
interpret qv = e = 2.71828 . . . for v archimedean). We give, for illustration,
Bernstein’s proof for PGL2; this, and the mild variant of GL2 with a fixed
central character, is the only case in which we shall use the result later in
this paper.

Proof. — (in the case of G = PGL2). Let C the characteristic function

of K[$m
v ]

(
$v 0
0 1

)
K[$m

v ] ⊂ GL2(Fv). Then C acts on πK[$mv ], the K[$m
v ]-

fixed vectors in π, as does the finite group G = K̄v/K̄[$m
v ]. Let C[G] be the

algebra of endomorphisms of πK[$mv ] generated by G. Let 〈C〉 be the algebra
of endomorphisms of πK[$mv ] generated by C. Then C[G] · 〈C〉 · C[G] must
be the whole algebra of endomorphisms of πK[$mv ], because a corresponding
fact holds for the Hecke algebra of K[$m

v ]-bi-invariant functions on GL2(Fv),
which acts irreducibly on πK[$mv ]. On the other hand, dim〈C〉 6 dimπK[$mv ].
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Therefore, the dimension of C[G] · 〈C〉 ·C[G] is at most |G|2. dim πK[$mv ]; since
it acts irreducibly, its dimension is = (dim πK[$mv ])2, yielding the result. ut

Now, let π be as in (S1d) – i.e. a representation of G(A) – and let V
be the underlying vector space. The Lemma shows that any X ∈ V [m] is a
sum X =

∑
i xi where where xi is a pure tensor, and the number of xis is

at most
∏

mv 6=0(A1q
A2mv
v ) 6 ‖m‖C2 , where C2 = A2 + logA1

log 2
. For any such pure

tensor xi =
∏

v xi,v, we have (notation as in the statement of [S1d]):

|`(xi)| = |
∏
mv 6=0

`(xi,v)
∏
mv=0

`(xi,v)| 6 A′‖m‖d+ε‖x‖.

Here we used the fact that
∏

mv 6=0 A 6 A′‖m‖ε, where A′ can be taken
to a function of A and ε. Thus an application of Cauchy-Schwarz yields:

|`(X)| 6 ‖m‖C2/2A′‖m‖d+ε

(∑
i

‖xi‖2

)1/2

6 A′(ε)‖∆d+C2/2+ε
A X‖

(S1d) now follows from (2.7). ut

Remark. — It will be useful to apply (S1d) to multilinear functionals.
Suppose that we are given (e.g.) a bilinear functional B : π1⊗π2 → C, which
factorizes as B =

∏
v Bv, and, for every v, B(x1,v, x2,v) 6 ASd(x1,v)Sd(x2,v);

also |Bv| 6 1 when both x1,v, x2,v are spherical of norm 1.
Then B(x1, x2)� A′Sd′(x1)Sd′(x2) (similar notation to (S1d)). This fol-

lows formally: apply (S1d) first to the linear functional x 7→ B(x, y), for y
fixed; we see it is bounded in absolute value by A′Sd′(x)Sd(y). Now apply
(S1d) to the functional y 7→ B(x, y), for x fixed; note that the condition on
spherical inputs is satisfied not for all v, but only for those v where xv is
spherical, this being handled by the footnote to (S1d).

2.6.4. We prove (S2c). This proof is modeled on ideas from [4]. For
x ∈ X, consider the linear form on C∞c (X) given by: `x : f 7→ ht(x)r∆r

Af . By

(S2a), `x is bounded with respect to SL
2(X)

d0
, for some d0 > 0 and uniformly

in x (at least after increasing d0 as necessary). It follows that, for suitable
d > d0, the trace of |`x|2 with respect to the square of SX

d is finite and
independent of x. Integrate over x ∈ X to obtain the desired conclusion.

2.6.5. We prove (S3c); however, some preliminaries are necessary. We
shall need to make use of an assertion substantively equivalent to the well-
known theorem of W. Müller [55] that discrete automorphic spectrum is
trace-class. That fact, in turn is closely related to the fact that the Eisenstein
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series on a general group have finite order. We believe that to handle the
general case should be routine using the techniques of Müller’s paper [55];
but we have not verified the detail, and this is why the proof is presently
only for GLn, where it is possible to give a direct proof of Müller’s trace-class
theorem – using the work of Moeglin and Waldspurger.

For any automorphic representation, set

CSob(π) = inf
f∈π,‖f‖2=1

‖∆Af‖.

It might be referred to as the “Sobolev-conductor” of the representation π;
as we shall see momentarily, it is bounded above and below in terms of the
analytic conductor in the case of GLn.

We begin with:

The number of cuspidal π with CSob(π) 6 X is at most polynomial in X
(2.15)

Proof. — There exists (by (S3a) and (S2c)) some d so that the inclusion
of L2(X) into the Hilbert space associated to SX

d is trace class. There exists

d′ so that SdX is majorized by SL
2(X)

d′ for cuspidal functions, by (S3b). Choose
eπ in each cuspidal representation18 so that Sd′(eπ) = CSob(π)d

′‖eπ‖2. Then
SX
d (eπ) � CSob(π)d

′‖eπ‖2. The trace-class feature forces
∑

π CSob(π)−d
′
< ∞.

Thus (2.15). ut
With notation as in §2.2, we now claim:

There is d1 > 1 so that

∫
χ∈X

CSob(I(χ))−d1dχ <∞. (2.16)

For G = GLn, the classification of discrete spectrum (§2.2.1) together with
the classification of discrete series ([51]) reduces this to (2.15).

Finally, (2.16) =⇒ (S3c). Let ` be a linear form as in (S3c). We
express an arbitrary f ∈ L2(X) as an integral f =

∫
fχdχ, where fχ ∈ I(χ)

(notation of §2.2; we have already remarked in §2.2.1 that the Plancherel
decomposition is pointwise defined). Using (2.16) and Cauchy-Schwarz,

|`(f)|2 =

∣∣∣∣∫ `(fχ)dχ

∣∣∣∣2 � ∫
CSob(I(χ))d |`(fχ)|2 dχ (2.17)

6
∫
‖∆d′

Afχ‖2dχ� SL
2(X)

d′ (f).

18 It is not difficult to check, although it is in fact not essential, that the infimum which defines
CSob(π) is realized.
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Let us note the following corollary, which can also be proved in other
ways:

Corollary. — The number of cuspidal representations on GLn(F ) with
fixed central character and conductor 6 X is bounded by a power of X.

It follows from the prior Lemma and the following Lemma due to W. T.
Gan 19

2.6.6. Lemma. — As π varies through automorphic cuspidal representa-
tions of GLn(A),

logC(π)

logCSob(π)
is bounded above and below (2.18)

It is of interest (from the point of view of the “Selberg-class”) to deter-
mine what the correct growth rate in this corollary is; among other things,
it is related to the question of the number of twists needed in converse the-
orems; in that connection:

Question. — Let N(X) be the number of cuspidal representations on
GLn(Q) with analytic conductor 6 X. Determine the asymptotic behavior of

N(X); for example, is it true that logN(X)
logX

approaches n+ 1?

3. Integral representations of L-functions: local computations.

3.1. Notations

This part, comprising §3.2 – §3.7, will be essentially of local nature; we
collate here some notations that will be used.

3.1.1. Local fields. — Throughout this part, we shall work over a local
field k. We shall always suppose k to be given as the completion of F at a
place v; thus, we regard the place v and an isomorphism Fv ∼= k to be given
along with k.20

We denote by |.| = |.|v the absolute value on k normalized so that
|x|R = max{x,−x}, |z|C = z.z and for v non-archimedean, |$| = q−1 for $

19 This statement was derived from a result sketched by Gan to one the authors (A.V.), namely, the
conductor of any representation of GLn(k) – for k a nonarchimedean local field – admitting a vector fixed
under the r-th principal congruence subgroup is at most rn2

20 The reason for this is that it will be helpful in handling implicit constants.
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an uniformizer of k with q the size of the residue field; in that later case
we denote by o the maximal order of k. If k is archimedean, we denote by
deg(k) its degree over R.

3.1.2. Additive characters. — We equip once for all each local field
k = Fv with an additive character ψ obtained as follows: we let eQ : AQ →
C× be the unique additive character which coincides with x→ exp(2πix) on
R and set eF = eQ(trF/Q). We denote by ψ the restriction of eF to Fv = k.
In the sequel any local considerations involving an additive character of k will
refer to that character ψ or its complex conjugate. If k is nonarchimedean,
we denote its conductor by dψ. We set dψ = 0 if k is archimedean.

3.1.3. Implicit constants. — Unless otherwise specified, given some pa-
rameter ε say, the implicit constant in �ε will depend (of course) on the
parameter ε but may also depend on the quantity qdψ as k varies through
completions of F . Note that qdψ = 1 for almost every k.

3.1.4. Subgroups. — We denote by Z, N, B the usual upper triangular
unipotent (resp. Borel) subgroup of GL2 or PGL2 and by A the diagonal
subgroup with lower diagonal entry equal to 1. We denote G = GL2(k), Ḡ
the quotient of G by its center and Z,N,B,A the group of k points of
Z,N,B,A. For t, x, y in any ring R, we set

z(t) =

(
t 0
0 t

)
, n(x) =

(
1 x
0 1

)
, a(y) =

(
y 0
0 1

)
.

We let K be the standard maximal compact subgroup of G, i.e. the group
of integral matrices if k is nonarchimedean, and the stabilizer of the “stan-
dard” orthogonal form (x1, x2) 7→ x2

1 + x2
2 or the “standard” Hermitian form

(z1, z2) 7→ z1z1 + z2z2 if v is real or complex.
For v non-archimedean and m > 0 we denote by K[m] ⊂ K0[m] ⊂ K the

subgroups of matrices

(
a b
c d

)
∈ GL2(o) such that a ≡ d ≡ 1, b ≡ c ≡ 0 ($m),

or c ≡ 0 ($m), or with no constraint on a, b, c, d, respectively.

3.1.5. Measure normalizations. — Fix an additive haar measure on k
which is self-dual with respect to the character ψ. (Note that for k ∼= R, this
gives Lebesgue measure; for k ∼= C, this gives the measure idz∧dz̄ = 2dx∧dy;
and for k nonarchimedean, it assigns mass q−dψ/2 to the maximal compact
subring of k.)
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Transport it to the haar measure dn on N via x 7→ n(x); we equip
A = {a(y) : y ∈ k×} and Z = {z(u) : u ∈ k×} with their Haar measures
ζk(1) dy|y| , ζk(1) du|u| respectively.

The product measure ζk(1) du|u|dxζk(1) dy|y| defines the right Haar measure

dRb on B = {z(u)n(x)a(y) : u, y ∈ k×, x ∈ k} while the left Haar measure dLb
is |y|−1dRb. The left and right Haar measures on the Borel of G are defined
explicitely through the same parameterisations (with ζk(1)du/|u| removed).
We denote by dk the Haar probability measure on K. The Haar measures
on G, G are then given by dLbdk.

The measure on G determines a Plancherel measure dµP on the unitary
dual of G. This is normalized by the formula:

f(1) =

∫
π∈Ĝ
〈f, χπ〉L2(G)dµP , f ∈ Cc(G)

where χπ is the character of π ∈ ĜAut.
For k archimedean, we fix a norm, ‖.‖g say, on g the Lie algebra of G.

3.1.6. A measure computation. — It will be of use, as a check, to
later compare dg to the measure d′g := dLbdn pushed forward from the map

B×N → G, (n, b) 7→ nwb ( here w =

(
0 −1
1 0

)
denote the Weyl element; recall

that the image of that map is dense in G by the Bruhat decomposition). The
later coincides with the measure pushed forward from dn×dRb on N×B via
(n, b) 7→ nwb, for both are invariant and have the same behavior near the
element w. In fact,

d′g = ιkdg, ιk = q−dψ/2
ζk(1)

ζk(2)
. (3.1)

Indeed, let f ∈ Cc(G), and let f̄(g) =
∫
b∈B f(bg)dL(b). Then∫

f(g)dg =

∫
f̄(k)dk, while

∫
f(g)d′g =

∫
f̄(wn(x))dx.

The function f̄ has the transformation property f̄(bg) = |b|−1f̄(g) where |b| =
|n.a(y)| := |y|; so we are reduced to computing the ratio

∫
f̄(k)∫

f̄(wn(x))dx
for a

single f̄ with this property. We choose the square of the “height” function

f̄(g) = | det g|
‖(0,1)g‖2 , where ‖·‖ is a K-invariant norm on k2, which we normalize so

that ‖(0, 1)‖ = 1. We are reduced, thus, to evaluating ιk =
∫
x∈k ‖(1, x)‖−2dx.

1. If k is nonarchimedean, with residue field of size q,

ιk = q−dψ/2(1 + (q − 1)(q−2 + q−3 + . . . )) = q−dψ/2
ζk(1)

ζk(2)
.
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2. If k = R, then ιk =
∫

dx
1+x2 = π = ΓR(1)

ΓR(2)
.

3. If k = C, then ιk = 2
∫

dx∧dy
(1+x2+y2)2 = 4π

∫∞
r=0

r dr
(1+r2)2 = 2π = ΓC(1)

ΓC(2)
.

3.1.7. Representations: convention. — In the sequel, the irreducible
admissible representations of G that will occur are assumed to be local con-
stituents of unitary automorphic representations of GL2(A). In particular, by
the work of Kim and Shahidi [41], such representations will never be com-
plementary series with parameter > θ. (cf. (2.8)).

3.1.8. The local analytic conductor. — Given d = 1, 2 and π an irre-
ducible admissible representation of GLd(k) acting on a vector space V say
we define the (local) analytic conductor of π, C(π), to be

- k non-archimedean: C(π) = qf(π) where f(π) is the conductor of π.
- k archimedean: the L-factor of π has the form

L(π, s) =
d∏
i=1

Γk(s+ µπ,i)

with ΓR(s) = π−s/2Γ (s/2), ΓC(s) = 2(2π)−sΓ (s) and µπ,i ∈ C; the analytic
conductor is given by

C(π) =
d∏
i=1

(2 + |µπ,i|)deg(k).

In the sequel, the usual notation of Vinogradov A�π B will have the follow-
ing slightly more precise meaning: there are constants C, d > 0 (independent
of π) such that |A| 6 C.C(π)d.|B|; we will then say that A is bounded by
B, polynomially in π.

3.1.9. We recall that we have defined previously (§2.3.2) a system of
Sobolev norms SVd on any unitary representation V of G; these norms have
the property, among others, that SVd (v) = ‖∆dv‖ for a certain positive self-
adjoint operator ∆ on V . As a complement to our earlier convention 3.1.3,
the indices of the Sobolev norms occurring in inequalities such as A 6 S?(f)B
will always be independent of the field k.

3.1.10. Principal series representations. — For (ω, ω′) a pair of char-
acters of k×, we denote by I(ω, ω′) or ω � ω′ the corresponding principal
series representation of G which is unitarily induced from the corresponding
representation of B: the L2-space of functions f on G such that

f(

(
a b
0 d

)
g) = |a/d|1/2ω(a)ω′(d)f(g),
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with respect to the inner product

〈f, f〉 =

∫
K

|f(k)|2dk.

If ω, ω′ are unitary, the resulting inner product is G-invariant and I(ω, ω′)
is thus a unitary representation. Such representation will be called a unitary
principal series. In this case, for f ∈ I,

‖f‖2 =

∫
k∈K
|f(k)|2 = ι−1

k

∫
x∈k
|f(wn(x))|2dx, (3.2)

where ιk = q−dψ/2 ζk(1)
ζk(2)

is as in §3.1.6.

Even if ω, ω′ are not unitary, a principal series representation I(ω, ω′)
may be unitarizable although not, in general, with respect to the above inner
product. In particular, in such cases, ω−1 = ω′.

3.1.11. Deformation. — It will be of utility to deform induced repre-
sentations. To that end we introduce the following notation: Suppose that π
is induced from21 two unitary characters ω, ω′, i.e. π = I(ω, ω′) and and s is
a complex number. We set

πs := ω|.|s � ω′|.|−s;
it is realized in the induced space Is. For f ∈ I, we define fs to be the
vector in Is whose restriction to the maximal compact K coincide with that
of f .

The map f 7→ fs is K-equivariant from π to πs. It is not G-equivariant
in general.

3.1.12. γ-factors. — If π is a unitary representation of GLr(k), we
define the γ-factor, as usual, as the ratio

γ(π, ψ, s) = ε(π, ψ, s)
L(π̃, 1− s)
L(π, s)

.

We recall that, if ψ is unramified and k non-archimedean, then

ε(π, ψ, s) = q−fπ(s−1/2), (3.3)

where fπ is the local conductor of π (in the sense of [39]). When r = 1 and
π is a character χ of k×, we obtain the γ-factor of Hecke and Tate. Recall
that, for Φ a Schwarz function on k and

Z(Φ, χ, s) =

∫
Φ(x)χ(x)|x|sd×x

21 The choice of ω, ω is unique up to order.
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we have

Z(Φ̂, χ−1, 1− s) = γ(χ, ψ, s)Z(Φ, χ, s), (3.4)

where Φ 7→ Φ̂ is the Fourier transform; also γ(χ, ψ, s) can be expressed for-
mally as

∫
y∈k ψ(x)χ(x)−1|x|−sdx, and it has poles only when <(χαs) = 1.

We shall use the following estimtes for the γ-factor: given 0 < ε < 1/100,
one has for GL1,

|γ(χ, ψ, σ)| �
ε,q

dψ Cond(χ)−(σ−1/2), (σ ∈ [ε, 1/2− ε]), (3.5)

and for GL2,

|γ(π, ψ, σ)| �
ε,q

dψ Cond(π)−(σ−1/2), (σ ∈ [3/26 + ε, 1/2− ε]) (3.6)

This follows from the prior remark, the dependence of ε-factors on ψ, and
the fact that L(π, s) and L(π̃, 1− s) are uniformly bounded above and below
in the stated region, if k is nonarchimedean; and by a direct computation
(see [38, Chap. 1, §5 & 6]) when k is archimedean.

For GL1, the same bound remains valid (with the same proof), so long
as π is unitary; we may even replace (3/26, 1/2) by any compact subinterval
of [0, 1].

3.1.13. Let f ∈ C∞c (R+), and consider the integral

G(λ, t) :=

∫ ∞
0

f(x)|x|iλeitxdx.

The method of stationary phase shows that the dominant contribution to
this integral comes from stationary points of the phase function λ log(x)+ tx,
i.e., when x = λ/t. If f is fixed, it therefore follows that G(λ, t) is small
unless λ and t are of the same order of magnitude. Moreover, stationary
phase predicts that, when λ ∼ t, the magnitude |G(λ, t)| ∼ λ−1/2.

A similar phenomenon occurs when we replace R by a nonarchimedean
local field with residue field of size q; in that case, the pertinent integrals are
closely related to Gauss sums. If χ is a character of conductor C = qfχ > 1,
and D = qdψ the discriminant of ψ, then: for t ∈ k×,∫

|x|=|u|
χ(x)ψ(tx)d×x =

{
0 , |u| 6= CD/|t|
ηC−1/2|u|<χ , |u| = CD/|t|

(3.7)

with |η| = 1.
The following general version will be helpful:
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3.1.14. Lemma. — Let A < B ∈ R. Let k be a local field, φ ∈ C∞c (k×)
a smooth function, and χ a character of k of conductor C such that, writing
|χ(x)| = |x|σ, one has A 6 σ 6 B.

Set, for t ∈ k×,

Gφ(χ, t) =

∫
k

φ(x)ψ(tx)χ(x)dx.

Then:

1. For every N > 0, ε > 0, we have:

|Gφ(χ, t)| �φ,N,A,B,ε C
−1/2+ε max

(
1 + |t|
C

,
C

|t|

)N
;

2. Fix ε > 0. Then there exists t, satisfying
∣∣∣ log |t|

log(C+1)
− 1
∣∣∣ 6 ε, so that

|Gφ(χ, t)| �ϕ,ε C
−1/2−2ε.

Proof. — The statement (2) follows from statement (1) and Plancherel
formula: ∫

k

|Gφ(χ, t)|2dt =

∫
k

|φ(x)χ(x)|2dx,

noting that the volume of the set |t| 6 C is � C. It suffices thereby to prove
(1).

We shall give the proof of the bound |Gφ(χ, t)| �φ,N,A,B ((1 + |t|)/C)N .
Let us suppose, first of all, that k is archimedean, and fix a basis {Di}
of k×-invariant differential operators on k× of degree [k : R]. Then χ is an
eigenfunction of each Di, and there exists i so that the eigenvalue λi satisfies
|λi| � C. Now,

|Gφ(χ, t)| � C−N
∫
DN
i (φ(x)ψ(tx))χ(x)�φ,N,A,B C

−N(1 + |t|)N

If k is nonarchimedean, there exists a constant c > 0, depending only on
φ and the discriminant of ψ, so that φ(x)ψ(tx) is invariant under x 7→ xy
whenever |t(y − 1)| 6 c. In particular, Gφ(χ, t) vanishes whenever |t|C−1 < c.

The bound |Gφ(χ, t)| �φ,N,A,B (|t|/C)−N is similar; we replace the role
of multiplicative translations and multiplicatively invariant differential oper-
ators by additive translations and additively invariant differential operators.
We also reverse the roles of χ and ψ in the prior argument.
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As for the bound Gφ(χ, t) �φ,N,A,B C−1/2+ε, we may assume that χ is
unitary, after replacing φ by φ|x|σ suitable σ. Fix ε > 0 small. By (3.4),
applied to x 7→ φ(x)|x|1−εψ(tx), we may write Gφ(χ, t) as∫

k
̂(φα1−ε)(x+ t)(χαε)−1(x)dx

γ(χ, ψ, ε)
=

∫
k

̂(φα1−ε)(x)χ−1(x− t)|x− t|−εdx
γ(χ, ψ, ε)

.

