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We formulate the non-linear field theory for a fluctuating counter-ion distribution in the pres-
ence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the
saddle-point, and the effects of fluctuations and correlations are included by a loop-wise expansion
around this saddle point. We show that the Poisson equation is obeyed at each order in the loop
expansion and explicitly give the expansion of the Gibbs potential up to two loops. We then apply
our formalism to the case of an impenetrable, charged wall, and obtain the fluctuation corrections
to the electrostatic potential and counter-ion density to one-loop order without further approxi-
mations. The relative importance of fluctuation corrections is controlled by a single parameter,
which is proportional to the cube of the counter-ion valency and to the surface charge density. We
also calculate effective interactions between charged particles, which reflect counter-ion correlation
effects.

PACS. 82.70.−y - Disperse Systems.
PACS. 61.20.Qg - Associated Liquids.
PACS. 82.45.+z - Electrochemistry.

I. INTRODUCTION

The behavior of charged, fluctuating systems is an old problem in chemistry and physics and is of importance for
very diverse disciplines. In this article we will be concerned with the distribution of counter ions around charged
objects, which is experimentally realized whenever an object with dissociable surface groups is brought in contact
with water (or some other high-dielectric solvent). In such a situation, the counter ions will be attracted to the
oppositely charged object, but also repelled from other counter ions. The characteristic feature of charged systems is
that the Coulomb interaction is long-ranged, which gives these systems very special properties. Since, in general, one
counter ion interacts with many different counter ions simultaneously, the mean-field approach is very successful and
can be used to describe experiments or simulations quantitatively. Exact solutions of the so-called Poisson Boltzmann
equation, which determines the electrostatic potential distribution on a mean-field level, are available for planar [1–3]
and cylindrical [4] geometries. A very readable introduction into the Poisson-Boltzmann (PB) approach is given in
Ref. [5]. There are several factors which contribute to deviations from the PB equation, including additional, short-
ranged interactions and solvent effects. In this article we will consider deviations due to fluctuations and correlations.
These effects have been incorporated for the single charged wall by modified PB equations [6], by integral equation
theories [7,8], and by numerical methods [9–12]. In general, one finds correlation effects to become important for
ions of high valency, and packing effects dominate the ion distribution for very bulky ions or high ion concentration.
For the case of counter ions or electrolyte solutions between two charged walls, there have been a number of studies
using integral equations [13–15] and Monte-Carlo methods [16,17]. An exhaustive review has been given by Attard
[18]. The main result of these studies is that correlations can lead to an effective attraction between similarly charged
walls for high enough ion valency. There have been a few attempts of using field theoretic methods to go beyond
mean-field theory for charged systems. Here we only mention the works by Podgornik and Zeks [19] and by Attard
and coworkers [20], who expanded around the mean-field solution and calculated within additional approximations
fluctuation corrections to the interaction between two charged, planar walls.

In this article we consider a system of mobile, point-like counter ions in the presence of a fixed charge distribution,
and formulate the field-theoretic framework for going beyond the Poisson-Boltzmann description. As has been realized
by many others before, the Poisson-Boltzmann equation constitutes the saddle point of the exact field theory. We
first reformulate this theory by a loop-wise expansion around the saddle point. The Poisson equation, which relates
the electrostatic potential to the counter ion distribution, is obeyed at each level of this loop expansion. Clearly,
the counter-ions are not distributed according to the Boltzmann weight, and correlations and fluctuations lead to
pronounced deviations from the Poisson-Boltzmann predictions. The description is considerably facilitated by a
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Legendre transformation, after which we obtain the Gibbs potential as a function of a fixed electrostatic potential
distribution. This transformation restricts the number of diagrams to so-called one-particle-irreducible diagrams. The
electrostatic potential is given by the solution of the equation of state.