Our assertion follows from the rapid decay of ̂(φα1−ε)(x) and (3.5). ut

3.2. Whittaker models.

Let ψ be the non-trivial additive character of k described previously.
Given π a generic representation of G, π admits a unique realization in a
Whittaker model, which we shall denote by W(π, ψ), and thereby in a Kir-
illov model, which we denote by K (π, ψ). We equip the Kirillov model with
that inner product given by the L2-inner product on k×:

〈W,W 〉 =

∫
k×
|W (y)|2d×y. (3.8)

Unless otherwise specified, the inner product (3.8) is always the one that we
will put on any Kirillov or Whittaker model.

Let us suppose, moreover, that π is unitary, i.e. equipped with a G-
invariant inner product. Then we may choose an intertwiner π 7→ K (π, ψ)
which preserves inner products. Such an intertwiner is unique up to a scalar
of absolute value 1, and we will regard it as having been fixed; thus we
will identify π with K (π, ψ). Throughout this paper, since we are concerned
only with the size of various quantities, the scalar of absolute value 1 will
not prove a problem. Therefore – in the setting where π is equipped with
an inner product – we will regard the following statement, for example, as
meaningful:

Choose v ∈ π corresponding to the element W ∈ W(π, ψ) . . . (3.9)

3.2.1. Intertwiners from the induced model to the Whittaker model. —
It will be useful later to record these in somewhat explicit form. Notation as
in §3.1.10, let π = I(ω, ω′). An explicit intertwiner π → K(π, ψ) is given by:

f 7→ Wf , Wf (g) = η
−1/2
k

∫
k

f(wn(x)g)ψ(x)dx, ηk = ζk(1)ιk (3.10)

If ω, ω′ are unitary, then the map (3.10) is isometric by (3.2); this was the
reason for the inclusion of ηk.
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Taking g = a(y), one has

Wf (a(y)) = η
−1/2
k |y|1/2ω′(y)

∫
x∈k

f(wn(x))ψ(xy)dx.

In general, the right-hand integral is not absolutely convergent, but it is con-
ditionally convergent – interpreted as a limit of integrals over increasing com-
pacta |x| 6 R – if f is a smooth vector.

It follows from the above expressions, using the shorthand α(y) := |y|,
that:

η
1/2
k

∫
Wf (y)χ(y)d×y =

(∫
f(wn(x))χ′(x)−1dx

)
γ(χ′−1, ψ, 1)ζk(1), (3.11)

where χ′ := χω′α1/2.

Remark. — It is useful to discuss convergence. Suppose ω, ω′ unitary.
The left hand side of (3.11) is holomorphic for <(χ) > −1/2. On the other
hand, the right-hand side integral is absolutely convergent and holomorphic
in the range −1/2 < <(χ) < 1/2.

We observe that the left-hand side of (3.11) has poles precisely when
χω = α−1/2 or χω′ = α−1/2. These poles arise from the asymptotics of W (y)
as |y| → 0. On the right-hand side, the integral involving f has poles at
χω′ = α1/2, arising from the behavior as |x| → 0; this pole is cancelled by
the zero of the γ-factor γ(χ−1ω′−1, ψ, 1/2) at this point. Moreover, one has
poles at χω = α−1/2 (arising from the asymptotics of f as |x| → ∞) and
χω′ = α−1/2 (arising from the pole of γ).

3.2.2. The Jacquet-Langlands functional equation. — Let π be generic,
not necessarily unitary. For χ a character of F×, let <χ denote the real part
of χ ( |χ(.)| = |.|<χ) and set for W ∈ K (π, ψ),

`χ(W ) :=

∫
k×
W (u)χ(u)d×u; (3.12)

This integral is absolutely convergent for <(χ) = σ > 0. By the theory of

Hecke and Tate, `χ(W ) admits a meromorphic continuation to k̂×; more pre-

cisely the ratio `χ(W )
L(π⊗χ,1/2)

is holomorphic; it satisfies the local functional equa-

tion
γ(π ⊗ χ, ψ, 1/2)`χ(W ) = `ω

−1χ−1

(W̃ ) (3.13)

where W̃ = π(w).W , and ω is the central character of π.

Note we regard W̃ as belonging to the Whittaker model of π; it would
also be possible to incorporate the ω-twist into it and regard it as being in
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the Whittaker model of π̃, bearing in mind that π̃ ∼= ω(det)−1 ⊗ π. In any

case, the Sobolev norms of W̃ and W are the same, because the element w
belongs to K.

3.2.3. Proposition. — (Pointwise bounds for the Whittaker function.)
For any N > 1, any ε > 0 and all W ∈ K, there exists d = d(N) so that:

|W (y)| �N SK (π,ψ)
d (W )

{
|y|1/2−θ, |y| 6 1,

|y|−N , |y| > 1
.

Proof. — The assertion for |y| > 1 is elementary; it is a quantification
of the well-known fact that Whittaker functions decay at ∞. For example,
in the real case, one may use the fact that there exists an element of the
Lie algebra of G which acts on the Kirillov model by W (y) 7→ yW (y). We
leave it to the reader (see also [7, (29)]). As a consequence for the assertion
with |y| > 1, we deduce that

|`χ(W )| � SK (π,ψ)(W ) (3.14)

whenever <(χ) > 0.
By inverse Mellin transform22 and (3.13) , we have

W (y) =

∫
<χ=σ�1

χ−1(y)dχ

∫
k×
W (u)χ(u)d×u

=

∫
<χ=σ�1

χ−1(y)
`χ
−1ω−1

(W̃ )

γ(π ⊗ χ, ψ, 1/2)
.dχ

=

∫
<χ=σ′

χ−1(y)
`χ
−1ω−1

(W̃ )

γ(π ⊗ χ, ψ, 1/2)
.dχ.

At the last stage, we have shifted the contour to <χ = σ′ for σ′ ∈ ( 3
26
−1/2, 0):

under our convention, the contour shift does not cross any pole of the local
L-factor L(π × χ, 1/2), and therefore the integrand remains holomorphic.

We observe that in the nonarchimedean case∫
k×
W̃ (u)χ−1(u)ω−1(u)d×u = 0

as long as the conductor of χω is strictly greater than any r for which W̃ is
e[r]-invariant. Applying then (S4d), (3.6), the previous bound (3.14) in the

22 The measure on the space of χ is obtained as follows: the χ-space is a principal homogeneous space
for the dual group to k×, and we transport the dual measure to that space.
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range <(χ−1) > 0 and the previous observations, we conclude that, for any
m > 1,

|W (y)| �m,σ′ |y|−σ
′SK (π,ψ)(W )

∫
χ

C(χ⊗ ω)−mC(π ⊗ χ)σ
′
.

The inner integral may be expressed as
∫
χ
C(χ)−mC(π̃⊗χ)σ

′
. Since σ′ < 0 the

inner integral is bounded independently of π by taking m large enough. (This
is only for convenience; an implicit dependence on C(π) could be absorbed
into the Sobolev norm using the results of §2.6.5.) In the archimedean case,
we reason similarly, replacing the statement “· · · = 0 as long as the conductor
of χ is strictly greater than ... ” by integration by parts23.

ut
We shall need later the following variant also. Its role in our proof will

be the following: we shall need, at certain points, to utilize non-unitarizable
representations, and this Proposition that follows allows us to maintain con-
trol on their Whittaker functions so long as they are “close enough” to being
unitary.

3.2.4. Proposition. — Notation as in §3.1.11, so that π is a unitary
principal series, f = f0 ∈ π = π0, and fs ∈ πs a deformation as in §3.1.11.
Let Ws be the image of fs under the intertwiner (3.10). Then there exists
an absolute d > 0 so that, for 0 6 δ 6 1/20, and |<(s)| 6 δ,∫

k×
|Ws(a(y))|2 max(|y|, |y|−1)δd×y � Sπdδ(f)2, (3.15)

Proof. — The Mellin transform
∫
k×
W0(x)χ(x)d×x is absolutely conver-

gent for <(χ) > −1/2, cf. Remark 3.2.1.
Fix any η ∈ (0, 1/2); we will use it to parameterize a compact subin-

terval of [0, 1]. Take any β ∈ (−1 + η,−η); by Mellin inversion and (3.11),

f0(wn(x)) =
η

1/2
k

ζk(1)

∫
<(χ)=β

χ(x)
`χω

′−1α1/2
(W0)

γ(χ−1, ψ, 0)
dχ, (3.16)

with the measure dχ is as before. We now bound f0(wn(x)): we apply Propo-
sition 3.2.3 and (3.6) to equation (3.11), and use similar reasoning to Propo-
sition 3.2.3 to pass from a pointwise bound for the integrand in (3.16), to
the integral.

23 in the archimedean case, there is an element Z ∈ g (more precisely in the Lie algebra of a(k×)) of

bounded norm so that
∫
k× W̃ (u)χ−1(u)d×u� C(χ)−1

∫
k× Z.W̃ (u)χ−1(u)d×u.
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We arrive at the existence of d so that for x ∈ k and β ∈ [−1 + η,−η]:

|f0(wn(x))| �η Sπd (f0)|x|β. (3.17)

Observe that: fs(wn(x)) = f0(wn(x))q(x)s, where q(x) = ‖(1, x)‖−2 (no-
tations of §3.1.6). Combining this with (3.17) and substituting into (3.11),
we see that for η ∈ (0, 1/2) there exists d = d(η) > 0 so that, whenever
|<(χ)|+ |2<(s)| 6 1/2− η,∣∣∣∣∫ Ws(y)χ(y)d×y

∣∣∣∣� Sπd (f0)C(χ)d.

Now fix β = 1/20. Estimate
∫
|Ws(y)|2|y|±βd×y by Plancherel, yet again

controlling the χ-integration as in Proposition 3.2.3. Thus, there exists d so∫
|Ws(y)|2 max(|y|, |y|−1)βd×y � Sπd (f0)2 (|<(s)| 6 β) (3.18)

This is almost what we want; however, the “number of derivatives” in
the Sobolev norm in (3.15) is “small,” whereas (3.18) involves an unspecified
number of derivatives (i.e., we have no control of d). To get around this, we
interpolate.

Define for every complex s with <(s) ∈ [0, β] and τ ∈ [−1, 1], a function
Fs ∈ L2(k×) via the rule

Fs(y) = Wτs(∆
− d
β
sf0) ·max(|y|, |y|−1)s/2

Here ∆ denote the local laplacian discussed in §2.3.3 and Wτs(∆
− d
β
sf0) de-

notes the result of applying the intertwiner (3.10) to the representation πτs

and the vector whose restriction to K is that of ∆−
d
β
sf0. Also, d is as in

(3.18).
Then s 7→ Fs is a holomorphic function from {s ∈ C : |<(s)| 6 β} to

L2(k×). Moreover, independently of τ , ‖Fs‖2 � ‖f0‖2 for <(s) = 0, while for
<(s) = β, we have by (3.18)

‖Fs‖2 � Sπd (∆−
s
β
df0)2 = ‖∆(1− s

β
)df0‖2 = ‖f0‖2;

hence we have ‖Fs0‖2 � ‖f0‖2 in the region <(s0) ∈ [0, β] (independently
of τ) : for every s0, apply the usual maximum principle to the holomorphic
function s 7→ 〈Fs, Fs0〉. We have shown that for all |<(s)| = δ, all τ ∈ [−1, 1],∫

|Wτs(f)|2 max(|y|, |y|−1)δ � Sdδ/β(f0)2,

which implies the desired assertion. ut



50 PHILIPPE MICHEL, AKSHAY VENKATESH

3.2.5. Computations in the Kirillov model. — Suppose that k is archi-
medean; the action of the Lie algebra of G, g, on K (π, ψ) is well known [38,
Chap. 1 §5,6]. For instance, it follows from the explicit computations of [67,
§8.1.1] that given Z1, . . . , Zm ∈ g, a smooth compactly supported function
W ∈ C∞c (k×) ⊂ K (π, ψ) one has

‖Z1 · Z2 · . . . Zm ·W‖ � C(π)m/deg(k)Sk×2m(W ),

where

Sk×2m(W ) :=

∫
k×

(|y|+ |y|−1)2m|
∑
i

DiW |2d×y,

and Di ranges over a basis of k×-invariant differential operators of degree
6 2m.

Remark. — This result is stated in [67, Lemma 8.4], except the expo-
nent of C(π) is given as 2m/ deg(k) rather than m/ deg(k). however, the im-
proved statement follows from a simple computation: if λπ denote the Casimir
eigenvalue, νπ the eigenvalue for the action of the Lie algebra of diagonal
matrices and D := y d

dy
, then there are generators of the Lie algebra (inde-

pendent of π) which act respectively as νπ+D, y, y−1(λπ+(νπ+D)−(νπ+D)2).
Taking into account that both νπ and λπ − ν2

π are bounded by C(π), we are
done.

By the mean-value Theorem, we have, for δ ∈ R, 0 < δ < 1:

‖ exp(δZ).W −W‖π � δ sup
δ′∈[0,δ]

‖ exp(δ′Z) · Z ·W‖ = δ‖Z.W‖

� δC(π)1/deg(k)Sk×2 (W ). (3.19)

Moreover, all the implicit constants in the above inequalities may be
taken to depend continuously on Zi or on Z. In particular, they may be
taken to be uniform when Z is restricted to a fixed compact set.

3.2.6. Some norms related to Whittaker models. — Let π2, π3 be two
generic irreducible representations of G with π3 isomorphic to a unitary prin-
cipal series I3 (see §3.1.10); let χi, i = 2, 3 denote their central characters.
Let L2(N\G;χ2χ3) be the L2-space of N -equivariant functions on G which
transform by χ2χ3 under multiplication by the center, with respect to the
inner product

〈ϕ, ϕ〉N\G =

∫
N\Ḡ
|ϕ(g)|2dg
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3.2.7. Lemma. — The GL2(k)-equivariant map

J = Jπ2,π3 : (W, f) ∈ W(π2)× I3 7→ Wf.

defines an isometry from π2 ⊗ π3 into L2(N\G;χ2χ3).

Proof. — It suffices to check that it preserves inner products of pure
tensors. Take (W, f), (W ′, f ′), and observe that – using the Iwasawa decom-
position –

〈J(W, f), J(W ′, f ′)〉N\G =

∫
y∈k×

∫
k∈K

W (a(y)k)W ′(a(y)k)f(k)f ′(k)d×y (3.20)

Since the integral
∫
y∈k×W (a(y)k)W ′(a(y)k) equals the inner product 〈W,W ′〉

for any k ∈ K, the right-hand side factors as a product 〈W,W ′〉π2〈f, f ′〉π3 .
We are done. ut

3.2.8. Lemma. — Suppose k non-archimedean. Let

π2 = χ+
2 � χ

−
2 , π3 = χ+

3 � χ
−
3

be unramified principal series representations with π3 tempered (i.e. the char-
acters χ±3 are unitary). We assume moreover that the additive character ψ is
unramified.

Let W be a spherical vector, in the Whittaker model of π2 and f spher-
ical in the induced model of π3. Let π2(s), π3(t) and Ws ∈ π2(s), ft ∈ π3(t) be
deformations of respectively W, f parameterized by complex parameters s and
t. Here Ws is obtained, as before, by applying the intertwiner (3.10) to the
f2(s), where f2 ∈ π2 is the preimage of W under the intertwiner (3.10).

We denote the map Jπ2,π3 by J and Jπ2(s),π3(t) by Js,t. For 0 6 δ < 1/10,
|s|, |t| 6 δ/2, and u ∈ G one has

〈u.J(W ⊗ f), Js,t(Ws ⊗ ft)〉N\G
‖W‖2‖f‖2

� ‖Ad(u)‖θ+δ−1. (3.21)

Proof. — We may assume that W (1) = f(1) = 1.
We shall reduce the bound (3.21) to a bound where the representation

π2, π3 are unitary, although π2 is not tempered. In fact, we claim that:

|〈u.J(W ⊗f), Js,t(Ws⊗ft)〉N\G| 6 2〈u.J(W 0
θ+δ⊗f 0), J(W 0

θ+δ⊗f 0)〉N\G; (3.22)

where π2 replaced by the complementary series |.|θ+δ� |.|−θ−δ with parameter
θ+ δ and π3 replaced by 1� 1; W 0

θ+δ, f
0 denote the spherical vectors in the
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corresponding models of the respective representations, normalized as above.
Then by Lemma 3.2.7, the latter integral factors as

〈u.J(W 0
θ+δ ⊗ f 0), J(W 0

θ+δ ⊗ f 0)〉N\G = 〈u.W 0
θ+δ,W

0
θ+δ〉〈u.f 0, f 0〉

� ‖Ad(u)‖θ+δ−1‖W 0
θ+δ‖2‖f 0‖2 � ‖Ad(u)‖θ+δ−1‖W‖2‖f‖2

as follows from bounds for matrix coefficients and a computation of the norm
in the Whittaker model.

As for the claim: we note that by the Cartan decomposition and K-
invariance, we may assume that u is of the form a(t0) with 0 < |t0| 6 1;
again by the Cartan decomposition

〈u.J(W ⊗ f), Js,t(Ws ⊗ ft)〉N\G =

∫
k×

∫
K

u.(Wf)(a(y)k)Wsft(a(y))|y|−1dkd×y.

Fix a unitary character χ, and consider the space of functions F on G sa-
tisfying F (z(t)n(x)gk) = χ(t)ψ(x)F (g), k ∈ K. This space is equipped with a
natural inner product, namely, that arising from L2(N\Ḡ). This inner prod-
uct is a Hermitian form in the values (F (a($α)))α∈Z. In particular, the ma-
trix coefficient 〈uF1, F2〉 may be expressed:

〈u.F1, F2〉 =

∫
k×

∫
K

u.F1(a(y)k)F2(a(y))|y|−1dkd×y

=
∑
α,β∈Z

cuα,β,χF1(a($α))F2(a($β)).

Moreover the cuα,β,χ satisfy |cuα,β,χ| 6 cuα,β,1. It follows that if F̄i (i = 1, 2) as

above, are invariant under the center and satisfy |Fi(a(ϕα))| 6 F̄i(a(ϕα)) for
every α, then also |〈F1, F2〉N\G| 6 〈F 1, F 2〉N\G.

We claim that |Js,t(Ws ⊗ ft)a($α)| and |J(W ⊗ f)(a($α)| are both
bounded by 2Jθ,δ(W

0
θ+δ ⊗ f 0(a($α), the latter quantity being non-negative.

This will complete the proof of the claim (3.22).
By choice of data, all quantities vanish when α < 0. When α > 0, they

may be explicitly evaluated. Our assertion amounts to the following:

( ∑
k∈[−n,n]

2|(k−n)

qk(θ+δ/2)
)
qnδ/2 6 2

( ∑
k∈[−n,n]

2|(k−n)

qk(θ+δ)
)
, n > 0, q > 2 and δ, θ > 0. (3.23)

ut
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3.3. Bounds for the normalized Hecke functionals.

Let χ be a character of k×, and π an irreducible unitary representation
of G with central character ω. It is known that the space of functionals `χ

on π satisfying

`χ
((

a 0
0 d

)
v

)
= χ(a).ωχ−1(d) `χ(v). (3.24)

is at most one-dimensional. Our goal is to normalize an element in this space
(using the unitary structure on π) up to a scalar of absolute value 1. Once
this is done, we shall study the analytic properties of the resulting “normal-
ized” functional.

3.3.1. The normalized Hecke functional. — As before, we fix once and
for all an identification of π with K (π, ψ) which carries the unitary structure
on π to the unitary structure on K (π, ψ) given by (3.8). This being under-
stood, define a functional `χ on the Kirillov model K (π, ψ) – and therefore
on π – via the rule of (3.12) (interpreted by meromorphic continuation in
general). In the case χ is the trivial character, we denote `χ simply as `;
thus `(W ) =

∫
k×
W (y)d×y. The resulting functional satisfies (3.24)

We have thus normalized a functional in the one-dimensional space of
solutions to (3.24), up to a scalar of absolute value 1; this ambiguity arises
from the ambiguity in choosing the isometry between π and its Kirillov
model.

Equivalently, the functional may be expressed in terms of matrix coef-
ficients: one has

`χ(v)`χ
−1

(v) =

∫
k×
〈a(y)v, v〉χ(y)d×y,

as follows from (3.8). In particular, if χ is unitary, the associated Hermitian
form wχ := |`χ|2 depends only on the unitary structure on π – i.e., there is
not even an ambiguity of absolute value 1 – and can be expressed thus:

hχ(v) =

∫
k×
〈a(y)v, v〉χ(y)d×y, v ∈ π. (3.25)

3.3.2. Lemma ([67], Lemma 11.7). — Suppose k non-archimedean; let
v the new vector, and let r be the conductor of χ. Then:

`χ(n($−r)v) =

{
L(π ⊗ χ, 1/2) r = 0

η r > 0

where η has absolute value q−r/2(1− q−1).
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3.3.3. Lemma. — Suppose k archimedean. There is v ∈ π, with the
property that Sπd (v) �d C(π)2d for every d, and so that, for any ε > 0 there

is T ∈ k with log |T |
logC(χ)

∈ [1− ε, 1 + ε] so that,

|`χ(n(T )v)| �ε C(χ)−1/2−ε.

Moreover, `χs(n(T )v) �ε C(χ)−1/2+ε for any s, the implicit constant uniform
when <(s) remains in a compact set.