We then apply this general formalism to the case of counter ions confined to a half space and next to a charged wall.
We calculate without further approximations the one-loop correction to the electrostatic potential distribution and the
counter-ion distribution. Due to correlations the counter ions are more densely packed close to the wall than predicted
by the PB solution. This is in accord with previous Monte-Carlo simulations and with the intuitive expectation, since
mean field usually overestimates repulsive interactions due to the neglect of correlations. The relative importance
of fluctuation corrections to the electrostatic potential is measured by the single parameter q3σℓ2B, where σ is the
surface charge density of the planar surface, ℓB is the distance at which two elementary charges interact with thermal
energy, and q denotes the counter-ion valency. Since the thickness of the counter ion distribution is, according to
the mean-field prediction, given by µ ∼ 1/(qσℓB), the average counter-ion concentration follows as c ∼ σ/qµ and
our effective fluctuation parameter can be rewritten as q3σℓ2B ∼ (q2ℓBc

1/3)3/2 and thus measures the electrostatic
interaction energy between two counter ions at their average separation (in units of the thermal energy); it is thus
related to the plasma parameter. For vanishing values of q3σℓ2B mean field theory becomes exact and fluctuation
corrections are unimportant. On the other hand, since the counter ion valency comes in as a cubic power, it is
clear that by going from monovalent to divalent ions, fluctuation effects become much more pronounced, in accord
with experiments and simulations. Our results, which are obtained only to first order in the loop expansion, become
unreliable for large values of q3σℓ2B. A clear break down of our expansion is indicated by an unphysical negative
density of counter ions, which occurs at q3σℓ2B ≃ 12.

In Section II we formulate the general field-theoretic description for an ensemble of fluctuating counter ions in the
presence of a fixed charge distribution. The main steps consist of i) formulating the initial partition function as a field
theory using a Hubbard-Stratonovich transformation, ii) going to the grand-canonical ensemble, iii) expanding the
action around the saddle-point, and iv) performing another Legendre transformation after which the Gibbs potential
depends on the electrostatic potential. In Section III we show how the electrostatic potential follows from the equation
of state, and in Section IV we give explicit results for the case of a single charged wall. In Section V we calculate the
effective interaction between charged test particles, and Section VI is devoted to a brief discussion.

II. NON-LINEAR FIELD THEORY FOR CHARGED SYSTEMS

The partition function for N mobile counter ions of valency q, interacting with an arbitrary fixed charge distribution,
σ(r), reads

ZN =
1

N !

[

N
∏

i=1

∫

dri

]

exp







−q2
∑

j>k

v(rj − rk) + q

∫

drσ(r)
∑

j

v(r − rj)







. (1)

We assume the counter ions to be point-like particles, and only include the Coulomb interaction between ions,
v(r) ≡ ℓB/r, where ℓB is the Bjerrum length defined as ℓB ≡ e2/(4πεkBT ). We also neglect any image charge effects
in the present formulation of our theory. The charge distribution σ(r) in general also contains test particles, the
presence of which allows to calculate the effective interaction between charges, as we will demonstrate in Section VI.
Introducing the particle density operator

ρ̂(r) ≡
N
∑

i=1

δ(r − ri), (2)

we can rewrite the partition function as

ZN [h] =
1

N !

[

N
∏

i=1

∫

dri

]

exp

{

−1

2

∫

drdr′[qρ̂(r) − σ(r)]v(r − r
′)[qρ̂(r′) − σ(r′)] +

∫

drρ̂(r)h(r)

}

. (3)

There is no need to subtract the diagonal terms involving self interactions at this point, because they will be canceled
by a one-point renormalization at a later stage. Using the generating field h, the average counter ion density can be
calculated as
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〈ρ̂(r)〉 =
δZN [h]

ZN [h]δh(r)

∣

∣

∣

∣

h=0

. (4)

Correlation functions can be calculated by taking multiple functional derivatives with respect to h. Noting that the
operator-inverse of the Coulomb interaction is

v−1(r) = −∇2δ(r)

4πℓB
,

the partition function is after a Hubbard-Stratonovich transformation given by

ZN [h] =
1

N !

∫ Dφ
Z0

exp

{

−
∫

dr

[

1

2ℓ̃B
(∇φ)2 +

ıσ(r)φ(r)

q

]}[
∫

dre−ıφ(r)+h(r)

]N

, (5)

where we introduced the rescaled Bjerrum length ℓ̃B ≡ 4πq2ℓB. In the above expression, Z0 denotes the partition
function of the Coulomb operator, Z0 ∼

√
det v. Using the definition Eq. (4), the average particle density turns out

to be

〈ρ̂(r)〉 = N

〈

e−ıφ(r)

∫

dre−ıφ(r)