Proof. — We take v = W to be (considered in the Kirillov model of
π) a smooth bump function supported in the ball of radius 1/10 centered at
y = 1. (For concreteness, fix once and for all such a function both in the
case of R and C. The implicit constants in the result will depend on this
choice.)

The bounds on Sobolev norms are a consequence of the comments in
§3.2.5. Noting that,

`χ(n(T )v) =

∫
k

W (y)ψ(Ty)χ(y)d×y,

the assertions concerning upper and lower bounds for `χ follow from Lemma
3.1.14. ut

3.4. Normalized trilinear functionals.

Let πi, for 1 6 i 6 3, be three unitary irreducible generic representations
of G, the product of whose central characters (χi, i = 1, 2, 3) is 1. In the
sequel, we denote by ω the product χ1χ2. It is known ([59], [57], [45]) that
the space of trilinear invariant functionals

π1 ⊗ π2 ⊗ π3 → C

is at most dimension 1. Again, we wish to normalize one up to scalars of
absolute value 1, and study the analytic properties of the resulting “normal-
ized” functional.

3.4.1. Integration of matrix coefficients. — We take the following nor-
malization (cf. [69], [32], [62]).

|LW (x1, x2, x3)|2 =

∫
g∈Ḡ
〈gx1, x1〉〈gx2, x2〉〈gx3, x3〉dg. (3.26)

By (2.8) together with the convention §3.1.7, the integral is convergent, and,
indeed, bounded by a constant multiple of

∏3
i=1 Sπi(xi). It is true, although
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not obvious, that the right-hand side is positive. By direct computation (see
[32]),

|LW |2∏
i ‖xi‖2

= ζk(2)2L(π1 ⊗ π2 ⊗ π3,
1
2
)∏3

i=1 L(πi,Ad, 1)
(3.27)

if k is nonarchimedean and all vectors are unramified.
Another functional arises naturally from Rankin-Selberg integrals. Sup-

pose that π3 ' χ+
3 � χ−3 , is a principal series representation (χ+

3 χ
−
3 = χ3

) realized in the model I3, and that πi i = 1, 2 are realized in the respec-
tive Whittaker models W(π1, ψ) and W(π2, ψ). (More precisely, we follow the
convention of fixing once and for all an equivariant isometry between πi and
their respective Whittaker models, equipped with the inner product (3.8);
thus, for instance, we will regard a linear functional on the Whittaker model
W(πi) as a linear functional on πi. )

Then, for Wi ∈ W(πi), f3 ∈ I3, we put

LRS(W1,W2, f3) = ζk(1)1/2

∫
N\Ḡ

W1W2f3, (3.28)

= ζk(1)1/2

∫
K

∫
k×
W1(a(y)k)W2(a(y)k)f3(a(y)k)|y|−1d×ydk

If Wi, f3 are spherical, and k nonarchimedean, then

LRS(W1,W2, f3)

W1(1)W2(1)f3(1)
= ζk(1)1/2L(π1 ⊗ π2 ⊗ χ+

3 , 1/2)

L(χ+
3 /χ

−
3 , 1)

. (3.29)

If we specialize to χ±3 = |·|±1/2, W2 = W1 then LRS = ζk(1)1/2‖W1‖2
∫
K
f(k)dk,

giving in particular for spherical vectors

‖Wi‖2

|Wi(1)|2
= ζk(2)−1L(π1 × πi, 1) =

L(πi,Ad, 1)

ζk(2)
ζk(1).

We conclude that, in the unramified case,

|LRS|2∏3
i=1 ‖xi‖2

= ζk(2)2L(π1 ⊗ π2 ⊗ π3,
1
2
)∏3

i=1 L(πi,Ad, 1)
.

3.4.2. Lemma. — Let L = LRS or LW be defined as in either (3.26)
or (3.28). Then for x1 ∈ π1, x3 ∈ π3:

‖x1‖2‖x3‖2 =

∫
π2

dµP (π2)
∑

x2∈B(π2)

|L(x1, x2, x3)|2, (3.30)

where dµP (π2) is the Plancherel measure on the unitary dual of G, and B(π2)
is an orthonormal basis for π2. In particular, |LRS|2 = |LW |2 whenever π2 is
tempered.
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The proof that follows is inspired by joint work of one of the authors
(A.V.) with Y. Sakellaridis.

Proof. — The validity of (3.30) for L = LW is an immediate conse-
quence of the Plancherel formula.

The validity of (3.30), where L = LRS (3.28) follows from the first
Lemma of §3.2.6 together with the following: it is known (the Whittaker-
Plancherel theorem) that for F ∈ L2(N\Ḡ),

‖F‖2
L2(N\Ḡ) = ζk(1)

∫
π

dµP (π)
∑
x∈B(π)

|〈F,Wx〉|2. (3.31)

where, for each π, we choose an orthonormal basis Bπ and a unitary inter-
twiner from π to its Whittaker model W(π). In fact, the key point in the va-
lidity of (3.31) is the equality , for Wi ∈ W(π) between

∫
x∈k ψ(x)〈n(x)W1,W2〉

and ζk(1)W1(1)W2(1). This follows from the usual Fourier inversion formula,
taking into account that the Haar measure on k was chosen to be self-dual
w.r.t. k.

The second assertion (the coincidence of the two definitions of |L|2 when
π2 is tempered) follows from uniqueness of unitary decomposition, applied to
π1⊗π3, together with the fact that the support of the Plancherel measure is
the full tempered spectrum, and from a continuity argument. ut

Remark. — It may also be deduced that |LRS|2 and |LW |2 coincide
even when not all πi are tempered. To do this, write Π = ⊗3

i=1πi. Both
|LW |2 and |LRS|2 are Hermitian forms on Π and can be polarized to maps
Π ⊗ Π̃ → C. These polarized maps vary holomorphically in parameters, and
therefore their coincidence may be extended from tempered representations
by analytic continuation.

Remark. — To give a trilinear functional on π1⊗π2⊗π3 is equivalent to
describing an equivariant intertwiner π1 ⊗ π3 → π̃2. Dualizing, we denote by
Iπ2 the functional Iπ2 : π1⊗ π3 → π2 that arises from the normalized trilinear
functional on π1 ⊗ π̃2 ⊗ π3. In explicit terms,

L(x1 ⊗ x2 ⊗ x3) = 〈Iπ2(x1 ⊗ x3), x2〉,

and one has
‖Iπ2(x1 ⊗ x3)‖2 =

∑
x2∈B(π2)

|L(x1 ⊗ x2 ⊗ x3)|2. (3.32)

It is often convenient to think or phrase arguments in terms of Iπ2 , instead
of L. In the sequel, the notation Iπ will designate the intertwiner associated
with LRS(?, π, ?) or LW (?, π, ?).
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It should also be noted that Bernstein and Reznikov made extensive
use of a local study of such trilinear functionals in their beautiful papers.

3.5. Bounds for trilinear functionals, I: soft methods

In this section we present some “soft” upper bounds on the normalized
trilinear functionals. In fact, the entire section is not strictly necessary for the
present paper, since we reprove the bounds by brute force in later sections.
However, under the Ramanujan conjecture, one does not need the brute-force
computations, so the reader may prefer to focus on this section at first.

Our main result is Lemma 3.5.3. It bounds the Sobolev norms of Iπ3(x1⊗
x2) in terms of a certain norm ‖ · ‖U on the space of π1 and π2, assuming
that all three representations are tempered.

For the rest of this section, we will assume that the local field k is
non-archimedean; the proof in the archimedean case is similar.

3.5.1. Suppose V is any unitary G-representation. We define24

‖x‖U =

(∫
k∈K
|〈kx, x〉|2

)1/4

,

where K is endowed with Haar probability measure.

Lemma. — ‖x‖U is a norm.

Proof. — Let v 7→ vK be the averaging operator over K. Then ‖x‖2
U =

‖(x⊗ x)K‖V⊗V . Now, Cauchy-Schwarz demonstrates that

‖(x⊗ y)K‖2
V⊗V 6 ‖(x⊗ x)K‖V⊗V ‖(y ⊗ y)K‖V⊗V . (3.33)

Since (x+ y)⊗ (x+ y) = x⊗ x+ x⊗ y + y ⊗ x+ y ⊗ y, we conclude. ut

Lemma. — There exists d < d′ < 0 so that

SVd 6 ‖ · ‖U 6 SVd′

on any unitary representation.

We omit the proof, for this is never used in the present paper.

Lemma. — Suppose g ∈ G; then ‖gx‖U 6 C(g)‖x‖U , where C(g) is a
continuous function of g; we may take C = [KgK : K]1/4.

24 If K were a compact abelian group and x ∈ L2(K), this coincides with the Gowers U4-norm.



58 PHILIPPE MICHEL, AKSHAY VENKATESH

Proof. — Write U = gKg−1∩K; we equip it with the restriction of the
measure from K. Then

∫
U
|〈ugx, gx〉|2 6 ‖x‖4

U . Thus

‖(gx⊗ gx)U‖2 6 [K : U ]‖x‖4
U , (3.34)

where, once again, w 7→ wU denotes the projection onto U -invariants. Clearly,
‖(gx ⊗ gx)K‖ 6 ‖(gx ⊗ gx)U‖ (averaging decreases norms!) and we are done
since [K : U ] = [KgK : K]. ut

3.5.2. Lemma. — For x1, x2 ∈ π1, π2 and for any d > 0 we have:

Sπ3
d (Iπ3(x1 ⊗ x2))�d Sπ1

d′ (x1)Sπ2

d′ (x2). (3.35)

where d′ depend on d only.

Proof. — We have seen after (3.26) that there exists an absolute d0 so
that

〈Iπ3(x1 ⊗ x2), x3〉 �
3∏
i=1

Sπid0
(xi), (3.36)

which shows, in particular, that Sπ3
−d0

(Iπ3) is bounded by a quantity as in
the right-hand side of (3.35). However, we wish the same result where −d0

is replaced by an arbitrary positive quantity. To establish this, observe first
that, by equivariance, that xi ∈ πi[m] =⇒ Iπ3(x1 ⊗ x2) ∈ π3[m]. It follows,
then, that a bound of the form (3.35) is true when x1 ∈ π1[j], x2 ∈ π2[k] for
any j, k. Now apply (2.7) (twice: first fix x1, and then fix x2) to conclude
the same result for arbitrary x1, x2. ut

3.5.3. Lemma. — Suppose πi are all tempered. For any η > 0, set
Bη = {g ∈ G : |Ξ(g)| > η}. Then there exists an absolute constant d0 > 0
(independent of k) so that:

Sπ3
−d0

(Iπ3(x1 ⊗ x2))�ε (volBη)
ε‖x1‖U ‖x2‖U + η1−εSπ1(x1)Sπ2(x2)

The reader should ignore the second term at a first reading; the content
is that Iπ3(x1 ⊗ x2) is bounded “up to εs” by ‖x1‖U |‖x2‖U .

Proof. — It is sufficient to show that there exists n > 0 so that, when-
ever x3 is invariant under an open compact subgroup U ⊂ K, |L(x1, x2, x3)| 6
[K : U ]n · RHS, where RHS is the right-hand side of the stated bound.

We endow both U and K with Haar probability measure. By a mod-
ification of (3.33), ‖(x1 ⊗ x2)U‖2 6 [K : U ]‖x1‖2

U ‖x2‖2
U . Writing

∏
i〈gxi, xi〉

as
〈g(x1 ⊗ x2)U , (x1 ⊗ x2)U〉〈gx3, x3〉,
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we deduce from bounds on matrix coefficients (see §2.5.1, esp. footnote):

∏
i

〈gxi, xi〉 6

{
Ξ(g)2[K : U ]2‖x1‖2

U ‖x2‖2
U ‖x3‖2,

Ξ(g)3
∏

i Sπi(xi)2,

To analyze |L(x1, x2, x3)|, we split the g-integral into Bη and its complement,
applying the former bound on Bη and the latter on its complement. This
leads to the stated bound; the bounds on Ξ(g) are obtained using only the
fact that ∫

g∈G
|Ξ(g)|2+ε �ε 1.

Remark. — When π3 is not necessarily tempered, an analysis of the
prior argument shows that, if xi are invariant by subgroups Ui, then |L(x1, x2, x3)|
is bounded above by

[K : U3]qmθ/2‖x1‖U ‖x2‖U ‖x3‖+
∏
i

[K : Ui]
1/2q(θ−1/2)(m+1)‖x1‖‖x2‖‖x3‖ (3.37)

3.6. Choice of test vectors in the trilinear form.

In this section, we estimate L and Iπ3 for specifically chosen test vec-
tors.

3.6.1. Proposition. — Let π1, π2 be the two generic unitary representa-
tions of GL2(k). Suppose that π3 is the principal series representation 1�χ3,
where χ−1

3 is the product of central characters of π1, π2.
Write the analytic conductors Ci = C(πi). Then, for any ε > 0, there

exists vectors xi ∈ πi with the following properties:

- ‖xi‖ = 1 ;
- For d > 0, Sπ2

d (x2)�d,π2 1;
- For d > 0, Sπ3

d (x3)�d,π1,π2 1;

- ‖x3‖U �π2,ε C
−1/4+ε
1 ;

- |L(x1, x2, x3)| �π2,ε C
−1/2−ε
1 ;

- If k is non-archimedean and all the πi are unramified, we may take
x1, x2, x3 to be the new vectors. In this case,

|L(x1, x2, x3)|2∏
‖xi‖2

= ζk(2)2L(π1 ⊗ π2 ⊗ π3,
1
2
)∏

i L(1, πi,Ad)
.

The rest of this section indicates the choice of test vector and the proof of
the assertions. The unramified case has already been noted.
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3.6.2. Case of k nonarchimedean. — Write f to be the larger of the
valuations of the conductors of π1, π2. We set:

1. x1 ∈ π1 to be the new vector in the Whittaker model W(π1, ψ),
normalized to have norm 1;

2. x2 ∈ π2 to be the new vector in the Whittaker model W(π2, ψ),
normalized to have norm 1;

3. x3 ∈ π3 to be the vector in the principal series representation cor-
responding to the function f3 ∈ I3 of norm 1 which upon restriction to K,
is supported on the compact subgroup K0[f ], and is a K0[f ]-eigenvector:
explicitly

f3|K :

(
a b
c d

)
7→ vol(K0[f ])−1/2χ3(d)1K0[f ]. (3.38)

The ratio |W (1)|
‖W‖ , when W is the new vector, is well-known (e.g. [66, §7]),

and in particular is absolutely bounded above and below at nonarchimedean
places; the assertion on Sπidi (xi) (i = 2, 3) follows from the fact that xi is
invariant under K[fi], with fi the conductor of πi.

Any K-translate of x3 is either orthogonal or proportional to x3, and
therefore

‖x3‖U = vol(K0[f ])1/4 �π2 C
−1/4
1 .

The lower bound for L follows from (3.28) taking into account that the
function k 7→ W1(a(y)k)W2(a(y)k)f3(k) is supported on K0[f ] and is K0[f ]-
invariant:

L(x1, x2, x3) =

∫
K

∫
k×
W1(a(y)k)W2(a(y)k)f3(k)|y|−1/2d×ydk

= vol(K0[f ])1/2

∫
k×
W1(a(y))W2(a(y))|y|−1/2d×y � C

−1/2
1

Thus in the non-archimedean case, the proposition is valid with ε = 0.

3.6.3. Case of k archimedean: the tempered case. — We assume that
π2 is tempered. Let ϕ be a smooth function on k×, with ϕ(1) = 1, which
is supported in a fixed compact neighbourhood of the identity and so that∫
|ϕ|2d×y = 1 and

∫
|ϕ|2|y|−1/2d×y = 1. Fix δ,M > 0; later, we will choose δ

to be “small”, to an extent depending on the parameter ε chosen in Propo-
sition 3.6.1, whereas M will be a “large” but absolute constant.

We set

C := CM
2 max(C1, C2)1+δ. (3.39)
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Intuitively, the reader should think of C as being “a tiny bit larger than
C1.” It will be convenient to define

KC := {g ∈ K : |g − k| 6 C−1 for some k ∈ K ∩B} (3.40)

where |g − k| simply denotes the largest absolute value of any matrix entry
of g − k. Thus KC is a small neighbourhood of K ∩ B whose volume, with
respect to the Haar measure on K, is � C−1.

If C is large enough, a matrix g =

(
a b
c d

)
∈ K belongs to KC iff

|c| 6 C−1; indeed, if this is so, |b| = |c| and |a| = |d| =
√

1− |c|2, from
where we see that |g−k| 6 C−1, where k is the diagonal matrix with entries
a/|a|, d/|d|.

The vectors x1, x2, x3 are as follows:

1. x1 ∈ π1 is y 7→ ϕ(y) in the Kirillov model K (π1, ψ): W1(a(y)) =
ϕ(y) in the Whittaker model.

2. x2 ∈ π2 is ϕ(y) in the Kirillov model K (π2, ψ): W2(a(y)) = ϕ(y) in
the Whittaker model.

3. We give an explicit construction of x3 ∈ π3 below: for the moment
it is sufficient to say that correspond to a function f3 ∈ I3 which upon
restriction to K is a smooth bump function around K ∩ B, supported in
KC .
We advise the reader to skip the details of the explicit construction below;
the properties just mentioned are all that is needed to follow the proof.

3.6.4. Definition. — (Construction of x3). Let φ be a (non-negative)
bump function on R, taking value 1 at zero, and supported in |x| 6 δ0. Set
Ψ3(x, y) = φ1(x)φ2(y), where

φ1(x) = φ(C|x|), φ2(y) = χ3(y).φ(|y| − 1). (3.41)

Then, for sufficiently small (absolute) δ0 > 0, the restriction to K of

f(g) = | det g|1/2
∫
k×
Ψ3((0, t)g)χ−1

3 (t)|t|d×t. (3.42)

is supported in KC, and has ‖f‖L2(K) ∼ C−1/2. We take f3 = f
‖f‖L2(K)

, and

x3 ∈ π3 the vector corresponding to f3.

Proof. — For g =

(
a b
c d

)
∈ K, we note that Ψ3(ct, dt) 6= 0 implies (for

sufficiently small δ0) that |dt| > (9/10)2 so |t| > (9/10)2 (since |d| 6 1) and
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then |c| � C−1. From this we deduce – for sufficiently values of δ0 – that
f3|K is supported in KC .

Moreover, f(g) = ζk(1)χ3(d)
∫
t
φ(C|ct|)φ(|dt|−1)dt. From this expression,

it is easy to verify ‖f‖L2(K) ∼ C−1/2; later on, we shall also use the fact that,
at least if M is sufficiently large,

|
∫
KC
f(k)| > 1

2

∫
KC
|f(k)|dk � C−1. (3.43)

The point in this inequality is that ω(d) remains close to 1 so long as g ∈
KC . It follows that corresponding inequalities hold for f3, but with the last
expression replaced by C−1/2. ut

We remark for later usage that, if v is nonarchimedean and we take

φ1 = vol(K0[f ])−1/21$f o, φ2 = ω−1.1o× , (3.44)

then the function f3 defined by (3.42) coincides with that defined in (3.38).
25

The assertions concerning ‖x1‖, ‖x2‖ are immediate; the assertions con-
cerning the Sobolev norms of x1, x2 follow from discussion of §3.2.5.

By (3.28), we have

L(x1, x2, x3) =

∫
K

`(k.W1, k.W2)f3(k)dk (3.45)

where `(W,W ′) denote the (Borel-equivariant) functional on W(π1, ψ)⊗W(π2, ψ)
given by

`(W,W ′) :=

∫
y∈k×

W (a(y))W ′(a(y))|y|−1/2d×y.

Write

`(k.W1, k.W2) = `(W1,W2) + `(W1, k.W2 −W2)

+ `(k.W1 −W1,W2) + `(k.W1 −W1, k.W2 −W2)

We need to bound the terms only for k ∈ KC ; they are individually
bounded thus:

25 By construction, the integral belongs to I3 so it is sufficient to check the equality for g =

(
a b
c d

)
∈ K.

In that case the right hand side equals ∫
k×

Ψ3(ct, dt)χ−1
3 (t)|t|d×t.

Note that max(|ct|, |dt|) = |t| since g ∈ K; so the integrand is nonvanishing only when |t| = 1. In that case it

is nonvanishing only if d ∈ o× and c ∈ $fo, in which case the integral equals vol(K0[f ])−1/2χ3(d) proving
our claim.
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1. We have set things up so that `(W1,W2) > 0.9;
2. By Cauchy-Schwarz and (3.19)26,

|`(W1, k.W2 −W2)| � ‖W1‖‖k.W2 −W2‖
� ‖W1‖C−1/ deg(k)C

1/deg(k)
2

�π2 C
−1/ deg(k).

3. Similarly we have |`(k.W1 −W1,W2)| � ‖W2‖C−1/ deg(k)C
1/deg(k)
1 .

4. As for the last term: set

W (y) = (k.W1 −W1)(a(y)), W ′(y) = (k.W2 −W2)(a(y)).

Given ε > 0 small enough, we have, since π2 is tempered, by Proposition
3.2.3,∣∣∫ W (y)W ′(y)|y|−1/2d×y

∣∣ 6 ( ∫ |W (y)|2|y|−εd×y
)1/2( ∫ |W ′(y)|2|y|−1+εd×y

)1/2

� Sπ2(W ′)
(
‖W‖+ ‖W‖1−O(ε)Sπ1(W )O(ε)

)
� (C1/C)(1−dε)/deg(k)Cd′ε

1

for some d′ > 0. Here, to bound
∫
|W (y)|2|y|−εd×y, we split into |y| > 1,

where the bound ‖W‖ suffices, and |y| 6 1, which gives – by Proposi-
tion 3.2.3 and interpolation – a term ‖W‖1−O(ε)Sπ1(W )O(ε); we also used
Sπ2(W ′)�π2 1, as well as (3.19).

It follows by taking M large enough, we will have |`(k.W1, k.W2)−1| 6
1

100
for all k ∈ KC . On the other hand, |

∫
KC
f3(k)| > 1

2

∫
KC
|f3(k)|. Therefore,

L(x1, x2, x3)�
∣∣∣∣∫
KC
f3(k)

∣∣∣∣�π2 C
−1/2−δ/2
1 .

We choose δ 6 ε to conclude.

3.6.5. The non-tempered case. — If π2 is not tempered, then π2 is an
unramified principal series representation and may be written into the form
π0

2.|.|it with t ∈ R and C(π0
2) 6 9. Let W 0

2 be the K-invariant vector in
the Whittaker model of π0

2, normalized to have L2-norm 1. Since the set
of possibilities for the isomorphism class of π0

2 is precompact, there exists a
finite set F of smooth non-negative function ϕ, each compactly supported in
[1/2, 2] and with ϕi(1) = 1, with the following property:

26 using the fact that y 7→Wi(a(y)) is supported on a fixed compact set of k×
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For any such π2, there exists ϕ ∈ F such that:∫
k×
ϕi(y)W 0

2 (a(y))|y|−1/2d×y � 1

where the constant implied is absolute.
Let π0

2 be as above, and let ϕ ∈ F be the corresponding function. We
take x1 to be the vector corresponding to y 7→ ϕ(y)y−it in the Kirillov model
of π1; take x2 to be the vector corresponding to W2(y)|y|it in the Kirillov
model of π2 = π0

2| · |it. In the previous notations, we have by definition

`(W1,W2)� 1

Now for k ∈ supp(f3|K) we have by K-invariance of W2,

`(k.W1, k.W2) = `(W1,W2) + `(k.W1 −W1,W2)

Since the term `(kW1−W1,W2) is bounded by O((C1/C)1/ deg(k)Cm
2 ), for some

m > 1, we deduce, just as in the prior argument, that

L(x1, x2, x3)� C
−1/2−δ/2
1 .

ut

3.7. Bounds for trilinear functionals, II: computations

In this section we shall establish the following result, which can be re-
placed by the results of §3.5 under the assumption of the Ramanujan-Petersson
conjecture. Indeed central bound (3.46) follows from Lemma 3.5.3 if π is tem-
pered. The reader may, indeed, wish to omit the present section at a first
reading, because it contains “ugly” computations.

3.7.1. Proposition. — Let π be a generic unitary representation with
trivial central character.

Let π1, π2 be two generic unitary representations and ε > 0.
We denote the product of the central characters of π1, π2 by χ−1

3 . Let
π3 = 1� χ3 be the corresponding unitary principal series representation.

Let x3 ∈ π3 be the vector constructed in Proposition 3.6.1 – applied to
π1, π2, π3, ε; let x̃3 be the conjugate vector in in the contragredient representa-
tion π̃3 = 1� ω (i.e., the vector representing the functional v 7→ 〈v, x3〉).

- For π, πj all unramified, and x ∈ π the new vector of norm 1, one
has

|L(x, x3, x̃3)|2

‖x‖2‖x3‖2‖x̃3‖2
= ζk(2)2 L(π ⊗ π3 ⊗ π̃3,

1
2
)

L(π,Ad, 1)L(π3,Ad, 1)L(π̃3,Ad, 1)
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- In general, there is an absolute constant d0 > 0 (independent of k)
such that:

|L(x, x3, x̃3)|2 �ε,π2 C
d0ε
1 C(χ3)−1/2

(
C1

C(χ3)

)θ−1/2

Sπd0
(x). (x ∈ π). (3.46)

Averaging (3.46) over an orthogonal basis B(π) of π we obtain

Corollary. — With the previous notations, if π, πj are all unramified,
one has

‖Iπ(x3 ⊗ x̃3)‖2

‖x3‖2‖x̃3‖2
= ζk(2)2 L(π ⊗ π3 ⊗ π̃3,

1
2
)

L(π,Ad, 1)L(π3,Ad, 1)L(π̃3,Ad, 1)
.

In general, there is an absolute constant d0 > 0 (independent of k) so that:

Sπ−d0
(Iπ(x3 ⊗ x̃3))�ε,π2 C

d0ε
1 C(χ3)−1/2

(
C1

C(χ3)

)θ−1/2

. (3.47)

We observe that the proof is parallel in nonarchimedean and archimedean
cases, and we could indeed have given an integrated treatment. The unram-
ified assertion has already been discussed.

Proof. — Let C = CM
2 max(C1, C2)1+δ, where M, δ are as in the prior

section (cf. (3.39); recall that δ is chosen depending on ε, whereas M is
an absolute constant) when k is archimedean, and C = qf when k nonar-
chimedean; here f is the larger of the conductors of π1 and π2. Let KC be
as in (3.40) when v is archimedean, and K0[f ] when v is nonarchimedean.

We realize π and π3 in their respective Whittaker models, i.e., fix iso-
metric intertwiners between π, π3 and these models. Similarly, we realize π̃3

in the induced model Ĩ3. Denote by W, W3 and f̃3 the corresponding vec-
tors: W3 is obtained from f3 ∈ I3 by means of the interwiner (3.10). By
(3.28) and (3.43), we have

L(x, x3, x̃3) =

∫
K

∫
k×
W (a(y)κ)W3(a(y)κ)f̃3(κ)|y|−1/2d×ydκ

� C−1/2 max
κ∈KC

∫
k×
|W (a(y)κ)W3(a(y)κ)||y|−1/2d×y

� C−1/2Sπ(W ) max
κ∈KC

∫
k×
|W3(a(y)κ)||y|−θ(1 + |y|)−Nd×y,

where we applied Proposition 3.2.3 for the last inequality. In the nonar-
chimedean case, it suffices to specialize to κ = 1, since W3 is in any case
KC-invariant.
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We now apply the bounds of the next Lemma to conclude. Loosely
speaking, it says that the Whittaker function W3 is peaked near y ∼ C(χ3)/C
and it takes a value of size ∼ 1 there. The reason for this can already be
discerned from (3.10): W3(y) is, approximately, the Fourier transform of a
oscillating function restricted to an interval of the shape |y| > C. The “fre-
quency” of the function near the endpoints of this interval are approximately
C(χ3)/C. ut

3.7.2. Lemma. — Notations as above, for any M, ε > 0, one has

|W3(a(y)κ)| �M,ε,ψ,π2 (C/|y|)ε
(

C

C(χ3)

)1/2

|y|1/2(1 +
|y|

C(χ3)/C
)−M .

The proof of Lemma 3.7.2 is, regrettably, an explicit calculation. Let us
note that

η
1/2
k W3(g) = | det g|1/2

∫
k×

∫
k

Ψ3((t, tx)g)ψ(x)|t|χ−1
3 (t)dxd×t,

where Ψ is as in Definition 3.6.4 in the archimedean case; in particular
Ψ1(x, y) = φ1(x)φ2(y), where φi are as in (3.41); in the nonarchimedean case
the same is true with φi as in (3.44); finally ηk is as in (3.10), and is a

harmless constant. In particular η
1/2
k W3(a(y)) may be expressed as

y1/2

∫
k×

∫
k

φ1(tx)φ2(ty)ψ(x)|t|χ−1
3 (t)dxd×t.

Proof. — (of Lemma 3.7.2 – nonarchimedean case.) It suffices to check
κ = 1.

η
1/2
k W3(a(y)) = vol(K0[f ])−1/2|y|1/2

∫
k×

1$f o(yt)|t|d×t
∫
k

χ3(x)1o×(tx)ψ(x)dx

� C1/2|y|1/2
∫
|t||y|C61

|t|d×t
∫
|x||t|=1

χ3(x)ψ(x)dx.

If χ3 is ramified, this equals, in absolute value, �ψ (C/Cχ)1/2|y|1/2 when |y| 6
DC(χ3)

C
, where D = qdψ , and 0 otherwise (cf. §3.1.13). On the other hand, if

χ3 is unramified, it is zero for |y| > qD/C, and otherwise is bounded by
�ψ C

1/2|y|1/2 log(1 + qD
|y||C|). ut

Proof. — (of Lemma 3.7.2 – archimedean case.) We prove the bound
first when κ = Id as it is notationally more pleasant; we will comment on
the necessary modifications afterwards.



THE SUBCONVEXITY PROBLEM FOR GL2. 67

We have

W3(a(y)) � C1/2|y|1/2
∫
k×
d×tφ(C|t||y|)|t|

∫
k

χ3(x)φ(|tx| − 1)ψ(x)dx. (3.48)

Set G(t) = |t|
∫
k
χ3(x)φ(|tx| − 1)ψ(x)dx = χ−1

3 (t)
∫
k
φ(|x| − 1)ψ(x/t)χ3(x)dx;

then by Lemma 3.1.14, one has for any N > 0 and ε > 0

|G(t)| �N,ε,φ C(χ3)−1/2+ε min(C(χ3)|t|, 1 + |t|−1

C(χ3)
)N .

We deduce that |W3(a(y)| is bounded, up to an implicit constant, by

C1/2|y|1/2
∫
k×
φ(C|t||y|)G(t)d×t�ε,π2,N Cε

(
C

C(χ3

)1/2 |y|1/2−ε

(1 + |y|
C(χ3)/C

)N
. (3.49)

For general κ =

(
a b
c d

)
∈ KC , replace Ψ3 by the function κ.Ψ3 with

κ.Ψ3 : (x, y) 7→ Ψ3((x, y)κ) = Ψ3(ax+cy, bx+dy) = φ(C|ax+cy|)φ(|bx+dy|−1).

In (3.48) we then need to replace φ(C|t||y|)|t|
∫
k
χ3(x)φ(|tx| − 1)ψ(x)dx by

|t|
∫
k

φ(C|aty + ctx|)φ(|bty + dtx| − 1)ψ(x)χ3(x)dx

= χ−1
3 (t)

∫
k

φ(C|aty + cx|)φ(|bty + dx| − 1)ψ(x/t)χ3(x)dx

Observe that since |b|, |c| � C−1, |a| − 1, |d| − 1 � C−1, the integral is zero
unless |ty| � C−1, while the x variable satisfies

∣∣|x| − 1
∣∣ 6 δ0 +O(C−1).

The above proof carries on mutatis mutandis. At the first stage, we
compute the x-integral, noting that x 7→ φ(C|aty+cx|)φ(|bty+dx|−1) satisfies
similar smoothness bounds to φ(|x|− 1), since c|C| � 1. Then (3.49) uses in
addition only the fact that we may restrict to |ty| � C−1, and so also goes
through. ut

4. Integral representations of L-functions: global computations.

We now turn to global aspects of the analysis of standard L-functions
on GL(2) (§4.2) and of the triple product L-function (§4.4).
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4.1. Notation

4.1.1. Subgroups. — Henceforth F is a number field, A := AF and we
often denote |.| for |.|A. For G = GL2 or PGL2, we set XG = G(F )\G(A).
We will often write simply X for XPGL2 .

For the various usual subgroups of G we adopt the notations and parametriza-
tions of §3.1.4. We denote by K the usual maximal open compact subgroup
of G(A).

We put H := A(A) = a(A×) and

H(1) = A(A(1)) = {a(y) : y ∈ A× : |y|A = 1} ⊂ H.

H and H(1) are closed, non-compact subgroups of GL2(A). By an abuse of
notation, we regard them as closed, non-compact subgroups of PGL2(A). We
let Y be the H-orbit of the identity coset in XPGL2 . Then Y carries a H-
invariant measure of infinite volume.

4.1.2. Measures. — We adopt on each of the groups the product of
those measures specified in §3.1.5.

Although not strictly necessary, it is a useful check to be aware of the
relation with a Tamagawa measure. A routine computation shows that, for
the measures on PGL2,

dg = (discF )−1ξF (2)dτg, (4.1)

where dτg is the Tamagawa measure. In particular, the volume of the quo-
tient X is 2ξF (2)(discF )1/2.

4.1.3. Additive characters and Fourier expansion. — Let ψ = eF =
⊗vψv be the non-trivial additive character of A/F given as eF (.) = eQ(trF/Q(.))
with eQ the unique additive character of A whose restriction to R coincide
with e2πix.

For f(g) a function on XGL2 , we denote its constant term fN and Whit-
taker function Wf by

fN(g) :=

∫
A/F

f(n(x)g)dx, Wf (g) =

∫
A/F

ψ(x)f(n(x)g)dx (4.2)

and one has the Fourier expansion

f(g) = fN(g) +
∑
y∈F×

Wf (a(y)g). (4.3)
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4.1.4. Representations. — In this section, π will be a standard auto-
morphic representation on GL(2), and C(π) will be its analytic conductor,
i.e. if π = ⊗πv, then C(π) =

∏
v C(πv), the right-hand quantities as in §3.1.8.

If π is such, then π carries a canonical inner product, and we shall always
regard it as a unitary representation with respect to this inner product; we
fix moreover an inner product on each πv compatibly with this choice.

Therefore, if we say, “let f = ⊗fv ∈ π = ⊗πv,” we always have

〈f, f〉 =
∏
v

〈fv, fv〉.

Remark. — Here is a note of warning in connection with this terminol-
ogy. Suppose π = ⊗πv is a standard automorphic representation. The map
f 7→ Wf intertwines π with ⊗vW(πv). This map is not an isometry when π
is endowed with the canonical inner product, and each Whittaker model is
endowed with the norm (3.8). See §2.2.2.

4.1.5. Infinite product notation. — We denote by Λ(π, s) resp. L(π, s)
the completed L-function of π, resp. the L-function omitting archimedean
factors.

Let us adopt the following notational conventions, to be held in force
through the rest of the paper:

- First of all, if π is an automorphic representation, we shall under-
stand the notation A �π B to mean “there exists absolute constants a, b
so that |A| 6 aC(π)b|B|.

- We continue with the already established convention: if we write
|`(f)| � S(f), we mean that there exists a constant d, depending only on
[F : Q], so that |`(f)| � Sd(f).

- (Regularizing products over places.) Suppose that Λ1, Λ2(s) are (com-
pleted) global L-function with local factors L1v(s), L2v(s); let s0 be so that
L1v(s0) 6= 0 and L2v(s0) 6= 0 for all v, and so that Λ1 is holomorphic at
s0; and suppose that Ev is a function on places of F with the property
that Ev = L1v(s0)/L2v(s0) for almost all v.
Put Λ∗(s0) to be Λ1(s0)/Λ∗2(s0), where Λ∗2(s0) is the first nonvanishing
Laurent coefficient of Λ2 at s = s0. In particular, Λ∗(s0) = Λ1(s0)/Λ2(s0)
if Λ2 is holomorphic and nonvanishing at s = s0; we define LS,∗(s0) in the
same way, omitting the factors at v ∈ S. We shall then write:

∗∏
v

Ev
def
= Λ∗(s0)

∏
v

Ev
L1v(s0)/L2v(s0)

= LS,∗(s)
∏
v∈S

Ev
∏
v/∈S

Ev
L1v(s0)/L2v(s0)

.
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where the second equality holds for any finite set of places S; we shall
often use it with S the set of all archimedean places.

4.1.6. Eisenstein series. — Given two characters χ+, χ− of F×\A×
whose product is unitary, we denote by I(χ+, χ−) or χ+ � χ− the represen-
tation of GL2(A) unitarily induced from the corresponding representation on
B(A): the L2-space of functions f on GL2(A) such that

f(

(
a b
0 d

)
g) = |a/d|1/2A χ+(a)χ−(d)f(g), 〈f, f〉 =

∫
K

|f(k)|2dk.

Given f in such a space, we denote by E(f) = Eis(f) the corresponding
Eisenstein series (defined by analytic continuation, in general), i.e.

Eis(f) :=
∑

B(F )\GL2(F )

f(γg).

For s a complex parameter and π = I(χ+, χ−) we set

πs = π(s) = I(χ+|.|sA, χ−|.|−sA ) (4.4)

and for f ∈ π we define fs = f(s) to be the unique function in π(s) whose
restriction to K coincide with f .

4.1.7. Fourier coefficients of Eisenstein series. — Given an Eisenstein
series, Eis(f), its constant term is given by:

Eis(f)N(g) = f(g) +

∫
A

f(wn(x)g)dx (4.5)

The Eisenstein series has a pole at the point χ+/χ− = | · |A coming
from its constant term; the residue, with respect to the coordinate s as in
(4.4), is given by

∗∏
v

∫
fv(wn(x))dx =

1

2
(discF )−1/2 ξ

∗
F (1)

ξF (2)

∫
k∈K

f(k); (4.6)

with ξ∗F (1) := ress=1ξF (s); see (3.2) and discussion thereafter.
The other Fourier coefficients of Eisenstein series are determined by the

Whittaker function:

WEis(f)(g) =

∫
F\A

f(wn(x)g)ψ(x)dx =
∏
v

Wf,v,(4.7)

Wf,v(g) =

∫
x∈Fv

fv(wn(x)g)ψv(x)dx.
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Wf,v(a(y)) = |y|1/2χ−(y)

∫
x∈Fv

fv(wn(x))ψv(xy)dx.

Let us recall that in §2.2.1, we have discussed two possible norms on
Eisenstein series: the Eisenstein norm 〈Eis(f),Eis(f)〉Eis = 〈f, f〉 and the
canonical norm 〈Eis(f),Eis(f)〉can formed out of the inner products of the
local Whittaker functions Wf,v (cf. (2.5) and (2.3)). In view of §3.1.10 and
the remark in §3.1.6, we have the following relation – if Λ(π,Ad, 1) has a

simple pole – (recall that ηkv = q
−dψv/2
v ζv(1)2/ζv(2))

〈Eis(f),Eis(f)〉can = Λ∗(π,Ad, 1)
2ξF (2)(discF )1/2

ξ∗F (1)

∏
v

〈fv, fv〉ηkv
ζv(1)Lv(π,Ad, 1)/ζv(2)

= 2ξF (2)〈f, f〉 = 2ξF (2)〈Eis(f),Eis(f)〉Eis.(4.8)

4.1.8. The intertwiner operator. — The map M : f 7→
∫
x∈A f(wn(x)g)dx

that occurs in (4.5) is the standard intertwining operator. It is an isometry
on the “unitary axis,” i.e. when the characters χ± are unitary. We shall need
at several points to study its analytic behavior off the analytic axis.

M =
Λ(χ+/χ−, 0)

ε(χ+/χ−, 0)Λ(χ+/χ−, 1)

∏
M̄v, M̄v :=

ε(χ+
v /χ

−
v , ψv, 0)L(χ+

v /χ
−
v , 1)

L(χ+
v /χ

−
v , 0)

Mv.

Here Mv : I(χ+
v , χ

−
v ) 7→ I(χ−v , χ

+
v ), f 7→

∫
x∈Fv f(wn(x)g)dx; the operator M̄v

has the advantage of being holomorphic in χ+
v , χ

−
v . In view of the functional

equation, the global correction factor Λ(χ+/χ−,0)
ε(χ+/χ−,1)Λ(χ+/χ−,1)

has absolute value 1

(it is the “scattering matrix”) although it may not be equal to 1.
By §3.1.6, M̄v takes the spherical vector with value 1 on K, to the

spherical vector with value 1 on K, for almost all v. More generally, it pre-
serves norms up to a scalar depending only on ψ: [26, Section 4].

Lemma. — Let fv ∈ I(χ+
v , χ

−
v ). Suppose that |s| 6 δ0, and the deforma-

tion fv,s (s ∈ C) is as in §3.1.11. Then there exists d so that:

sup
k∈K
|M̄vfv,s(k)| � SId (f),

∫
k∈K
|M̄vfv,s(k)|2 � Sdδ0(fv)

2. (4.9)

Proof. — Because of (3.11), and with notation as contained there,
M̄vf(1) is proportional to ¯̀χ′(Wf ), where χ′ = α−1/2/χ−, and where ¯̀χ is

the “normalized” functional
∫
W (y)χ(y)d×y

L(1/2,π⊗χ)
, for W ∈ W(π, ψ). More precisely,

M̄vf(1) = Υ ¯̀χ′(f), where

Υ = ζk(1)−1η
1/2
k

Lv(1, χ
+
v /χ

−
v )ε(0, ψv, χ

+
v /χ

−
v )ζv(1)

ε(α, ψ, 0)
.
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Applying the local functional equation shows that M̄vfv(1) is given by:

¯̀χ′′(Wf )
Υ

ε(π, χ′, 1/2)
, χ′′ = α1/2/χ+.

The local bound supk∈Kv |M̄vfs(k)| � SId0
(f), now follows from Proposi-

tion 3.2.3 together with the following observation: the smallest eigenvalue of
the local Laplacian ∆v on I(χ+

v , χ
−
v ) is bounded below by a positive power

of (Condv(χ
+) + Condv(χ

−)). This (a simpler form of Lemma 2.18) allows us
to absorb dependencies on χ± into the Sobolev norm.

To obtain the stated bound for
∫
k∈K |M̄vfv,s(k)|2, we interpolate, taking

into account the equality: ‖M̄vfv,s‖L2(Kv) �ψ ‖fv‖L2(Kv) whenever <(s) = 0.
This argument is analogous to the interpolation in the proof of Proposition
3.2.4. ut

We now give a global analogue of this statement:

4.1.9. Lemma. — Let f ∈ I(χ+, χ−). Suppose that |s| 6 δ0, and the
deformation fs (s ∈ C) is as in (4.4). Then there exists d so that

sup
k∈K
|Mfs(k)| � SId (f),

∫
k∈K
|Mfs(k)|2 � SIdδ0(f)2. (4.10)

Proof. — An application of (S1d) to the previous Lemma gives the first
statement. From this, it follows that

∫
k∈K |Mfs(k)|2dk is bounded by SId0

(f).