〉

, (6)

and the normalization property of the density distribution,
∫

drρ̂(r) = N , is self-evident. The two-point cumulant
correlation function (for r 6= r

′) follows as

〈ρ̂(r)ρ̂(r′)〉 =
δ2ZN [h]

ZN [h]δh(r)δh(r′)

∣

∣

∣

∣

h=0

= N(N − 1)

〈

e−ıφ(r)−ıφ(r′)

[∫

dre−ıφ(r)
]2

〉

, (7)

and higher-order correlation function can be calculated in a similar manner. The functional form of the particle
distribution, Eq.(6), shows that ıφ is the reduced electric potential. The partition function is brought into a more
manageable form by going to the grand-canonical ensemble,

Z[̺, h] ≡
∞
∑

N=0

λNZN [h] =

∫ Dφ
Z0

exp

{

−ℓH[φ, h] + ıℓ

∫

drφ(r)̺(r)

}

. (8)

where λ is the fugacity of the counter-ions, and the Hamiltonian is defined as

H[φ, h] ≡
∫

dr

[

1

2ℓ̃B
(∇φ)2 +

ıσ(r)φ(r)

q
− λe−ıφ(r)+h(r)

]

(9)

and we added a source term to the partition function in such a way that one can calculate directly the reduced
electrostatic potential

ψ(r) ≡ 〈ıφ(r)〉 =
δ ln Z[̺, h]

ℓδ̺(r)
. (10)

In the grand-canonical partition function, Eq.(8), we arbitrarily multiplied the action by a constant ℓ which plays
the role similar to the inverse Planck’s constant in front of the action integral in Quantum Field Theory. This
constant serves as an expansion parameter in our systematic treatment of fluctuation effects and counts the number
of diagrammatic loops. The fugacity λ is related to the total number of ions by

λ
∂ ln Z[̺, h]

ℓ∂λ
= 〈N〉 = λ

∫

dr
〈

e−ıφ(r)
〉

(11)

which establishes a useful relation between λ and N . The particle density is obtained from the grand-canonical
partition function Eq.(8) using the definition Eq.(4) and reads

〈ρ̂(r)〉 = λ
〈

e−ıφ(r)
〉

.

3



Likewise, the two-point correlation function (for r 6= r
′) reads

〈ρ̂(r)ρ̂(r′)〉 = λ2
〈

e−ıφ(r)−ıφ(r′)
〉

, (12)

which is simpler than the canonical form, Eq.(7); higher-order correlation function can be calculated similarly. In
the following we will be interested in calculating the Gibbs potential Γ[ψ, h] which depends on the reduced electric
potential ψ(r); it is related to lnZ[̺, h] by a Legendre transform

Γ[ψ, h] + lnZ[̺, h] = ℓ

∫

dr ψ(r)̺(r). (13)

Using the definition (10) we obtain from the definition of the Legendre transform (13) the inverse relation

̺(r) =
δΓ[ψ, h]

ℓδψ(r)
. (14)

We will perform the Legendre transformation using a loop expansion, using methods developed by Schwinger [21]
and closely follow the notation of Brézin, Le Guillou, and Zinn-Justin [22]. To that end, we expand the Hamiltonian
around a fixed value of the potential, the so-called classical field, denoted as ψcl(r). At this point, we do not specify
what this classical field is. We write

φ(r) = −ıψcl(r) + χ(r) (15)

and thus obtain the formal expansion

H[φ] − ı

∫

drφ(r)̺(r) = H[−ıψcl] −
∫

dr̺(r) [ψcl(r) + ıχ(r)] +
∑

j=1

1

j!

∫

H(j)({rj};ψcl)χ(r1) · · ·χ(rj)dr1 · · · drj .