In order to deduce the second statement, we observe that
∫
k∈K |Mfs(k)|2dk =

‖f‖2
I when <(s) = 0, and then interpolate, as in the proof of Proposition

3.2.4. ut

4.1.10. The Eisenstein series at a singular parameter. — It will also
be of interest to consider the Eisenstein series associated to χ+ = χ− = 1.
At this point, the map f 7→ (g 7→

∫
x∈A f(wn(x)g)dx) is the negative of the

identity map, and accordingly the Eisenstein intertwiner vanishes to order
one. Write Eis∗ for the (normalized) intertwiner from I(1, 1) to C∞(X), given
by:

f 7→ ξF (1 + 2s)Eis(fs)|s=0.

For f =
∏

v fv factorizable, let us define 〈Eis∗(f),Eis∗(f)〉can via (2.5) and
(2.3).
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Then, if f ∈ I(1, 1), then the constant term

(4.11) Eis∗(f)N(a(y)g)

= −1

2
ξ∗F (1)

d

ds
|s=0

(∫
x∈A
|y|1/2+sfs(wn(x)g)dx+ |y|1/2−sfs(g)

)
=

1

2
ξ∗F (1)(2f(g)|y|1/2 log y −M∗f(g)|y|1/2)

where M∗f is the derivative, at s = 0, of fs +
∫
x∈A fs(wn(x)g)dx; as usual,

this needs to be interpreted by a process of analytic continuation.
Trivial bounds on M∗ follow from bounds on intertwining operators in

§4.1.8 (in particular, one may bound the derivative of an analytic function
by bounding its value on a small circle around the point of interest). This
shows that, for every ϕ belonging to the space of Eis∗(I(1, 1)), we have

ϕN(a(y)g)� |y|1/2 log |y|Sπ(ϕ), (4.12)

Now take f = f 0 to be the spherical vector in I(1, 1), normalized so that
f 0|K = 1. The function M∗f 0 is continuous, and thus bounded on compact
sets; it follows from (4.11) that there exists X0 so that

Eis∗(f 0)(x)� ht(x) log ht(x), ht(x) > X0. (4.13)

4.2. Hecke integrals on PGL2

In this section we shall study the Hecke integral for the standard L-
function on GL2, and we shall give some bounds on the Hecke integral of a
translate of a given vector, using the method described in §2.5.2, Remark.

4.2.1. The Hecke-Jacquet-Langlands integral. — We recall in this sec-
tion the integral representation for the standard L-function on GL2, following
Jacquet and Langlands. Let χ be a character of A×/F×; the integral

`χ(ϕ) :=

∫
A×/F×

(ϕ− ϕN)(a(y))χ(y)d×y (4.14)

defines a functional on the space of any standard generic automorphic rep-
resentation π. Indeed, it is absolutely convergent if π is cuspidal, and, in
general, can be interpreted by analytic continuation in the χ variable.

It was observed by Hecke, and generalized by Jacquet and Langlands,
that the period `χ is very closely related to the standard L-function: if ϕ =
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⊗ϕv is a pure tensor in π, and we factorize the associated Whittaker function
(see (4.2)) as Wϕ =

∏
vWϕ,v , one has:

`χ(ϕ) =
∗∏
v

`χv(Wϕ,v)

(
= Λ(π ⊗ χ, 1/2)

∏
v

`χv(Wϕ,v)

L(πv ⊗ χv, 1/2)

)
, (4.15)

for `χv(Wϕ,v) the local Hecke functionals defined in §3.3. The verification of
(4.15) is “unfolding.” It is valid for π Eisenstein, even in the singular case.

We will use also use the following “canonically normalized” expression,
given in terms of matrix coefficients and which follows from §3.25 and §2.2.2)
(cf. the Remark in §2.5.2): for χ a unitary character, and π standard,

|`χ(ϕ)|2

〈ϕ, ϕ〉can
=

(
2ξF (2)(discF )1/2

ξ∗F (1)

)−1 ∗∏
v

hχ(ϕv)

〈ϕv, ϕv〉
(4.16)

where almost all local factors in the last product are equal to |Lv(π⊗χ,1/2)|2
ζv(1)Lv(π,Ad,1)/ζv(2)

.

Again, this formula is valid for π Eisenstein, even at singular points; of
course, at singular points, the regularization implicit in

∏∗ involves taking a
higher residue of L(s, π,Ad) at s = 1.

It should be noted that the right-hand sides of (4.16) and (4.15) make
sense for all χ, even when the left-hand sides must be interpreted by analytic
continuation.

4.2.2. Bounds for the Hecke integral of the translate of a function. —

Lemma. — Let π be a generic automorphic representation of PGL2. For
ϕ ∈ π, any g ∈ PGL2(A), and unitary χ: there is an absolute constant d so
that

|`χ(g.ϕ)| �π,χ disc(Y g)−
1−2θ

32 Sπd (ϕ),

Here disc(Y g) is the discriminant of the adelic torus orbit Y g as defined in
[21] – see below – and the unitary structure on π is the canonical norm.

The paper [21, 4.1–4.2] attaches to the adelic torus orbit Y g local and
global discriminants, denoted, respectively, as discv(Y g) and disc(Y g). Al-
though most of that paper deals with the case of adelic points of anisotropic
tori, the definition is perfectly applicable to the split adelic torus H. For our
purposes, it is enough to know that, for the special case g0 = n(T ), |T |A > 1
we have:

discv(Y g) � max(1, |T |2v), disc(Y g) �
∏
v

max(1, |T |2v) > |T |2A. (4.17)
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Remark. — The exponent −1−2θ
32

is certainly not best possible: it is
taken from the general computations of loc. cit., which are in no way optimal
for PGL2 (see for instance [15] for better bounds of similar integrals.) What
is important to us, in this paper, is that this exponent is negative.

Proof. — By (4.16) and (2.8), we have:

|`χv(gv · ϕv)|2 =

∫
F×v

〈a(y)g.ϕv, g.ϕv〉χv(y)d×y =

∫
F×v

〈g−1a(y)g.ϕv, ϕv〉χv(y)d×y

� Sπv(ϕv)2

∫
F×v

Ξv(g
−1a(y)g)1−2θd×y

� discv(Y g)−
1−2θ

16 Sπv(ϕv)2.

The bound in the last step is carried out, in a more general setting in
[21, Lemma 9.14], and we do not reproduce it here.

Write Lv = L(πv⊗χv, 1/2)/L(πv,Ad, 1)1/2. We are going to apply Prop-
erty (1d) of Sobolev norms to

∏
`′v, where `′v is the “normalized” functional

on πv so that |`′v|2 = |`χv |2
|Lv |2 . It enjoys the following properties:

1. For any place for which ϕv ⊗ χv is spherical, |`′(ϕv)|2 = 〈ϕv, ϕv〉 =
Sπv0 (ϕv)

2.
2. There exists A, d0 so that, for any v, the operator norm of `′ w.r.t.

Sπvd0
is 6 A|Lv|−1discv(Y g)−

1−2θ
32 .

3. There exists an absolute constant C so that, for nonarchimedean
v, |Lv|−1 6 C.

Thus property (S1d) applied to `′ :=
∏

v `
′
v shows that, for ϕ ∈ π,

|`′(ϕ)|2

Sπd′(ϕ)2
�ε disc(Y g)−

1−2θ
16

+ε
∏
v|∞

|Lv|−2,

for some d > 0. Applying trivial or convexity bounds for all local factors or
L-functions, we arrive at:

|`χ(ϕ)|2

Sπ(ϕ)2
�π,χ,ε disc(Y g)−

1−2θ
16 ,

as required. ut
This Lemma admits the following mild refinement where we improve

the χ-dependence at the implicit cost of weakening the π-dependence:
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4.2.3. Lemma. — Notation as in the prior Lemma, for any N > 0,
there is d = d(N) so that

|`χ(g.ϕ)| �π (Cond(χ))−Ndisc(Y g)−
1−2θ

32 Sπd (ϕ),

Proof. — By (2.7), it suffices to prove such an assertion for ϕ ∈ π[m].
(One also verifies that the implicit dependence of A′ on A in (2.7) is inde-
pendent of π). The assertion for ϕ ∈ π[m] follows by integration by parts.
ut

4.3. Regularization

In this section, we define a regularization process to define integrals of
non-necessarily decaying functions on XPGL2 = PGL2(F )\PGL2(A). Such a
regularization was given by Zagier [72]; for our purposes, an alternate way
of defining it using convolution will be of use.

4.3.1. For motivational purposes, we consider first a toy example, namely,
the corresponding situation on R>0 (one could even consider the case of the
integers). We shall regard R>0 as a multiplicative group in what follows.

A finite function on R>0 is one whose translates, under the action of
the multiplicative translations:

τyf(x) = f(xy)

span a finite dimensional representation; equivalently, it is a linear combina-
tion of functions xα(log x)b, for α ∈ C and b ∈ N.

We call a finite function admissible if the exponent α = 0 never occurs.
A more intrinsic and useful way of formulating this is: f is admissible if
the span 〈τyf〉 of all multiplicative translates does not contain the trivial
representation of R>0.

Let V+ be the space of continuous functions on R>0 of rapid decay
as x → ∞ (i.e. |f(x)| �N |x|−N for all N); let V− be the space of rapid
decay as x→ 0; and let V0 = V+ ∩ V−. Let V be the space of all continuous
functions f on R>0 so that there exists admissible finite functions f1, f2 so
that f − f1 ∈ V+, f − f2 ∈ V−. Clearly V0 ⊂ V . The following Lemma is
well-known:

4.3.2. Lemma. — There exists a unique functional (the “regularized in-
tegral”) on V which extends integration f 7→

∫
f(x)dx

x
on V0, and is invariant

under multiplicative translation.
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This functional may be defined in multiple ways:

1. Given f ∈ V , we may find finite collections yi ∈ R>0, ci ∈ C so that
f ′ :=

∑
ciτyif ∈ V0, and so that

∑
ci 6= 0. We then define the regularized

integral of f to be
∫
f ′(x) dx

x∑
ci

.

2. Consider
∫ T

1/T
f(x)dx

x
; this has the form g(T ) + h(T ), where g(T ) is

an admissible finite function, and h(T ) has a limit as T →∞. We define
the integral to be limT→∞ h(T ).

3. Consider F+(w) =
∫∞

1
f(x)xw dx

x
; define similarly F−(w). The func-

tions F±(w) are convergent for ∓<(w) � 1; they extend to meromorphic
functions on the plane, and are holomorphic at w = 0. We define the
integral to be F+(0) + F−(0).

The regularized integral of any admissible finite function is zero. This
follows, without computation, because of invariance under multiplicative trans-
lation. Thus, if there exists finite function f0 so that f − f0 ∈ V0, then the
regularized integral of f equals

∫
(f − f0)(x)dx

x
.

The remarks of this section adapt without change to define a regularized
integral on A×/F×.

4.3.3. Given a function Φ on GL2(F )\GL2(A), with unitary central
character χ (i.e. which transform by χ under translation by Z(A)), we say
that Φ is of controlled increase if there exists a function

f : N(A)A(F )\GL2(A)→ C,

spanning a finite-dimensional space under the translation action of GL2(A),
and with central character χ, so that, for every N > 0

Φ

((
1 x
0 1

)(
y1 0
0 1

)
k

)
= f

((
y1 0
0 1

)
k

)
+O(|y1|−N) as |y1| → ∞. (4.18)

In other terms, the difference is of rapid decay. In more explicit terms, there
must exist a finite collection of functions χi : A×/F× → C (i ∈ I), each
finite under the left translation action of A×/F×, as well as a corresponding
collection of K-finite functions Ki : K → C, so that the left-hand side is
well-approximated by

∑
χi(y1)Ki(k).

A basic example to bear in mind is any sum or product of Eisenstein
series.

The expression f is uniquely determined. We denote it by Φ∗N ; it need
not coincide with the true constant term of Φ. The set of exponents of Φ
(or of Φ∗N) – denoted SΦ – is the set of characters of A×/F× which are
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(generalized) eigenvalues for the translation action of A×/F× on the space
spanned by Φ∗N and its translates. Of course if Φ∗N = 0 (Φ is of rapid decay)
we set SΦ = ∅.

4.3.4. Example. — If χ+ 6= χ−, the exponents of a (non-zero) Eisen-
stein series E ∈ Eis(I(χ+, χ−)) are {χ+|.|1/2, χ−|.|1/2}. If χ+ = χ− = χ the
same is true for E ∈ Eis∗(I(χ, χ)); the exponent χ|.|1/2 is now a generalized
eigenvalue, i.e., has multiplicity. If Es denote the Eisenstein series on the
modular group with eigenvalue 1/4− s2, the exponents of Es1Es2Es3 is the set
of characters | · |3/2+s, where s = ±s1 ± s2 ± s3.

In the sequel, we will identify the complex numbers C with a subset of

Â×/F× via z 7→ |.|z. For instance, given S ⊂ Â×/F×, we say that “1 ∈ S”
when S contains the character x 7→ |x|. We will also use an additive notation:
given two such subsets S1, S2 we denote by S1 + S2 the set of pairwise
products of the characters of S1 and S2. Of course S1 + ∅ = ∅.

The operation Φ 7→ Φ∗N is multiplicative: given two functions Φ1, Φ2 with
exponents S1, S2, (Φ1Φ2)∗ = Φ∗1,NΦ

∗
2,N and Φ1Φ2 has exponents in S1 +S2. Fi-

nally, the complex conjugate Φ has exponents in S̄ (i.e. the set of conjugates
of those characters in S).

The set of characters whose real part is 1/2 (the real part being defined

by |χ(.)| = |.|<(χ)
A ) will be called the unitary axis: this is the set of exponents

of the automorphic Eisenstein series.

4.3.5. Regularized integral and regularized innerproduct. — Let VS be
the vector space of smooth functions that are of controlled increase with
trivial central character and whose exponents belong to S; and V the union
of VS, where S is taken through all finite subsets of characters that do not
contain any character of square | · |2 (i.e., any quadratic twist of | · |).

Lemma. — There’s a unique PGL2(A)-invariant functional on V extend-
ing integration on L1(XPGL2).

Proof. — One definition, due to Zagier, is given as follows: let E =
Eis(Φ∗N) be the Eisenstein series induced from all exponents of Φ that are of
real part > 1/2 (or suitable derivatives thereof) and define∫ reg

XPGL2

Φ :=

∫
XPGL2

(Φ− E).

The right hand side makes sense, for Φ − E lies in L1. Since it is clear on
representation-theoretic grounds that the regularized integral of E must be
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zero (because the exponents of Φ do not contain 1), the uniqueness follows.
ut

As a corollary of the previous Lemma, we can define the regularized
inner product for Φ1, Φ2 of controlled increase with the same central character
and such that 1 /∈ S1 + S2:

〈Φ1, Φ2〉reg =

∫ reg

XPGL2

Φ1Φ2.

4.3.6. Regularization via convolution with measures. — Here is an al-
ternate definition that will be, in fact, more suited for our purposes. (It also
works better in higher rank.)

For every place v, we may choose a compactly supported measure µv
on PGL2(Fv) with the property that, for Φ ∈ VS, Φ ? µv ∈ L1. If

∫
µv 6= 0,

then Φ 7→
∫

(Φ?µv)∫
µv

defines a functional such as in the Lemma: this func-

tional is independent of v or µv, as we see by choosing a different place w
and measure µ′w, and noting that ?µv and ?µ′w commute. This functional is∏

v′ 6=v PGL2(Fv)-invariant; since v is arbitrary, it is PGL2(A)-invariant. Other
definitions utilize truncation or related ideas; the disadvantage of these is
that the PGL2(A)-invariance is less clear.

4.3.7. Explicit choice of a regularizing measure. — The following spe-
cial case will occur:

Let v be a finite place with a residue field of size qv. Suppose that Φ
is of controlled increase and unramified at v, and all χ ∈ SΦ have real part
1. Suppose that ϕ is a cusp form unramified at v.

Then one may choose a Kv-bi-invariant (signed) measure µv so that
Φ ? µv has rapid decay, so that the total mass of |µv| is at most 4|SΦ|, and

so that ϕ ? µv = λϕ, |λ| > (1 − 2qθv
qv+1

)|SΦ|. In other words, we may “kill the

growth of Φ whilst only wounding ϕ;” it should be noted that here the set
|SΦ| is counted “with multiplicity.”

Indeed, there exists a finite function f =
∑

χ∈SΦ fχ on N(A)A(F )\GL2(A)

so that Φ−f is rapidly decaying, as in (4.18). The standard Hecke operator
Tv := 1Kva($v)Kv acts on each fχ by a (generalized) eigenvalue λv(χ), satisfy-
ing qv + 1 > |λv| > qv − 1 in absolute value; on the other hand, Tv acts on ϕ
by an eigenvalue that is at most 2qθv .

The measure (1 − Tv
λv(χ)

) therefore annihilates fχ, and has total mass

(1 + qv+1
|λv(χ)|) ∈ [2, 4]. It acts on ϕ by an eigenvalue that is > 1 − 2qθv

qv+1
. Take

µv to be the convolution of these measures, for all χ ∈ SΦ.
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4.3.8. Regularized IP formula. — A simple form of the Plancherel for-
mula is the following: if Φ1, Φ2 are functions on XPGL2 with rapid decay then

〈Φ1, Φ2〉 =

∫
π∈P̂GL2

Aut
〈ΠπΦ1, ΠπΦ2〉dµP (π)

where Ππ denote the orthogonal projection on the space of π.
We describe now a version of that formula for functions Φ1, Φ2 on XPGL2

of controlled increase. Let π be a standard automorphic representation of
PGL2, and Φ ∈ VS. If S does not intersect the unitary axis and π is generic
(i.e. not equal to a quadratic character) then, for B(π) an orthonormal basis
of π, we set

ΠπΦ =
∑

ϕ∈B(π)

〈Φ, ϕ〉regϕ ∈ π. (4.19)

Likewise, we define similarly ΠπΦ for any π which is nongeneric (i.e. one-
dimensional), so long as S does not contain any exponent whose square is
|.|2.

Proposition. — Given Φ1 and Φ2 of controlled increase with exponents of
real part > 1/2. Let S1, S2 denote the respective sets of exponents . Suppose
that S1, S2 are disjoint and that S1 ∪ S2 ∪ S1 + S2 does not contain any
character whose square is |.|2, then:

〈Φ1, Φ2〉reg =

∫
π

〈ΠπΦ1, ΠπΦ2〉dµP (π) + 〈Φ1,E2〉reg + 〈E1, Φ2〉reg (4.20)

where Ππ is the regularized projection onto the space of automorphic π, and

Ei = Eis((Φi)
∗
N)

We will call the additional contribution, 〈Φ1,E2〉reg + 〈E1, Φ2〉reg , in the reg-
ularized Plancherel formula the degenerate contribution.

Remark. — If Φ1 is of rapid decay, the formula continues to hold with
〈E1, Φ2〉reg = 0

Proof. — Firstly our assumptions insure that all the terms of (4.20) are
well defined. Moreover since the exponents of Φ1 and Φ2 are > 1/2 and not
of the form χ.|.| with χ quadratic, the representations underlying Ei have no
subquotient isomorphic to a standard automorphic representation, and thus
ΠπEi = 0 for i = 1, 2 and all π. Similarly 〈E1,E2〉reg = 0 by our assumption



THE SUBCONVEXITY PROBLEM FOR GL2. 81

that S1, S2 are disjoint and have real parts larger than 1/2. So it is enough
to check, with Φ̄i = Φi − Ei, that

〈Φ̄1, Φ̄2〉reg =

∫
π

〈ΠπΦ̄1, ΠπΦ̄2〉dµP (π)

but then Φ̄i belongs to L2(XPGL2). ut

4.4. (Regularized) triple products.

In this section we establish the following: Suppose that πi are generic
standard automorphic representations, at least one of which is Eisenstein.
Then, for each factorizable vector ϕi = ⊗vϕi,v, we have:∣∣∫

X
ϕ1ϕ2ϕ3(g)dg

∣∣2
‖ϕ1‖2

can‖ϕ2‖2
can‖ϕ3‖2

can

=
1

8(discF )

∗∏
v

ζv(1)

ζv(2)3

|LW (ϕ1,v, ϕ2,v, ϕ3,v)|2∏3
i=1〈ϕi,v, ϕi,v〉

(4.21)

where the local factors are equal at almost all places, to

Lv :=
ζv(1)

ζv(2)

L(1
2
, π1 ⊗ π2 ⊗ π3)∏3
i=1 L(1,Ad, πi)

.

If all πi are Eisenstein, the integration on the left-hand side is to be under-
stood by regularization.

Remark. — Let us compare this result with that in [32]. Recall first
the relation dg = (discF )−1ξF (2)dτg between our measure and Tamagawa
measure. It follows that, if we replace dg by dτg, then (4.21) holds with

a factor 1
8

∏
v
ζv(1)
ζv(2)4 . In the work of [32], the ζv(1)/ζv(2)4 does not occur.