The vertex functions H(j) are defined by

H(j)({rj};ψcl) ≡
δjH[φ]

δφ(r1) · · · δφ(rj)

∣

∣

∣

∣

φ=−ıψcl

(16)

and of course depend on the function ψcl(r) around which one expands. The function lnZ[̺] can now be evaluated
by standard saddle-point methods, treating ℓ−1 as the expansion parameter. The saddle point ψSP(r) is defined by

δH[φ]

δφ(r)
− ı̺(r)

∣

∣

∣

∣

φ=−ıψSP[̺]

= 0 (17)

and depends on the source ̺. Using the definition of the two-point propagator G(r, r′;ψSP),

∫

dr G(r, r′;ψSP)H(2)(r, r′′;ψSP) = δ(r′ − r
′′),

we can diagrammatically expand the expression for lnZ[̺, h] and obtain up to two loops

lnZ[̺, h] = ℓ

∫

dr

{

1

2ℓ̃B
(∇ψSP)2 − σ(r)ψSP(r)

q
+ λe−ψSP(r)+h(r) + ̺(r)ψSP(r)

}

− 1

2
ln detH(2)[ψSP]

+
1

ℓ

{

−1

8

∫

dr1 · · · dr4 H(4)({r4};ψSP)G(r1, r2;ψSP)G(r3, r4;ψSP)

+

∫

dr1 · · · dr3dr
′

1 · · · dr′3 H(3)({r3};ψSP)H(3)({r′3};ψSP)

[

1

8
G(r1, r2;ψSP)G(r′1, r

′

2;ψSP)G(r3, r
′

3;ψSP) +
1

12
G(r1, r

′

1;ψSP)G(r2, r
′

2;ψSP)G(r3, r
′

3;ψSP)

]}

. (18)

The one-loop diagram and the two-loop diagrams are schematically represented in Fig.1. In order to perform the
Legendre transformation, we need the loop expansions for ψ(r) and ̺(r), which are obtained from the definition (10)
and the saddle-point equation (17), respectively. These expressions depend on the saddle-point potential ψSP. We
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then have to expand all functions and vertices around the saddle point and reexpress the potential dependence as a
function of the expectation value ψ. By inserting these expression into the Legendre transform, we obtain the loop
expansion of the Gibbs potential,

Γ[ψ, h] = −ℓ
∫

dr

{

1

2ℓ̃B
(∇ψ)2 − σ(r)ψ(r)

q
+ λe−ψ(r)+h(r)

}

+
1

2
ln detH(2)[ψ]

− 1

ℓ

{

−1

8

∫

dr1 · · · dr4 H(4)({r4};ψ)G(r1, r2;ψ)G(r3, r4;ψ)

+
1

12

∫

dr1 · · · dr3dr
′

1 · · · dr′3 H(3)({r3};ψ)H(3)({r′3};ψ)

G(r1, r
′

1;ψ)G(r2, r
′

2;ψ)G(r3, r
′

3;ψ)} (19)

The effect of the Legendre transformation is to cancel all one-particle-reducible diagrams, as expected. For the present
case, the two-loop diagram to the right in Fig.1 is removed from the expansion.

III. THE EQUATION OF STATE

The equation of state is defined as

δΓ[ψ]

δψ(r)
= 0 (20)

and completely determines the electrostatic potential. In the following, we will restrict ourselves to the one-loop order.
Using the explicit form of the two-point vertex function, which follows from the definitions Eq.(9) and Eq.(16),

H(2)[r, r′;ψ] =

(

−∇2

ℓ̃B
+ λe−ψ(r)

)

δ(r − r
′), (21)

the equation of state can be explicitly written as

− λe−ψ(r) − σ(r)

q
− ∇2ψ(r)

ℓ̃B
+
λ

2ℓ
e−ψ(r)G(r, r) = 0. (22)

Note that from now one, we suppress the dependence of the two-point correlation function G(r, r′) on the electrostatic
potential distribution ψ. The correlation function is determined by the equation

(

−∇2

ℓ̃B
+ λe−ψ(r)

)

G(r, r′) = δ(r − r
′). (23)

Finally, the number of mobile ions can be calculated according to Eq.(11) and is given by

〈N〉 = λ

∫

dr e−ψ(r) − λ

2ℓ

∫

dr e−ψ(r)G(r, r). (24)

The equation of state can be solved by a systematic expansion of all quantities which are to be determined in inverse
powers of the loop parameter ℓ. At the one-loop order, only the leading term of G contributes and therefore an
expansion of G itself is unnecessary. The electric potential and the fugacity have to be expanded to the next-leading
order,

ψ(r) = ψ0(r) + ℓ−1ψ1(r), (25)

λ = λ0 + ℓ−1λ1. (26)

The equation of state splits into two separate equations, the zero-loop equation

− λ0e
−ψ0(r) − σ(r)

q
− ∇2ψ0(r)