From this, we deduce – by summation through an orthogonal basis of
π1, with respect to the canonical norm – the following:

‖Ππ1(ϕ2ϕ3)‖2

‖ϕ2‖2
can‖ϕ3‖2

can

=
1

8
(discF )−1

∗∏
v

ζv(1)

ζv(2)3

‖Iπ1,v(ϕ2,v ⊗ ϕ3,v)‖2

〈ϕ2,v, ϕ2,v〉〈ϕ3,v, ϕ3,v〉
, (4.22)

with a.e. local factor equal to Lv above.
Before we embark on the proof, we note that it is sufficient – by a

continuity argument – to treat the case where no πi is a singular Eisenstein
series (i.e. of the form χ � χ.) For instance, let us consider the case when
π1, π2 are cuspidal, π3 = 1 � 1 and let us take a family ϕ3(t) ∈ π3(t), where
π3(t) = | · |t � | · |−t deforming ϕ3 (i.e., ϕ3(t) → ϕ3(0) pointwise as t → 0).
Then the left-hand side and right-hand side of (4.21), denoted L(t) and R(t)
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respectively, do not necessarily depend continuously on t when t = 0. How-
ever, both L∗(1,Ad, π3(t))L(t) and L∗(1,Ad, π3(t))R(t) extend to continuous
functions around t = 0, and are equal for t 6= 0. If we denote by LR their
common limit, then L(0) and R(0) are both given by L∗(1,Ad, π3)LR, and
are therefore equal.

4.4.1. Upper bounds. — Unfortunately, we shall use the beautiful for-
mula (4.21) only for upper bounds. We now explicate the bounds that are
derived from it.

The local factors of (4.22) are equal, to Lv := ζv(1)
ζv(2)3

L( 1
2
,π1⊗π2⊗π3)∏3

i=1 L(1,Ad,πi)
, at

almost all places. Observe that – taking into account bounds towards the
Ramanujan conjecture – Lv is absolutely bounded above and below at nonar-
chimedean v. Let S be the set of places where the local factor is not equal
to Lv, together with all archimedean places, and suppose we are supplied
with the estimate

Sπ3,v

−d (Iπ3,v(x1 ⊗ x2))2

〈x1, x1〉〈x2, x2〉
6 Bv

for v ∈ S. We conclude – inserting ∆−dA and applying the uniqueness of
trilinear functionals –

‖∆−dA Ππ1(ϕ2ϕ3)‖2

‖ϕ2‖2
can‖ϕ3‖2

can

� A−|S|
L(π1 ⊗ π2 ⊗ π3,

1
2
)∏3

i=1 L
∗(Ad, πi, 1)

∏
v∈S

Bv, (4.23)

where A is an absolute constant.
Let us note that: given d, there exists d′ so that:∫

π generic

Sd(Ππ(ϕ2ϕ3))dµP (π)� Sd′(ϕ2)Sd′(ϕ3) (4.24)

(the Sobolev norms are relative to the canonical inner product.) Note that
this is easy if π2, π3 are cuspidal; in that case it can be deduced directly
from (S3b). In the remaining cases, by virtue of the bounds of §2.6.5, it
suffices to check that for for π generic and any d > 0

Sd(Ππ(ϕ2ϕ3))� Sd′(ϕ2)Sd′(ϕ3) (4.25)

for some d′ depending on d only.
For this we appeal to the prior formula. The bound on Bv is supplied

by (3.5.2); we use also the fact that L(π ⊗ π2 ⊗ π3, 1/2) is bounded polyno-
mially in the C(πi) and that L(πi,Ad, 1) = C(πi)

o(1), i = 1, 2. This yields a
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bound as in (4.25), but only for factorizable ϕ2 = ⊗vϕ2,v, ϕ3 = ⊗vϕ3,v, and
where the bound on the right-hand side is instead

C(π1)AC(π2)A
∏
v

Sd(ϕ2,v)Sd(ϕ3,v).

We now apply (S1d) (see also Remark 2.6.3), together with (2.18) to ab-
sorb C(π1)A, C(π2)A into the Sobolev norms. Since we did not prove (2.18),
we draw attention to the fact that we do not need this last step in any
application; it would be fine to retain the factor C(π1)AC(π2)A.

4.4.2. The Rankin-Selberg integral. — In this section, we shall prove
the main results under the assumption that either π1 or π2 are cuspidal. In
this case, we may proceed by the usual Rankin-Selberg method.

We recall here the definition and basic properties of the Rankin/Selberg
integral: let πi, i = 1, 2, 3 be generic automorphic representations of GL2(A)
such that the product of their central characters χ1χ2χ3 is trivial. We assume
that π3 is Eisenstein, (say π3 = χ+

3 � χ
−
3 for a pair of characters satisfying

χ+
3 .χ

−
3 = χ3) and π1 is cuspidal.
The (absolutely convergent) integral

L(ϕ1, ϕ2, ϕ3) :=

∫
X

ϕ1ϕ2ϕ3(g)dg, ϕi ∈ Vπi , i = 1, . . . , 3,

defines a linear functional on the space of the representation π1 ⊗ π2 ⊗ π3.
If the ϕi are factorisable vectors, so that Wϕi =

∏
vWi,v and ϕ3 = Eis(f3),

with f3 = ⊗vf3,v the Rankin-Selberg unfolding method yield the following
factorization (if χ+

3 6= χ−3 )∫
X

ϕ1ϕ2ϕ3(g)dg =
∗∏
v

LRS,v(W1,v,W2,v, f3,v)

ζv(1)1/2
(4.26)

where (see (3.28))

LRS,v(W1,v,W2,v, f3,v)

ζv(1)1/2
=

∫
N(Fv)\PGL2(Fv)

W1,vW2,vf3,v(g)dg;

and, for almost every v,

LRS,v(W1,v,W2,v, f3,v)

W1,v(1)W2,v(1)f3,v(1)
= ζv(1)1/2Lv(π1 ⊗ π2 ⊗ χ+

3 , 1/2)

Lv(χ
+
3 /χ

−
3 , 1)

. (4.27)

Taking residue at the pole point χ+
3 = |.|1/2, ϕ2 = ϕ1, and using (4.6),

yields:

〈ϕ1, ϕ1〉X = 2(discF )1/2 ξF (2)

ξ∗F (1)

∗∏
v

〈W1,v,W1,v〉
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with 〈W1,v,W1,v〉 = ζk(1)L(π,Ad, 1)/ζk(2) for a.e. v. This proves (2.5) in the
cuspidal case.

From these remarks, (4.26), together with the definition of the canoni-
cal norm in §2.2.2, we deduce that:∣∣∫

X
ϕ1ϕ2ϕ3(g)dg

∣∣2
‖ϕ1‖2

can‖ϕ2‖2
can

=
1

4
(discF )−1

∗∏
v

ζv(1)

ζv(2)2

|LRS,v(W1,v,W2,v, f3,v)|2∏2
i=1〈Wi,v,Wi,v〉

(4.28)

with almost all factors equal to
L(π1,v⊗π2,v⊗π3,v ,

1
2

)

ζ−1
v (1)

∏3
i=1 L(πi,Ad,1)

. Note that, since π3 is

Eisenstein, the product would not converge without the inclusion of the ζv(1)
factor. Now (4.21) – in the case where one of π1, π2 is cuspidal, and π3 is
not isomorphic to 1 � 1 – follows, taking into account the equality between
LRS and LW that was already established in §3.4.1, together with the relation
(4.8) between

∏
v〈fv, fv〉 and the canonical norm on π3.

4.4.3. A regularized triple product. — We discuss now the situation
when all πi are Eisenstein, i.e.

πi = Eis(I(χ+
i , χ

−
i )), ϕi = Eis(fi),

we the χ±i are unitary. There are two equivalent definitions of the regularized
integral π1 ⊗ π2 ⊗ π3 → C; we define them and prove their equivalence:

Set

La : ϕ1 ⊗ ϕ2 ⊗ ϕ3 7→
∫ reg

XPGL2

ϕ1ϕ2ϕ3, (4.29)

and set Lc : π1 × π2 × π3 → C to be the value at s = 0 of the meromorphic
continuation (from <(s)� 1) of the following expression:

Ls : ϕ1 ⊗ ϕ2 ⊗ Eis(f3) 7→
∫
N(A)A(F )\PGL2(AF )

((ϕ1ϕ2)N − (ϕ1)N(ϕ2)N)f3(s)dg.

(4.30)
Note that the later expression is convergent for <s � 1 due to the rapid
decay of (ϕ1ϕ2)N − (ϕ1)N(ϕ2)N and unfolds to

s 7→
∫
N(A)A(A)\PGL2(A)

Wϕ1Wϕ2f3(s)dg (4.31)

which extends to an holomorphic function in a neighborhood of s = 0.

Lemma. — La = Lc. Moreover, if we write L for the common value of
these expressions,

|L(ϕ1, ϕ2, ϕ3)|2

‖ϕ1‖2
can‖ϕ2‖2

can‖ϕ3‖2
can

=
1

8
(discF )−1

∗∏
v

ζv(1)

ζv(2)3

|Lv(ϕ1,v, ϕ2,v, ϕ3,v)|2∏3
i=1〈ϕi,v, ϕi,v〉

(4.32)
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In this way, we have established (4.21) in the remaining case also.

Proof. — Considering the central characters χi, i = 1, 2, 3 fixed, the
pairs of characters (χ+

i , χ
−
i ) i = 1, 2, 3 such that χ+

i χ
−
i = χi will be referred

as the parameters. The set of parameters has the structure of a 3-dimensional
complex manifold with infinitely many connected components.

The reasoning by which we derived (4.21) in the “at least one πi cus-
pidal” case may be applied to Lc, at least on an open set of parameters
which intersects every connected component. By analytic continuation this
shows that |Lc|2 is indeed given by (4.21) everywhere.

To establish La = Lc, we consider the parameters in a given connected
component: in other words, assuming the characters χ±i , i = 1, 2, 3 unitary,
we consider any analytic deformation

ϕ1(s1)⊗ ϕ2(s2)⊗ ϕ3(s3) ∈ π1(s1)⊗ π2(s2)⊗ π3(s3)

indexed by the complex parameters (s1, s2, s3) ∈ C3. Clearly, the integral
(4.30) extends (via (4.31)) to an holomorphic function on an open subset
of C3 (containing (0, 0, 0))

(s1, s2, s3) 7→
∫
N(A)A(F )\PGL2(AF )

((ϕ1(s1)ϕ2(s2))N − (ϕ1(s1))N(ϕ2(s2))N)f3(s3)dg.

(4.33)
Let E(s1, s2) be the Eisenstein series formed out of the exponents of the
product Φ := ϕ1(s1).ϕ2(s2) which are of real part > 1/2. Explicitly: let SΦ
be the set of exponents of Φ; let Φ∗N,>1/2 be the part of Φ∗N that corresponds

to exponents χ ∈ SΦ with <(χ) > 1/2, and let E(s1, s2) := Eis(Φ∗N,>1/2), inter-

preted by analytic continuation if there exists χ ∈ SΦ with <(χ) ∈ (1/2, 1).
The map (s1, s2) 7→ E(s1, s2) defines a meromorphic function on an open

subset of C2; in an open subset of C3, one has∫ reg

XPGL2

ϕ1(s1)ϕ2(s2)ϕ3(s3) =

∫ reg

(ϕ1(s1)ϕ2(s2)− E(s1, s2))ϕ3(s3).

Considering Fourier expansions, one see that, given any N > 1, one has

ϕ1(s1)ϕ2(s2)(x)− E(s1, s2)(x)�N ht(x)−N , x ∈ XPGL2 , (4.34)

as long as <s1 �N <s2 �N 1.
Therefore, there is an open subset of C3 (in which s3 > 1/2) so that

the previous integral is absolutely convergent. It unfolds to∫
N(A)A(F )\PGL2(A)

((ϕ1(s1)ϕ2(s2))N − E(s1, s2)N)f3(s3)dg. (4.35)
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Indeed, (4.34) implies that the constant term ((ϕ1(s1)ϕ2(s2))N − E(s1, s2)N
is bounded, and from this one justifies the unfolding process.

The definitions (4.33) and (4.35) are a priori convergent in different
regions and they cannot be compared directly. Nonetheless, they coincide on
the intersection of their domains of holomorphic continuation. Indeed, there
exists a nonempty open set of parameters, intersecting every connected com-
ponent of either domain of holomorphic continuation, so that both (4.33) and
(4.35) can be defined by regularizing the integral over N(A)A(F )\PGL2(A);
this being done, their difference vanishes by invariance of the regularized in-
tegral.

To be more specific, we have, whenever |s1|+ |s2| 6 A, the bound

(ϕ(s1)ϕ(s2))N(a(y)k)� max(|y|, |y|−1)1+A,

with bounds of similar nature for ϕ(s1)Nϕ(s2)N and also E(s1, s2)N). There-
fore, if <(s3)�A 1, and we write out the integrals (4.35) and (4.33) in the
Iwasawa decomposition, we obtain functions of a(y)k which are integrable
in the region |y| 6 1. By contrast, in the region |y| > 1 they are asymp-
totic to sums of finite functions of y, i.e., functions whose translates span
a finite-dimensional vector space; these may be regularized as in §4.3.1, and
our conclusion follows. 27

ut

4.5. An example: F = Q at full level.

For F = Q, we have in particular ξ∗F (1) = discF = 1. Let us describe
some explicit consequences of the foregoing remarks. In particular, we elabo-
rate on the remark, contained in the introduction, that the “evident” identity
(1.2) gives rise to an identity between families of L-functions.

4.5.1. Let M be the set of even Maass cusp forms on SL2(Z)\H. Let
ξ(s) = π−s/2Γ (s/2)ζ(s). We shall use Λ to denote the completed L-function.
For ϕ ∈M define

ηϕ(x, y) = Λ(ϕ, 1/2 + x+ y)Λ(ϕ, 1/2 + x− y),

the corresponding definition for an Eisenstein series Es ∈ Eis(|.|s, |.|−s) is:

η(s, x, y) = ξ(1/2+s+x+y)ξ(1/2−s+x+y)ξ(1/2+s+x−y)ξ(1/2−s+x−y);

27 The reader may wish to consider the following simpler example of this reasoning: the characteristic
function of [0, 1] and the characteristic function of [1,∞] have Mellin transforms, respectively, 1

s
(s > 0) and

− 1
s

(s < 0). However, the fact that the meromorphic extensions are negative to each other can be deduced
without computation: the sum of f1 +f2 is the constant function, and its Mellin transform in any regularized
sense must be zero wherever defined, by invariance.
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The quotient of X by the maximal compact K may be identified with
the quotient of SL2(Z)\H, by z 7→ −z. The measure of the quotient is π

3
,

i.e. it arises from 2dx dy
y2 (but if we work on SL2(Z)\H, it is simply dx dy

y2 ).

For s ∈ C× let Es resp. E∗s be the result of applying the Eisenstein
intertwiner to the vector f ∈ | · |s � | · |−s whose restriction to K is 1 resp.
ξ(1+2s). Then Es and E∗s descend to functions on SL2(Z)\H; their constant
terms are

y1/2+s +
ξ(2s)

ξ(1 + 2s)
y1/2−s resp. ξ(1 + 2s)y1+2s + ξ(1− 2s)y1−2s.

For s ∈ iR×, we have by (4.8), 〈Es, Es〉can = 2ξ(2) = π/3 while

〈E∗s , E∗s 〉can = 2ξ(2)ξ(1 + 2s)ξ(1− 2s)→∞, s→ 0

By (4.21), if ψ ∈M or is an Eisenstein series,

〈E∗t1E
∗
t2
, ψ〉2 =

‖ψ‖2
can

2ξ(2)

ηψ(t1, t2)2

Λ∗(1,Ad, ψ)

For t1 6= ±t2 ∈ iR:

E∗t1E
∗
t2

=
∑

t′1=±t1,t′2=±t2

ξ(1 + 2t′1)ξ(1 + 2t′2)

ξ(2 + 2t′1 + 2t′2)
E1/2+t′1+t′2

(4.36)

+
∑
ϕ∈M

ηϕ(t1, t2)√
2ξ(2)L(Ad, ψ, 1)‖ϕ‖can

ϕ+
1

2π

∫ i∞

s=0

η(s, t1, t2)

ξ(1 + 2s)ξ(1− 2s)
E∗s

The first and third term on the right-hand side are, of course, inti-
mately related, through a process of contour-shifting; indeed, if we compute
the constant term of the right-hand side, one finds that (after shifting con-
tours) the residues of the third term match exactly, and indeed cancel, part
of the constant term of the first term.

It is interesting to substitute the point i (“period over a non-split torus
with class number one”). Noting that,

E∗s (i) = 2s+3/2ξQ(i)(1/2 + s),

the resulting formula relates ξQ(i)(1/2 + t1)ξQ(i)(1/2 + t2) with ξQ(i)(1 ± t1 ±
t2) and integrals over the critical line. The contribution of cusp forms may
be expressed in terms of Fourier coefficients of half-integral weight. In this
case, PARI/GP evaluates (with t1 = 0.9i, t2 = −1.3i) the noncuspidal part
of the right hand side to 0.10553970, whereas the left-hand side comes to
0.10554092.
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4.5.2. The associativity formula. — (4.36) expresses a “multiplication
table” for forms; this is of course constrained by the associativity of multipli-
cation. These constraints lead (among other things) to identities generalizing
that of Kuznetsov:

Set

f1(t1, t2, t3, t4) =
ξ(1 + 2t3)ξ(1 + 2t4)

ξ(2 + 2t3 + 2t4)
η(t1, t2, 1/2 + t3 + t4)

and take ∆(t1, t2, t3, t4) =
∑
±,±(f(t1, t2,±t3,±t4)+

∑
±,± f(t3, t4,±t1,±t2). Then

the function Σ defined by:

Σ =

∫ i∞

s=0

ds

2π

η(s, t1, t2)η(s, t3, t4)

ξ(1 + 2s)ξ(1− 2s)
+

3

π

∑
ϕ∈M

ηϕ(t1, t2)ηϕ(t3, t4)

Λ(ϕ,Ad, 1)
+∆(t1, t2, t3, t4)

is invariant under all permutations of coordinates. This is a spectral identity
between families of L-functions; a version was first discovered by Kuznetsov.

We tried to test this numerically. For (t1, t2, t3, t4) = (1.2i, 1.5i, 3i, 4i),
the difference between the noncuspidal parts of Σ(t1, t2, t3, t4)−Σ(t1, t3, t2, t4).
This is estimated by PARI/GP to be 8.29×10−11. (To get a sense of size, each
of the degenerate terms have size ∼ −0.005, and the difference between the
two degenerate terms has size ∼ 2.6 × 10−9.) Nonetheless, this quantity –
while very small – is in fact substantially larger than the contribution of the
first Maass form. It is quite possible that error in the numerical integration
is responsible for most of the difference.

4.5.3. The Motohashi formula. — One may also take the period of
(4.36) over a split torus, i.e., integrate

∫
y∈R+

Et1(a(y))Et2(a(y))d×y; the in-

tegral does not converge, but can be regularized as in §4.3.1.
The resulting formula relates, on the left-hand side,∫

ν∈iR
ξ(1/2 + t1 + ν)ξ(1/2− t1 + ν)ξ(1/2 + t2 + λ− ν)ξ(1/2− t2 + λ− ν)

to, on the right hand side,∑
M

Λ(1/2 + t1 + t2, ϕ)Λ(1/2 + t1 − t2, ϕ)Λ(1/2 + λ, ϕ)

+ Eisenstein and degenerate terms

This is an example of a formula of Motohashi [52]; it is perhaps most inter-
esting to let t1, t2, λ = 0.

The possibility of thus deriving the Motohashi formula was remarked in
[50] in §4.3.3 together with the remark that the divergence of the resulting
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integrals would “cause considerable technical difficulty.” The method of using
regularized integrals thus settles that issue in a satisfactory way. We would
like to remark that it is necessary to be wary of the following point: the reg-
ularized integral cannot be interchanged naively with the continuous integral
over the Eisenstein series that occurs on the right of (4.36). In “commuting”

the two, we obtain an extra factor of η(−1/2−λ,t1,t2)
ξ(2+2λ)

+ η(−1/2+λ,t1,t2)
ξ(2−2λ)

.

4.5.4. Commentary. — For the purpose of analytic number theory the
above formulas, although beautiful, are insufficient; one needs a family with
more flexibility of “test functions.” This extra flexibility is provided by the
work of Motohashi and Kuznetsov. From the point of view of the method
above, this can be obtained by varying the choice of test vector in the rep-
resentations underlying E∗t1 and E∗t2 .

The associativity formula, and that of Motohashi, have played an im-
portant – though not always explicit – role in analytic number theory on
GL2. We invite the reader to see “shadows” of these formulas hiding in var-
ious other papers on the subject.

The primary advantage of the formalism above seems to be that it
generalizes immediately to ramified settings. One may, for instance, replace
E∗t1 by an Eisenstein series in the representation χ� 1 to get a new formula;
or one may replace Q by a number field. It is a very interesting question
to investigate more deeply the “test function” version of such formulas in a
general setting, and to study the integral transforms – both archimedean and
p-adic – that intervene.

Such general formulas would probably lead to, among other things, a
good exponent in the subconvexity theorem. In the present paper we have
taken a “short cut” to subconvexity.

5. Proof of the theorems.

5.1. Subconvexity of character twists.

In the present section we shall prove the following theorem which is a
special case of our main result, Theorem 1.1, but which is also necessary in
its proof.

We continue with notation as in §4.1.

5.1. Theorem. — There are absolute constants δ, A > 0 such that for
F a number field, π an automorphic representation of GL2(AF ), and χ a
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unitary (Hecke) character of F×\A×F ,

L(π × χ, 1

2
)�F,π C(χ)1/2−δ,

where C(χ) denotes the analytic conductor, and our conventions about � are
as in §4.1.5. In particular, L(χ, 1

2
)�F C(χ)1/4−δ.

The proof follows the description of §1.2; we try below to give a “trans-
lation” of the adelic steps to the steps in §1.2.

Let us recall that over Q, the first result in the direction of Theorem
5.1 are due to Good [27] (in the t-aspect) and to Duke-Friedlander-Iwaniec
in the conductor aspect [17]. Over general number fields the conductor as-
pect was obtained by the second author [67] and Diaconu-Garrett for the t-
aspect [16]. The various methods used in these papers, although superficially
rather different and having different strengths and weaknesses, nonetheless
are closely linked; they are all, in various ways, related to versions of the
identity described in §4.5.3. In particular, it is possible to redo the proof be-
low in a way that is much closer to the proof of Theorem 1.1, i.e. removing
the ergodic theory and substituting explicit spectral expansions.

5.1.1. Notation. — Let H(1) = {a(y) : |y| = 1}. Given χ a character as
in the Theorem, we define the following signed measure µχ supported on a
closed orbit of H(1) on X:

µχ(ϕ) =

∫
F×\A(1)

ϕ(a(y))χ(y)d×y, µ = µ1. (5.1)

Let us note that (5.1) makes sense for any function on B(F )\PGL2(A),
i.e. µχ has a canonical lifting µ̃χ to that space. Given g ∈ GL2(A), we denote
by µgχ the translate of µχ by g (i.e. µgχ(ϕ) = µχ(g.ϕ)), and similarly define
µ̃gχ. For t ∈ R>0, we pick yt ∈ A× such that |yt|A = t.

We shall be primarily interested in the translates µgχ when g is of the
form a(y)n(T ), for T ∈ A.

In trying to get some geometric intuition for these measures, we suggest
that the reader bear in mind the following simple example: F = Q, T =

“p ∈ Qp ↪→ A”, the projection of supp(µ
a(q−1)n(T )
1 ) to the space of lattices

is the set {Λx : x ∈ (Z/qZ)×}. Here Λx are as in §1.2; recall in particular

that Λx = n(x)Λ1. Therefore, in classical terms, the measures µ
a(y)n(T )
χ will

correspond to certain orbits of the discrete horocycle flow; however, the signs
of the measure µχ encode arithmetic information (e.g., whether or not x is
a quadratic residue).
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5.1.2. A sketch of the proof in the simplest case: F 6= Q and π cuspidal.
— Unfortunately, there are two cases which introduce extra notation and
small complexities: F = Q, and π Eisenstein. Thus we advise the reader to
read carefully the present subsection, where we sketch the proof in the case
when neither of these complications exist.

The reasoning has the following three stages. Fix ε > 0 and κ ∈ (0, 1)
and write, for typographical simplicity, Q = C(χ).

Step 1. Theorem 5.1 ⇐= equidistribution result for µgχ, for suitable
g:
Claim 1: There’s ϕ ∈ π, T = (Tv)v ∈ A with |T | � Q1−ε and t ∈
[Q−1−κ, Q−1+κ]:

Q−1/2−ε |L(π ⊗ χ, 1/2)| �ε,κ,π |µa(yt)n(T )
χ (ϕ)|+Q−κ/2.

Step 2. §4.2.2 proves equidistribution of translates of µχ in the case
χ = 1.
Claim 2: For some absolute δ > 0, and t as above

µa(yt)n(T )(f)� SX(f)(|t|1/2A + |T |−δA ), f ∈ L2
0(XPGL2) and smooth

Step 3. An application of §1.3 allows us to bound µ
a(yt)n(T )
χ starting

from Claim 2.

Claim 3: |µa(yt)n(T )
χ (ϕ)| �π Q

−δ′SX(ϕ).
The utility of F 6= Q comes in here: we take advantage of the fact that
we can find many pairs of distinct prime ideals with the same norm. We
use this to construct a suitable measure σ with which to apply §2.5.3,
with σ supported entirely on the group H(1) and commuting with n(T )28.
When F = Q one can only make such a measure supported “near” H(1).

In terms of the discussion in §1.2, and in particular §1.2.4, Step 1
amounts to the remark that (C) or (C2) implies subconvexity and Step 2
amounts to the implication (B) =⇒ (C).

5.1.3. The general proof. — For T ∈ A and h a smooth compactly
supported function on R>0 we define the measure

µ
n(T )
χ,h (ϕ) :=

∫
R>0

h(t)χ(yt)µ
a(yt)n(T )
χ (ϕ)d×t.

28 Let K be a parameter to be chosen as a fixed positive power of Q. Consider all finite primes of Q
that are contained in [K, 2K], are split in F and above which χ is unramified. The number of such primes
p is then �F K/ logK. Above each such prime p, let v1(p), v2(p) be two distinct places. Let σ be the

probability measure on H(1) which is the average of the Dirac measures at the a($−1
v1(p)

$v2(p)) for all such

primes p ∈ [K, 2K].
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5.1.4. Lemma. — (variant of Claim 1) Notation as in the theorem, set
Q := C(χ). For any ε > 0, κ ∈]0, 1[, there exists a smooth vector ϕ ∈ π,
T = (Tv)v ∈ A and a smooth, non-negative, bounded by 1, function on R>0,
h = hQ,κ say, supported in the interval [Q−1−κ, Q−1+κ] such that

Q−1/2−ε |L(π ⊗ χ, 1/2)| �ε,κ,π |µn(T )
χ,h (ϕ)|+Q−κ/2 (5.2)

(if π is not cuspidal, replace µχ(ϕ) by µ̃χ(ϕ− ϕN)) and moreover:

1. Tv = 0 unless v is archimedean or χ is ramified at v;

2. log |T |A
logQ

∈ [1− ε, 1 + ε] if Q�ε 1;

3. Sπd (ϕ) �d,π 1 for any d. In particular, if π is cuspidal, then, for
any d, SX

d (ϕ)�d,π 1.

Proof. — For finite v, we take Wϕ,v ∈ Wπv to be the new vector and
Tv = $−rv , where r is the conductor of πv, just as in Lemma 3.3.2. For
archimedean v, we choose Wϕ,v and Tv ∈ Fv according to Lemma 3.3.3. Put
T = (tv)v ∈ A and let ϕ ∈ π be the preimage of ⊗Wϕ,v under the canonical
intertwiner from π to its Whittaker model.

The third assertion Sπd (ϕ)�d,π 1, follows since Sd(Wϕ,v)� Cond(πv)
N(d),

for some N(d) depending on d – noted in Lemma 12.3 in the archimedean
case, and immediate in the nonarchimedean case – and from §2.2.2.

It follows then from Lemma 3.3.2, Lemma 3.3.3, and the results of §4.2
that

L(π ⊗ χ, 1/2)�ε (C(π)Q)εQ1/2

∫
F×\A×

ϕ(a(y)n(T ))χ(y)d×y (5.3)

We need to pass from this statement to the desired property (3) by truncat-
ing the range of the y-integral. That is carried out using similar reasoning
to [67, Lemma 11.9] ; it can be considered the geometric form of the ap-
proximate functional equation. Let h be a fixed smooth function on R>0

with values in [0, 1], which is 1 on (0, 1], 0 on [2,∞). Take A = Q−κ−1 and
hA : t→ h(t/A).

Write as a shorthand,

f(t) = χ(yt)µ
a(yt)n(T )
χ (ϕ)

so that the integral on the right-hand side of (5.3) is given by
∫∞

0
f(t)d×t,

and, more generally, the Mellin transform F (s) =
∫
f(t)tsd×t is given by

F (s) = `χ|·|
s
(n(T )ϕ).

Given ε > 0 small, we will need to bound F (s) for <s = −1/2− ε. We
claim that

|F (s)| �π,ε (1 + |s|)2Q1/2+3ε when <(s) = −1/2− ε. (5.4)
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Crudely, the L-function in front contributes Q, whereas the ramified factors
contribute Q−1/2, and the rest is of size 1.

To be more precise, let S denote the (finite) set of places where either
v is infinite or ϕv is not spherical, or Tv 6= 0, or ψ is ramified. Then F (s)
may be expressed as:

L(S)(π ⊗ χ, 1/2 + s)
∏
v∈S

`χv |.|
s
v(n(Tv)Wv,ϕ)

∏
v/∈S

`χv |.|
s
v(n(Tv)Wv,ϕ)

L(πv ⊗ χv, 1/2 + s)
.

The product over v /∈ S is equal to 1. For v ∈ S, each factor is bounded by
�π,ε Cond(χv)

−1/2+ε, as follows from Lemma 3.3.2 and Lemma 3.3.3. Finally,
by the convexity bound together with bounds towards Ramanujan29

L(S)(π ⊗ χ, s)�ε (1 + |s|)2C(π ⊗ χ)1/2+ε (<s = −ε).

Noting that |S| = o(log(C(π ⊗ χ) + disc(F ))) as C(π ⊗ χ) → ∞, and since
C(π ⊗ χ)� C(π)C(χ)2, we get (5.4).

By Mellin inversion (H being the Mellin transform of h),∫
R>0

hA(t)f(t)d×t =

∣∣∣∣A1/2+ε

∫
<(s)=−1/2−ε

H(−s)F (s)
ds

2πi

∣∣∣∣�π,ε,h Q
−κ
2

+ε

The effective content of this statement is that the range t . Q−κ−1 con-
tributes very little to the integral

∫∞
0
f(t)d×t. A corresponding analysis yields

the same statement for the range t > Qκ−1, namely:∫
R>0

(1− hQκ−1(t))χ(yt)µ
a(yt)n(T )
χ (ϕ)d×t�π,ε,h Q

−κ/2+ε.

We take h = hQκ−1 − hQ−κ−1 to conclude.
The following will be useful later: If we replace h by any translate

y 7→ h(yω), where ω remains within (say) the set [1/4, 4], then (5.2) remains
valid. This is evident from the above proof, replacing e.g. Qκ−1 by ωQκ−1.
ut

5.1.5. Proposition. — (variant of Claim 2). Take g = a(t)n(T ) for t ∈
R>0 ↪→ A×, T = (Tv)v ∈ A. For f ∈ L2

0(XPGL2) and smooth, one has

µg(f)� SXPGL2 (f)(|t|1/2A + |T |−δA )

for some absolute δ > 0.

29 More precisely, it is necessary to bound each factor L(πv ⊗ χv , 1/2 + s)−1. Suppose v is finite and
that ψ is unramified at v. If πv is tempered, this is bounded by (1 + qεv)2. If πv fails to be tempered, then πv
is a twist of a spherical representation, as is πv⊗χv . If the local L-factor is not identically 1, then necessarily
πv ⊗ χv is spherical. Since v ∈ S, it must be that πv was ramified at v; the claimed bound follows.
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Proof. — By property (3c) of Sobolev norms, it is sufficient to prove
that for any automorphic representation π equipped with its canonical norm,
and f ∈ π a smooth function, we have the inequality

|µg(f)| � Sπ(f)(|t|1/2A + |T |−δA ). (5.5)

We may decompose µg(f) as µ̃g(fN) + µ̃g(f − fN).

By (2.12) the first term is bounded by Sπ(f)|t|1/2A (and is even zero if
π is cuspidal). The second term equals 1

2πi

∫
<s=0

`|·|
s
(g.f)ds, by inverse Mellin

transform; here `|.|
s
(f) is the linear functional given in (4.15) and associated

with the character |.|sA. Applying Lemma 4.2.3, together with (4.17), we see
that (1 + |s|)4`|·|

s
(f) is bounded above by Sπ(f)|T |−δA , with δ > 0 absolute,

and our result follows. ut

5.1.6. The cuspidal case. — We now prove Claim 3 and conclude the
proof of Theorem 5.1 for π cuspidal. We advise the reader to first consider
§5.1.2 which gives a somewhat cleaner version of the proof in the case F 6= Q.

Let t, T, ϕ, h be as in Lemma 5.1.4. We need to show that |µn(T )
χ,h (ϕ)|

decays with Q. The basic idea is this: since µ
n(T )
χ,h is χ-equivariant under the

subgroup of elements of H(1) which commute with n(T ), we can reduce this
to the corresponding fact for χ = 1 , already known by Proposition 5.1.5,
using the ergodic principle (§1.3).

Noting that µa(yt)n(T ) is orthogonal to all one-dimensional automorphic
representations on PGL2 except the constants, Proposition 5.1.5 implies that
for f non-negative on XPGL2 ,

|µn(T )
1,h (f)| 6

∫
h

∫
XPGL2

f + εSXPGL2 (f),with ε�ε Q
ε(Q

κ−1
2 +Q−δ), (5.6)

for any ε > 0. Here κ is as in the statement of Lemma 5.1.4.
Let σ be the averaged sum of the Dirac measures which are supported

at
a($−1

v )a($v′) ∈ a(Fv)a(Fv′) ⊂ H

for (v, v′) ranging over pairs of distinct non-archimedean places at which χ is
unramified and for which qv, qv′ are contained in [K, 2K] (to be choose later;
in any case K 6 Q.) The number of such pairs is � K2/ log2K; σ is not
supported on H(1) but rather on

H([1/4,4]) = {a(y), y ∈ A×, |y| ∈ [1/4, 4]}.
Since ‖Ad(a($−1

v )a($v′))‖ � K2, we see (notation of §2.5.3):

‖σ‖d � K2d, ‖σ ? σ̌‖θ � (logK)2
(
K−2 +K−1−2θ +K−4θ

)
.
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The measure µχ,h(ϕ) is not exactly invariant under the substitution ϕ 7→
ϕ?χσ but almost: indeed since the support of σ commute with n(T ) one has

µχ,h(ϕ ?χ σ) = µχ,h?η(ϕ),

where η denote the average of the Dirac measures at qv/qv′ on R>0 for (v, v′)
as above. Therefore, the reasoning of §2.5.3 shows that:

|µχ,h?η(ϕ)|2 �ε,π Q
ε(K4d(Q

κ−1
2 +Q−δ) +K−2 +K−1−2θ +K−4θ) (5.7)

Note that |ϕ ?χ σ|2 descends to XPGL2 , and so it was admissible to apply
(5.6) to it.

It follows from the (the last line of the) proof of Lemma 5.1.4 that
(5.2) holds with h replaced by h?η (which is supported on [1

4
Q−1−κ, 4Q−1+κ])

:
Q−1/2−εL(1/2, π ⊗ χ)�ε,π,κ |µχ,h?η(ϕ)|+Q−κ/2 (5.8)

Taking K to be a suitable small power of Q and combining (5.7) and (5.8),
we conclude. ut

5.1.7. The Eisenstein case. — In this section, we prove Theorem 5.1
for π noncuspidal by utilizing a simple regularization. By factorization, it
suffices to consider the case where π = 1 � 1 is induced from two trivial
characters.

Let ϕ be as furnished by Lemma 5.1.4. Let k be a fixed smooth com-
pactly supported function on G(A) of integral 1. Fix a sufficiently large pa-
rameter X > 1 (to be a fixed power of Q), and split ϕ = ϕ1 + ϕ2, where

ϕ1(g) := ∧Xϕ ? k, ϕ2 = (ϕ− ∧Xϕ) ? k,

say. Thus ϕ1 is of rapid decay high in the cusp, whereas ϕ2 is supported
high in the cusp. Let us observe,

1. |ϕ2(x)| � Sπ(ϕ)ht(x)1/2 log ht(x).
2.
∣∣∫

X
ϕi
∣∣� Sπ(ϕ)X−1/4 i = 1, 2.

3. For every d, there exists N(d) so that SX
d (ϕ1)� XN(d)Sπ(ϕ).

The first property follows from (4.12). The second property follows from the
first, since ϕ2 is supported in ht(x)� X and

∫
ϕ1 +

∫
ϕ2 = 0. To verify the

third property, it suffices to check that (for any φ ∈ π and any m > 1) we
have the bound

| ∧X φ(x)| �m XA(m)ht(x)−mSπ(φ).

By (4.3) together with (4.12), it suffices to verify that for y ∈ A×,∑
α∈F×

Wφ(a(αy))�m |y|−mSπ(φ).



96 PHILIPPE MICHEL, AKSHAY VENKATESH

This follows from Proposition 3.2.3, together with the definition of the norm
on π given by (2.5). It is necessary only to observe that∑

α∈F×

∏
v

max(|αy|v, 1)−n �n |y|−n
′
.

Now, let g = a(yt)n(T ), where t, T are as in Lemma 5.1.4. We need to
bound

µ̃gχ(ϕ− ϕN) = A+B + C +D, where

- A = µgχ

(
ϕ1 − 1

vol(X)

∫
X
ϕ1

)
is bounded as in the prior argument by

Qε(K2d(Q
κ−1

4 +Q−δ/2) +K−1 +K−1/2−θ +K−2θ).

- B = µgχ

(
1

vol(X)

∫
ϕ1

)
is bounded by Sπ(ϕ)X−1/4;

- C = µ̃gχ(ϕN) is bounded, in view of (4.12), by |t|1/2−εSπ(ϕ) =

Q
κ−1

2
+εSπ(ϕ).
- D = µgχ(ϕ2).

Now let us bound D. Let ϕ◦ be the spherical vector of norm 1 in the
representation π. Decompose ϕ◦ = ϕ◦1 + ϕ◦2 just as above. By (4.13), ϕ◦2 > 0.
By loc. cit., it is also true that – for X sufficiently large – |ϕ2| � Sπ(ϕ)ϕ◦2.
Therefore,

|D| 6 Sπ(ϕ)(|µg(ϕ◦1)|+ |µg(ϕ◦)|)�ε Sπ(ϕ)
(
X−1/4 +XA(|t|1/2A + |T |−δA )

)
(5.9)

for some absolute constant A; we applied (5.5) to the function ϕ◦, and

Proposition 5.1.5 to the function ϕ◦1−
∫
XPGL2

ϕ◦1, observing that
∣∣∣∫XPGL2

ϕ◦1

∣∣∣�ε

X−1/4. We conclude that:

Q−1/2L(χ, 1/2)2 = Q−1/2L(π ⊗ χ, 1/2)

�ε Q
ε
(
Q−

κ
2 +X−1/4 +K−θ +XAK2d(Q

κ−1
4 +Q−δ/2)

)
and we conclude by an appropriate choice of the parameters. ut

5.2. Subconvex bounds for Rankin/Selberg L-functions

In this section we prove Theorem 1.2. Let π1, π2 be the two automor-
phic representations of GL2(A) considered there and let χ1, χ2 denote their
respective central characters.
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5.2.1. Fix a parameter z ∈ iR whose modulus will be a non-negative
power of C(π1) to be determined later. We shall prove our result on certain
slight constraints on the parameters of πi so as to stay away from singular
Eisenstein series. The general case will reduce to this constrained case, as we
explain now.

If π2 is not cuspidal, it will be sufficient to take π2 = 1� |.|z. Let π3 be
the Eisenstein series 1�χ3 where χ3 = (χ1χ2)−1; we shall suppose that χ2

3 is
not of the form |.|2it for |t| < |z|/3. Under such constraints we will establish
the bound30

L(π1 ⊗ π2 ⊗ π3,
1

2
)�π2 C(π1 ⊗ π2)1/2−δ|z|−8,

for some absolute δ > 0.
This implies our main result: from Theorem 5.1, we may assume that

π1 is cuspidal. In that case, we wish a subconvex bound for L(π1 ⊗ π2, 1/2)
with either π2 cuspidal or π2 = 1 � 1 (which yield a subconvex bound for
L(π1, 1/2)). We take z such that |z| = C(π1)−δ/9, and apply the previous
bound to a triple (π1, π

′
2, π3) where π′2 equals π2 or π2 ⊗ |.|z if π2 cuspidal,

and equals 1 � |.|z if not, while π3 = 1 � (χ1χ
′
2)−1, choices being made so

that (π1, π
′
2, π3) fulfills the above constraints. A subconvex bound follows for

L(π1 ⊗ π2, 1/2) since, by convexity, we have, for any t ∈ [−1, 1],

|L(π1, 1/2)− L(π1, 1/2 + it)| � C(π1)1/4+o(1)|t|,
|L(π1 ⊗ π2, 1/2)− L(π1 ⊗ π2, 1/2 + it)| �π2 C(π1)1/2+o(1)|t|.

5.2.2. Choice of the test vectors. — Factorize πi = ⊗vπi,v, and choose
unitary structures on each πi,v so that the product coincides with the canon-
ical norm on πi. Given ε > 0 small and i = 1, 2, 3, let ϕ1 ∈ π1, ϕ2 ∈ π2,
E ∈ π3 be the tensor product of the test vectors (ϕ1,v)v, (ϕ2,v)v, (E3,v)v con-
structed in Proposition 3.6.1 for each place v (applied with the parameter
ε).

The canonical norm of ϕ1, ϕ2, E are easy to estimate: they are, by
definition, the product of the norms of these local vectors, and are therefore
equal to 1; moreover we have for any d,

Sd(ϕ2)�π2 1.

Applying (4.21), we have, from the hypotheses made in the above section,

L(π1 ⊗ π2, 1/2)

C(π1)1/2+ε
�ε,π2 |L∗(π2,Ad, 1)L∗(π3,Ad, 1)|

∣∣∣∣∫
X

ϕ1ϕ2E(g)dg.

∣∣∣∣
�ε,π2 |z|−4〈ϕ1, ϕ2E〉. (5.10)

30 of course the exponent 8 is not optimal for specific configuration (e. g. if π2 is cuspidal) but this
will be sufficient for our present needs
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Set Q := C(π1)C(π2). We want to check that 〈ϕ1, ϕ2E〉 �π2 Q
−δ. Roughly,

we use Cauchy-Schwarz to bound the square of this quantity by 〈ϕ2E,ϕ2E〉.
The later equals 〈ϕ2ϕ2, EE〉 which may be decomposed along the automor-
phic representations of PGL2(A). It turns out that the contribution of each
of these is small except for one-dimensional representations. Naively speaking,
their contribution would be ‖ϕ2‖2‖E‖2

can; the truth is a little more compli-
cated because we need to use regularization. In any case, to reduce this
“large” term, we use Friedlander-Iwaniec’s amplification method.