ℓ̃B
= 0, (27)
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which is the ordinary Poisson Boltzmann equation, and the next-leading correction,

− λ1e
−ψ0(r) + λ0e

−ψ0(r)ψ1(r) −
∇2ψ1(r)

ℓ̃B
+
λ0

2
e−ψ0(r)G(r, r) = 0. (28)

The correlation function is determined by

(

−∇2

ℓ̃B
+ λ0e

−ψ0(r)

)

G(r, r′) = δ(r − r
′). (29)

The fugacity is at the zero-loop level determined by

λ0 =
〈N〉

∫

dr e−ψ0(r)
(30)

and at the next-leading level by

λ1 = λ0

∫

dr e−ψ0(r)ψ1(r)
∫

dr e−ψ0(r)
+
λ0

2

∫

dr e−ψ0(r)G(r, r)
∫

dr e−ψ0(r)
. (31)

Combining the equations for ψ1 and G, Eqs.(28) and (29), we obtain for the correction to the electrostatic potential

ψ1(r) = −λ0

2

∫

dr′ e−ψ0(r′)G(r′, r)

[

G(r′, r′) − 2λ1

λ0

]

, (32)

which contains an implicit dependence on ψ1 on the right-hand side through the dependence of λ1 on ψ1, see Eq.(31).
Algebraically solving Eqs.(31) and (32) we obtain

∫

dr e−ψ0(r)ψ1(r) =
−(λ0/2)

∫

drdr′ e−ψ0(r)−ψ0(r
′)G(r′, r) [G(r, r) − Z/Y ]

1 − (λ0/Y )
∫

drdr′ e−ψ0(r)−ψ0(r′)G(r′, r)
, (33)

where we used the short-hand notations

Y =

∫

dr e−ψ0(r) (34)

and

Z =

∫

dr e−ψ0(r)G(r, r). (35)

The one-loop correction to the electrostatic potential is therefore determined by Eq.(32) in conjunction with the
equations determining G and λ1, Eqs.(29) and (31).

IV. SINGLE CHARGED IMPENETRABLE WALL

In the following we consider the case of a charged wall which is impenetrable for the counterions. The fixed charge
distribution is given by σ(r) = σ δ(z) where σ is the surface charge density at the charged wall. The solution for the
one-dimensional Poisson-Boltzmann equation, Eq.(27), is

ψ0(z) = 2 ln(1 + z/µ), (36)

where µ =
√

2/ℓ̃Bλ0 = 1/
√

2πq2ℓBλ0 is the Gouy-Chapman length. Enforcement of the normalization condition,

Eq.(30), leads to a relation between the surface charge density σ and the Gouy-Chapman length, σ = qλ0µ, which
can be further transformed to λ0 = 2πℓBσ

2 and 1/µ = 2πℓBqσ, the standard results.
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A. Calculation of the correlation function

Due to lateral invariance, the Green’s function G(r, r′) can be Fourier transformed in the directions perpendicular
to the surface; the equation for the Green’s function, Eq.(29), becomes

(

− d2

dz2
+ p2 + ℓ̃Bλ0e

−ψ0(z)

)

G(z, z′, p) = ℓ̃Bδ(z − z′). (37)

where ~p are the Fourier variables in the lateral directions, and p = |~p|. The potential ψ0(z) is given by Eq.(36) for
z > 0. Since the ions cannot penetrate into the wall, the counter-ion density is zero for z < 0, or, equivalently, we
put ψ0(z) = ∞ for z < 0. The solution can be obtained in a straightforward manner and reads

G(z, z′, p) =
ℓ̃B
2p5

(

p

z′ + µ
+ p2

)

[

(

− p

z + µ
+ p2

)

ep(z−z
′) +

( p
z + µ + p2

1 + 2p2µ2 + 2pµ

)

e−p(z+z
′)

]

(38)

for z′ > z > 0. The solution for z > z′ > 0 follows from Eq.(38) by an interchange of the arguments z and z′. In the
limit p = 0 we obtain

G(z, z′, p = 0) =
ℓ̃Bµ(2 + (1 + z/µ)3)

3(1 + z/µ)(1 + z′/µ)
(39)

for z′ > z > 0 (and with the coordinates interchanged for z > z′ > 0). The self interaction is defined as the equal-point
Green’s function and follows from the partially Fourier-transformed Green’s function as