5.2.3. The amplification method. — We choose a real signed measure
σ compactly supported on GL2(Af ) which satisfies

1. u ∈ supp(σ) =⇒ ‖u‖ 6 K where K > 0 is some parameter which
will be chosen to be a small fixed positive power of Q.

2. supp(σ) commutes with GL2(Fv) at all archimedean places v and
at all places v for which either π1 or π2 is not spherical or the chosen
additive character ψ is ramified.31

3. (ϕ2E) ? σ̌ is of rapid decay on X.
4. Let |σ| denote the total variation measure. Then the total mass

of |σ| is bounded above by KB, for some absolute constant B. Moreover,
with |σ|(2) = |σ| ? |σ̌|, one has for any γ > 1/2∫

‖Ad(u)‖−γd|σ|(2)(u) 6 K−η, for some η = η(γ) > 0.

5. ϕ1 ? σ = λ1.ϕ1 with λ1 �F,ε Q
−ε for any ε > 0.

The construction of such a measure (which is inspired by [18,19]) is
given in [67, §4.1], except for the remark that (ϕ2E) ? σ̌ is of rapid de-
cay. However, this follows by convolving with a measure as in the remark of
§4.3.7; one may choose the place v so that qv � (logQ)2.

By property (5) of σ, stated above and Cauchy-Schwarz, we have

|λ1|2
∣∣〈ϕ1, ϕ2E〉

∣∣2 =
∣∣〈ϕ1 ? σ, ϕ2E〉

∣∣2 =
∣∣∣〈ϕ1, (ϕ2.E) ? σ̌〉

∣∣∣2
6 〈(ϕ2.E) ? σ̌, (ϕ2.E) ? σ̌〉;

Thus far, the integrals considered are convergent. However, we shall now ex-
pand the integral implicit in convolving with σ̌; at this point, we need to
make use of regularized integrals. This is possible since, for u ∈ supp(|σ|(2)),

31 i.e. the places dividing the discriminant of F .
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the set of exponents of ϕu2ϕ2EuE is either ∅ (if π2 is cuspidal) or is com-
prised of characters with real part equal to 2. Noting that

〈ϕu2 .Eu, ϕ2.E〉reg = 〈ϕu2ϕ2, EuE〉reg (5.11)

we obtain that

|λ1|2
∣∣〈ϕ1, ϕ2E〉

∣∣2 6 ∫ ∣∣〈ϕu2ϕ2, EuE〉reg
∣∣ d|σ|(2)(u) (5.12)

Now, applying properties (1) and (4) of σ to (5.12), we conclude that it
suffices to prove:

5.2.4. Proposition. — For u ∈ GL2(A), put Φ2,u := ϕu2ϕ2 and Φ3,u :=
EuE. For u ∈ supp(|σ|(2))

|〈Φ2,u, Φ3,u〉reg| �π2,ε |z|−4‖Ad(u)‖−γ + ‖u‖AQ−δ

for some absolute positive constants γ > 1/2 and δ, A > 0.

The proof will follow. Roughly, we evaluate the right-hand side via the
regularized Plancherel formula in §5.2.7; we handle the spectral sum (cuspidal
and Eisenstein) in §5.2.8, and we bound the “degenerate” terms that arise
in §5.2.9.

5.2.5. Good and bad places. — Fixing now u ∈ supp(|σ|(2)), we make
the following definitions of “good” and “bad” places:

Let R be the set of finite places where ϕ2,v, E3,v are spherical and where
uv = 1; let S be the set of places where uv 6= 1: by the choice made in §5.2.2
S consists of finite places, and the data ϕ2,v, E3,v, ψv are all unramified for
v ∈ S; let T denote the complement of R ∪ S.

Observe that |S|+|T | = o(logC(π1)+logC(π2)), the bound on |S| arising
from property (1) of the signed measure σ. This property will be used to
control a product, over v ∈ S ∪ T , of “implicit constants.”

5.2.6. Deformation. — In this section, we shall deform π2, π3 in such a
way that we will be able to apply the regularized Plancherel formula. These
deformations will be parameterized by s ∈ C (for π2) and t ∈ C (for π3).
We shall fix rather specific deformations of the vectors ϕ2 ∈ π2, E ∈ π3. We
shall also fix factorizations into local constituents of various vectors that will
arise.

Write π3 = 1 � χ3 and let π3(t) := |.|t � χ3|.|−t, for t ∈ C, be the
one-parameter deformation of π3 as described in §4.1.6. We choose f3 so



100 PHILIPPE MICHEL, AKSHAY VENKATESH

that E = Eis(f3). We denote the corresponding deformation of E by E(t):
E(t) = Eis(f3(t)).

If π2 = 1�|.|z, we consider the deformation (|.|s�|.|z−s, ϕ2(s)) of (π2, ϕ2):
after choosing f2 so that ϕ2 = Eis(f2), we set ϕ2(s) = Eis(f2(s)). (By conven-
tion, if π2 is cuspidal we regard (π2(s), ϕ(s)) as being constant.) Note that
‖E(t)‖can and ‖ϕ2(s)‖can are both constant by Lemma 2.2.3.

Factorizing f2 = c2,f

∏
v f2,v and f3 = c3,f

∏
v f3,v, where ‖f2,v‖ = ‖f3,v‖ =

1 for all v; then

|c2,f | � 1, |c3,f | � 1. (5.13)

Let Wϕ2(s) be the image of ϕ2(s) under the Whittaker intertwiner. We
may then factorize

Wϕ2(s) = c2,W (s)
∏
v

Wϕ2,v(s),

where we take Wϕ2,v(s) to be the image of f2(s) under the intertwiner (3.10)
for v ∈ S ∪ T ; and, for v ∈ R, we normalize so that Wϕ2,v(s) takes the
value 1 at 1. In a similar way, we factorize Wϕ3(t) = c3,W (t)

∏
vWϕ3,v(t), the

normalizations being identical. Notice that ‖Wϕ2,v(s)‖ = ‖Wϕ3,v(t)‖ = 1 for
v ∈ S ∪ T , the intertwiner (3.10) being isometric.

The constant c2,W (s) may be evaluated by computing norms. By §2.2.2

〈ϕ2, ϕ2〉can � |c2,W (s)|2Λ∗(π2(s),Ad, 1)
∏

v∈S∪T

1

ζv(1)L(π2,v(s),Ad, 1)/ζv(2)

and therefore, for any ε > 0 ,

|c2,W (s)|2 �ε
C(π1)εC(π2)ε

L∗(π2(s),Ad, 1)
, (5.14)

and similarly for c3,W (t).

5.2.7. Application of the regularized Plancherel formula. — We note
that Φ2,u and Φ3,u descend to function on PGL2(A). Throughout this sec-
tion we regard u as fixed; set (we have suppressed the dependence on u for
typographical simplicity)

Φ2(s) = ϕu2ϕ2(s), Φ3(t) = EuE(t),E2(s) = Eis(ϕu2Nϕ2N(s)),E3(t) = Eis(Eu
NEN(t)).

- The set of exponents of Φ2(s) is S2(s) = {|.|1+s, |.|1−s, |.|1+z+s, |.|1+z−s}
(or the empty set if π2 is cuspidal).

- The set of exponents of Φ3(t) is S3(t) = {|.|1+t, |.|1−t, χ3|.|1−t, χ3|.|1+t}.
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In particular, (s, t) 7→ 〈Φ2(s), Φ3(t)〉reg defines an (s, t)-anti-holomorphic
function in a neighbourhood of (0, 0) in C2. We will bound the function
〈Φ2(s), Φ3(t)〉reg at the point (0, 0) by analyzing it along a suitable non-empty
subset N ⊂ D containing (0, 0) in its closure. The key point is that we should
choose N so that (4.20) is applicable, and also so that π2(t), π3(s) do not
equal 1� 1 for (t, s) ∈ N . For explicitness, take

N = {(s, t) = (t/2, t), t ∈ iR : 0 < |t| < |z|/6}. (5.15)

By choice of N , we can apply the regularized Plancherel formula (4.20).
Moreover, for π belonging to the finite spectrum (π = χ, χ2 = 1) and (s, t) ∈
N one has, again by invariance, Ππ(Φ3(t)) = 0. (In other words, there is
no G(A)-equivariant functional from the tensor product π3 ⊗ π3(t) to a one-
dimensional G(A)-representation). Therefore, for (s, t) ∈ N , we have

〈Φ2(s), Φ3(t)〉reg = 〈Φ2(s),E3(t)〉reg + 〈E2(s), Φ3(t)〉reg (5.16)

+

∫
π generic

〈Ππ(Φ2(t)), Ππ(Φ3(s))〉dµP(π).

where Ππ is defined in (4.19).
We have already observed that (s, t) 7→ 〈Φ2(s), Φ3(t)〉reg defines an (s, t)-

antiholomorphic function in a neighbourhood of (0, 0), and, in particular, a
continuous function on N ; since the same is true of the function

(s, t) 7→
∫
π generic

〈Ππ(Φ2(t)), Ππ(Φ3(s))〉dµP(π),

it follows from (5.16) that

Lemma. — The degenerate term

(s, t) ∈ N 7→ 〈Φ2(s),E3(t)〉reg + 〈E2(s), Φ3(t)〉reg

extends to a continuous function on N .

5.2.8. Bounding the generic term. —

Lemma. — For (s, t) ∈ N , the last term of (5.16) is �π2 ‖u‖AQ−δ, for
absolute δ > 0 and A.

In fact, we need this bound only for (s, t) = (0, 0), and the reader is
welcome to make this substitution in what follows.
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Proof. — Let d0 be the larger than any of the (absolute) Sobolev de-
grees occuring in Lemmata 3.5.3 and 3.7.1 as well as the degree of (3.36).
For any generic standard automorphic representation of PGL2, the inner prod-
uct

∣∣〈Ππ(Φ2(s)), Ππ(Φ3(t))〉
∣∣ is bounded above by Sπd0

(Φ2(s))Sπ−d0
(Φ3(t)) (as a

short cut we write Sπd (Φ) for Sπd (Ππ(Φ))), by the duality between the Sobolev
norms in question . It will be sufficient to verify that

Sπ−d0
(Φ3(t))�π2,π,ε ‖u‖BQ−δ,

for absolute constants δ > 0 and B; indeed, for any constant B > 0, one has∫
π

C(π)BSπd0
(Φ2(s))�B

∫
π

Sπd0+O(B)(Φ2(s))�π2,B 1,

the latter inequality following from (4.24).

We shall apply the results of §4.4.1 especially (4.23). In the notations
of that section, we utilize the corollary to Lemma 3.7.1 32 to see – since
C(χ3)�π2 C(π1) and t ∈ iR –

Bv �ε,π2 C(π1,v)
d′εC(χ3,v)

−1
(C(π1,v)

C(χ3,v)

)2θ−1
(v ∈ T ).

for some absolute δ > 0, d′ > 0. Note that uv does not contribute, since
uv = 1 for v ∈ T . On the other hand, we have

Bv � ‖uv‖A for v ∈ S (5.17)

and some unspecified constant A: this follows from the “trivial” bound (3.36)
(see the sentence following that equation).

We take into account also the global subconvex bound of Theorem 5.1;
it implies L(π3 ⊗ π3 ⊗ π, 1/2)�π C(χ3)1−δ. Thus, by the results of §4.4.1,

Sπ−d0
(Ππ(Φ3(t))�π2,π,ε C(χ3)−δ

(
C(π1)

C(χ3)

)2θ−1

‖u‖A‖E‖2
can‖E(t)‖2

can.

Now, ‖E(t)‖can = ‖E‖can = 1. Using again that C(χ3)�π2 C(π1), we conclude
the proof of the Lemma. ut

32 if πv is tempered, e.g., if π is Eisenstein or under the Ramanujan-Peterson conjecture we may, more
simply, apply Lemma 3.5.3.
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5.2.9. Bounding the degenerate term. —

Lemma. — For (s, t) ∈ N we have, for any ε > 0

|〈Φ2(s),E3(t)〉reg + 〈E2(s), Φ3(t)〉reg| �π2,ε,ε Q
ε|z|−4‖Ad(u)‖−γ (5.18)

for some absolute γ > 1/2.

Proof. — We start with the first portion of degenerate term: 〈Φ2(s),E3(t)〉reg.
Let us consider the linear functional on

Π = Π(s, t) := π2 ⊗ π2(s)⊗ π3 ⊗ π3(t)→ C

defined by the rule

H = Hs,t : (ϕ2, ϕ
′
2, ϕ3, ϕ

′
3) 7→

∫ reg

XPGL2

ϕ2ϕ
′
2Eis(ϕ3,Nϕ

′
3,N).

Thus, 〈Φ2(s),E3(t)〉 = H(ϕu2 , ϕ2(s), Eu, E(t)); also, expanding the constant
terms ϕ3,N , ϕ

′
3,N , we may express Hs,t as a sum of four terms

Hs,t =
∑
±,±

H±±s,t ,

where, if we realize π2 in its Whittaker model and π3 in the principal series
model,

H++
s,t (ϕu2 , ϕ2(s),Eis(f3)u,Eis(f3(t))) = c

∗∏
v

H++
v , (5.19)

c = c2,W c2,W (s)|c3,f |2, H++
v :=

∫
N(Fv)\PGL2(Fv)

W uv
2,vW2,v(s)f

uv
3,vf3,v(t).

The other terms (e.g. H+−
s,t , H+−

v ) are defined similarly, by introducing
standard intertwining operators M (see §4.1.8) in front of the f3’s. The sec-
ond portion of the degenerate 〈E2(s), Φ3(t)〉reg, admits analogous expansion,
of the shape

∑
±,± J

±±
s,t and the evaluation of each J±±s,t is entirely similar to

that of H±±s,t . We will examine in detail two terms: H++ and J−−. We then
complete the proof of the Lemma in §5.2.12.
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5.2.10. Local bounds for H. — We shall need bounds for H++
v as well

as for its partial derivatives w.r.t. s, t on the unitary axes, ie. when s, t are
purely imaginary. In fact, bounds for the partial derivatives will be derived
from bounds for H++

v in a small neighborhood of the unitary axes; however,
for clarity, we begin by explaining the bounds for H++

v when s, t are on the
unitary axes.

The evaluation of H++
v , for v ∈ R, is the theory of local Rankin-Selberg

integrals for GL2 (cf. (4.27)):

H++
v =

Lv(π2 ⊗ π̃2(s)⊗ | · |t, 1)

ζv(2 + 2t)
(5.20)

For v ∈ S, the vectors are spherical and the additive character ψv is
unramified; we apply Lemma 3.2.7 to conclude:

|H++
v | � ‖Ad(uv)‖−γ, γ = 1− θ > 1/2. (5.21)

For v in T we have again by Lemma 3.2.7

|H++
v | 6 ‖f3,vW2,v‖Nv\Gv‖f3,v(t)W2,v(s))‖Nv\Gv (5.22)

= ‖W2,v‖‖W2,v(s)‖‖f3,v‖‖f3,v(t)‖ = ‖f3,v‖2‖W2,v‖‖W2,v(s)‖ = 1.

More generally, for any fixed i, j > 0, v ∈ S∪T and any ε > 0, we have
also

|∂is∂
j
tH

++
v | �i,j,ε C(π2,v)

ε‖Ad(uv)‖ε−γ; (5.23)

It is to verify (5.23) that we consider H++
v off the unitary axes. The

function H++
v being antiholomorphic in s, t, it suffices by Cauchy’s formula

to bound it in a small neighbourhood of (s, t) = (0, 0). The required bound
follows, for v ∈ S, from Lemma 3.2.8; for v ∈ T , it follows by a reasoning
similar to the previous one that for |<(s)|+ |<(t)| 6 ε/2,

|H++
v (s, t)|2 6

∫
|W2,v(s)(a(y))|2 max(|y|, |y|−1)εd×y �ε S

π2,v

dε (W2,v)
2

�ε C(π2,v)
d′ε,

where we applied Proposition 3.2.4, and d, d′ are absolute constants; we also
used the bound for S(W2,v) given in Proposition 3.6.1.

The same bounds apply to all the terms H±,±v . We give an example of
how to handle the intertwining operators that intervene, in relation to the
J-term.
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5.2.11. The J terms. — For the corresponding terms J±±v a bound
similar to (5.23) applies. We shall study the term J−−v to make this rea-
soning clear; it will also give us the opportunity to explain the reasoning
involving intertwining operators.

The second degenerate term 〈E2(s), Φ3(t)〉reg is zero unless π2 is Eisen-
stein, so we shall suppose that π2 is Eisenstein. Corresponding to (5.19) we
have the identity:

J−−s,t (ϕu2 , ϕ2(s),Eis(f3)u,Eis(f3(t))) = c′
∗∏
v

J−−v ,

|c′| = |c2c2c3,W c3,W (t)|, J−−v :=

∫
N(Fv)\PGL2(Fv)

W uv
3,vW3,v(t)M̄vf

uv
2,vM̄vf2,v(s);

let us remind the reader that f2 = ⊗vf2,v is so that ϕ2 = Eis(f2), ϕ2(s) =
Eis(f2(s)) and that M̄v is as defined in §4.1.8. Recall also that M̄v is iso-
metric for every v (at least up to a factor depending only on ψv).

The unramified evaluation is similar to the prior one.
For v ∈ S, the vectors are spherical and the additive character ψv is

unramified; we apply Lemma 3.2.8 to conclude:

|J−−v | � ‖Ad(uv)‖−γ, γ = 1− θ > 1/2. (5.24)

For v in T we have again by Lemma 3.2.7

|J−−v | 6 1,

We need, again, a bound on derivatives. For fixed i, j > 0, v ∈ S ∪ T
and any ε > 0, we have also

|∂is∂
j
t J
−−
v | �i,j,ε (C(π1,v)C(π2,v))

ε ‖Ad(uv)‖ε−γ. (5.25)

For this, just as as before, we bound J−−v for (s, t) in a small neighbourhood
of (0, 0); assuming that |<(s)|+|<(t)| 6 ε/2, we find, for v ∈ T , using Cauchy-
Schwarz and Lemma 3.2.7 that

|J−−v |2 6
∫
F×v ×K

|W3,v(a(y)k)|2 max(|y|, |y|−1)ε|M̄vf2,v,s(k)|2d×ydk.

The bound (5.25) follows the bounds for M̄v furnished in §4.1.8 and the
same reasonning as at the end of §5.2.10. For v ∈ S the bound follows from
Lemma 3.2.8.
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5.2.12. Putting it all together. — The degenerate term

〈Φ2(s),E3(t)〉reg + 〈E2(s), Φ3(t)〉reg (s, t) ∈ N

is given by
∑
±,±H

±,±
s,t + J±±s,t and, although the individual terms H±±s,t , J

±±
s,t

may not be regular in a neighbourhood of (s, t) = (0, 0), we have seen in the
lemma preceding §5.2.8 that their sum is. In particular,

t 7→ 〈Φ2(t/2),E3(t)〉reg + 〈E2(t/2), Φ3(t)〉reg

defines an antiholomorphic function in the complex disc |t| < 0.1.
Each quantity H±±t/2,t, J

±±
t/2,t is the product of: a constant c as in (5.19);

a partial L-function at places outside S ∪ T , given e.g. by (5.20); and local
factors at S ∪ T .

- The constant c satisfies c�π2,ε C(π1)ε by (5.13) and (5.14).
- The local factors at S ∪ T , for t ∈ iR, |t| < 0.1, are bounded, along

with their derivatives by (5.21), (5.22) and (5.23) and the corresponding
bounds for J . In particular, the product of such factors is bounded by
Qε‖Ad(u)‖ε−γ.

- The partial L-functions in question extend to meromorphic functions
of the t-variable with a pole at t = 0 of order at most 4. For t ∈ iR
bounded away from 0 these L-functions are bounded by

�ε |z|−4C(π2)εC(π3)ε

for any ε > 0, and at t = 0 the terms of bounded order in their Laurent
expansion satisfies the same bound.

It follows that for (s, t) ∈ N , the degenerate contribution is bounded
by

�ε Q
ε|z|−4‖Ad(u)‖−γ, γ > 1/2,

as required. ut
This lemma together with the lemma of §5.2.8 conclude the proof of

Proposition 5.2.4, hence of Theorem 1.2.
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55. MÜLLER, W., The trace class conjecture in the theory of automorphic forms. II, Geom. Funct. Anal.,



THE SUBCONVEXITY PROBLEM FOR GL2. 109

8, (1998) no. 2, 315–355.

56. OH, H., Uniform pointwise bounds for matrix coefficients of unitary representations and applications to
Kazhdan constants, Duke Math. J., 113, (2002) no. 1, 133–192.

57. OKSAK, A. I., Trilinear Lorentz invariant forms, Comm. Math. Phys., 29 (1973), 189–217.

58. ONO, T., On Tamagawa numbers, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure
Math., Boulder, Colo., 1965), , Amer. Math. Soc., Providence, R.I., 1966, 122–132.

59. PRASAD, D., Trilinear forms for representations of GL(2) and local ε-factors, Compositio Math., 75,
no. 1 (1990), 1–46.

60. REZNIKOV, A., Norms of geodesic restrictions for eigenfunctions on hyperbolic surfaces and representation
theory , Preprint, arXiv:math/0403437v2, 2004.

61. REZNIKOV, A., Rankin-Selberg without unfolding and bounds for spherical Fourier coefficients of Maass
forms, J. Amer. Math. Soc., 21, no. 2 (2008), 439–477.

62. SAKELLARIDIS, Y. VENKATESH, A., Periods and harmonic analysis on spherical varieties., Preprint,
2010.
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