Gself(z) =

∫

d2p

(2π)2
G(z, z, p). (40)

The integral to be solved is, subtracting the (infinite) Coulomb self energy Gself(z = ∞),

Gself(z) =
ℓ̃B
2

∫

∞

0

dp

2π

[

− 1

(z + µ)2p2
+

1 + 2p−1(z + µ)−1 + p−2(z + µ)−2

1 + 2p2µ2 + 2pµ
e−2pz

]

. (41)

The integral can be performed by some intermediate transformations, and the result can be written in a scaling form
as

Gself(z) =
ℓ̃B
4πµ

g(z/µ) (42)

where the scaling function g(x) is explicitly given by

g(x) =
1

2(1 + x)2

[

ie(1−i)xE1[(1 − i)x](1 + ix)2 − ie(1+i)xE1[(1 + i)x](1 − ix)2 − 4x
]

(43)

and plotted in Fig.2. The function E1[x] is the exponential-integral function [23]. The prefactor of the scaling function
in Eq.(42),

ℓ̃B
4πµ

=
q2ℓB
µ

= 2πq3ℓ2Bσ, (44)

is a measure of the importance of correlation effects and thus the departure from mean-field behavior. We note that
it is this single parameter combination which measures the relative importance of fluctuation corrections. Clearly,
the cubic dependence on the counter-ion valency shows that fluctuation effects will become much more dominant for
multivalent ions. As can be seen from Fig.2, the self energy is negative, which reflects the fact that the screening due
to counter ions lowers the local free energy of charged particles. The scaling function g(z/µ) shows a minimum at
a finite distance from the wall, z/µ ≈ 0.2. This maximum in screening is closely connected with a maximum in the
counter-ion density at about this distance from the wall, as we will show in Section IV.C. The asymptotic behavior
for small separations from the wall is

g(x) ≃ −π
4

(1 − x lnx) (45)

and

g(x) ≃ − 3

2x
(46)

for large separations. The functions Eqs.(45) and (46) are shown in Figs.2a and 2b as broken lines.
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B. Calculation of the one-loop correction to the electrostatic potential

The solution of the equation for ψ1 is considerably simplified by the fact that, for the specific mean-field potential
given in Eq.(36), we find

∫

dz G(z, z′, p = 0)e−ψ0(z) = ℓ̃Bµ
2/2 (47)

independent of z′. It immediately follows from Eq.(32) that the integral
∫

dze−ψ0(z)ψ1(z) is zero and, as a consequence,
the equation for ψ1, Eq.(32), is independent of any constant appearing in the correlation function G. This holds
in particular for the Coulombic self energy and therefore justifies that we neglected this (infinite) constant in the
calculation of the self interaction. This is an example of a renormalization of a one-point correlation function, which
otherwise is plagued by the (infinite) Coulombic self-energy. The normalization of the bare potential ψ0, Eq.(36) is

∫

dz e−ψ0(z) = µ. (48)

The renormalization constant appearing in Eq.(32) thus is

2λ1

λ0
=

∫

dz e−ψ0(z)Gself(z)
∫

dz e−ψ0(z)
= − ℓ̃Bc1

4πµ
(49)

where the numerical constant is c1 =
∫

∞

0 dxg(x)(1+x)−2 = 0.6208593. Our final result for the potential is, according
to Eq.(32),

ψ1(z) =
ℓ̃B
4πµ

[

f(z/µ)− c1
2

]

, (50)

where the scaling function f(x) is defined by

f(x) = −
∫ x

0

dx′
2 + (1 + x′)3

3(1 + x)(1 + x′)3
g(x′) −

∫

∞

x

dx′
2 + (1 + x)3

3(1 + x)(1 + x′)3
g(x′) (51)

and graphically presented in Fig.3. The asymptotic behavior for small separations is

f(x) ≃ π

8

(

1 − x3 lnx

3

)

(52)

and for large separations we obtain

f(x) ≃ lnx

2x
. (53)

The asymptotic formulas are shown in Fig.3 as broken lines.

C. Calculation of the counter-ion density

The counter ion density ρ(r) can be calculated from the Gibbs potential Eq.(19) by taking a derivative with respect
to the generating field h. The result is, including the one-loop correction, given by

ρ(r) = λe−ψ(r) − λ

2ℓ
e−ψ(r)G(r, r) (54)

and leads via integration to the total ion number N , Eq.(24), as it should. Subtracting the equation of state, Eq.(22),
we obtain the Poisson equation,

ρ(r) = −σ(r)

q
− ∇2ψ(r)

ℓ̃B
. (55)

8



In fact, the equation Eq.(55) is exact to all orders in the loop expansion, since the equation of state contains exactly
the same terms as does the particle density and thus leads to an exact cancelation of all higher-loop terms. This is
so because in the Hamiltonian Eq.(9), the generating field h enters in the same way as the fluctuating potential φ,
except for the linear and quadratic terms. Expanding the counter ion density in powers of the loop parameter,

ρ(r) = ρ0(r) + ℓ−1ρ1(r), (56)

and using the loop-wise expansions of the fugacity λ and the electrostatic potential ψ(r) introduced in Section III,
the zero-loop (or mean-field) result for the counter ion density is

ρ0(r) = λ0e
−ψ0(r) (57)

and the one-loop correction reads

ρ1(r) = λ0e
−ψ0(r)

(

λ1

λ0
− ψ1(r) −

1

2
G(r, r)

)

. (58)

Using the explicit solution for the single charged wall, Eq.(36), and the result for the mean-field fugacity, λ0 = 2/ℓ̃Bµ
2,

the zero-loop density can be written as

ρ0(z) =

(

2

ℓ̃Bµ2

)

1

(1 + z/µ)2
(59)

and the one-loop correction reads

ρ1(z) =

(

2

ℓ̃Bµ2

)

ℓ̃B
4πµ

h(z/µ) (60)

where the scaling function h(x) can be written in terms of the previously defined scaling functions and reads

h(x) = −f(x) + g(x)/2

(1 + x)2
. (61)

In Fig.4 we plot the scaling function h(x). The density correction vanishes at the charged wall, and for small
separations the asymptotic behavior follows from Eqs. (45) and (52) as

h(x) ≃ −π
8
x lnx. (62)

The density corrections is positive for x < 1, i.e. for distances from the wall smaller than the Gouy-Chapman length
µ fluctuations and correlations lead to an enhanced density, quite in accord with expectations: Each counter ion is
surrounded by a correlation hole, which is neglected on a mean-field level. Mean field theory therefore overestimates
the repulsion between counter ions, and therefore underestimates the density close to the charged wall. This is in
qualitative agreement with Monte-Carlo simulations [16]. We note that since the slope of the density correction is
infinite close to the wall, see Eq.(62), our results predict always an initial increase of the counter-ion density as one
moves away from the substrate. The total integral over the density correction vanishes; the increase in density close
to the wall is therefore compensated by a decrease in density further away from the wall, as shown in Fig.4b. For
large separations from the wall, the asymptotic behavior follows from Eqs. (45) and (52) as

h(x) ≃ − lnx

x3
. (63)

In Fig. 5 we plot the rescaled density ρ̄(z) = (ℓ̃Bµ
2/2)ρ(z) as a function of the rescaled distance from the wall z/µ,

for four different values of the parameter ℓ̃B/4πµ. The broken line, for ℓ̃B/4πµ = 0, denotes the PB result, the other
three solid lines are for ℓ̃B/4πµ = 1, 5, and 10, with the difference to the broken line increasing as the parameter
ℓ̃B/4πµ increases. We see that already for rather small values of ℓ̃B/4πµ, the one-loop result for the counter ion
distribution is quite different from the PB result. The density depression far away from the wall is proportional to
the parameter ℓ̃B/4πµ. It is clear that for very large values of this parameter, the sum of the zero-loop and the
one-loop densities will become negative. This in fact happens at ℓ̃B/4πµ ≈ 12, which clearly sets an upper limit to
the applicability of the present one-loop calculation. It is likely that the one-loop calculation becomes quantitatively
inaccurate even for smaller values of this parameter, but the precise value of ℓ̃B/4πµ when this happens can only be
judged by a numerical calculation (such as Monte Carlo) or by a higher-loop calculation.
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V. INTERACTION BETWEEN CHARGED PARTICLES

In this section we calculate the effective interaction between charged test particles. As mentioned before, test
particles can be incorporated into the model by adding them to the charge distribution in Eq.(1) according to

σ(r) → σ(r) +

M
∑

j=1

Qjδ(r − Rj), (64)

where we have considered a collection of j = 1, . . . ,M test particles with charges Qj and positions Rj. Inserting this
shifted charge distribution into the grand-canonical partition function Eq. (8), the reduced test-particle free energy
turns out to be

f({RM}) = − ln

〈

e
−ı
∑

j
Qjφ(Rj)/q

〉

. (65)

Using the separation of the fluctuating field φ into the expectation value ψ and the fluctuations around the expectation
value, Eq.(15), the free energy can be reexpressed as

f({RM}) =

M
∑

j=1

Qjψ(Rj)/q +
1

2

M
∑

j,k=1

QjQkG(Rj ,Rk)/q
2. (66)

Using the loop-expansion of the electrostatic potential, ψ, Eq.(25), and the definition of the self interaction, Gself ,
Eq.(40), the free energy becomes on the one-loop level

f({RM}) =

M
∑

j=1

{

Qj
q

[ψ0(Zj) + ψ1(Zj)] +
Q2
j

2q2
Gself(Zj)

}

+

M
∑

j<k

QjQk
q2

G(Rj ,Rk) (67)

and thus separates into a single-particle part and a two-particle part. The single-particle contribution contains the
ordinary Gouy-Chapman potential, ψ0(z), given by Eq.(36), a contribution due to fluctuation-induced changes of the
electrostatic potential, ψ1(z), given by Eq.(50), and a contribution due to correlations between counterions and a test
particle, Q2

jGself(z), given by Eq.(42). Since the correlation contribution is attractive and proportional to the square
of the test-particle charge, it will be dominant for large test-particle charge and lead to attraction even in the case of
a similarly charged wall. This somewhat surprising behavior has in fact been seen in Monte-Carlo simulations [11].
We note that on the two-loop level, in addition a three-point interaction appears.

Finally we will present results for the interaction between two particles in the neighborhood of the charged wall and
thus under the influence of the loosely bound counter-ion cloud. To make the results somewhat more transparent, we
will confine ourselves to particles which have the same vertical distance from the wall. The effective interaction then
follows by Fourier transformation and reads

G(z, r) =

∫

dpp

2π
G(z, z, p)J0(pr) (68)

where the Green’s function G(z, z, p) is determined by Eq.(38) and J0(x) denotes the Bessel function of the first kind
[23]. For particles which are very close to each other, r < µ, and/or very far apart from the charged surface, z > r,
the interaction is basically unscreened and given by

G(z, r) ≃ ℓBq
2/r. (69)

For particles that are far apart from each other, r > µ, but close to the surface, z < µ, the effective interaction is
given by

G(z, r) ≃ 2ℓBq
2µ2

r3

(

1 − 4
z

µ
+ 6

z2

µ2
+ · · ·

)

. (70)

The main feature is that the effective interaction is screened and thus reduced compared to the bare Coulomb
interaction, but the screening is much weaker than for example in a salt solution and the interaction decays as
an inverse cube of the distance. This behavior has previously been predicted by liquid-state calculations and is
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interpreted as the effective dipole-dipole interaction between the test-charges and their associated counter-ion clouds
[24–26]. The effective interaction between two induced dipoles is unscreened because the lower half-space is assumed
to be impenetrable to ions and thus allows the unattenuated passage of electric field lines. From Eq.(70) it follows
that the screening is maximal at a finite distance away from the wall. This is connected with the maximum in the
counter-ion distribution, see Fig.4. For particles that are far apart from each other, r > µ, and also relatively far
apart from the surface, µ < z < r, the effective interaction is given by

G(z, r) ≃ 2ℓBq
2z2

r3
(71)

and thus increases gradually as one move away from the surface. At a separation from the surface which equals the
interparticle distance, z ∼ r, the effective interaction has the same magnitude as the bare Coulomb interaction, and
we find the effective interaction to cross over smoothly to the bare interaction as given by Eq.(69).

VI. DISCUSSION

In this article we have formulated the non-linear field theory for mobile counter ions under the influence of fixed
charge distributions. We showed explicitly that the Poisson-Boltzmann equation corresponds to the saddle-point
equation, and how correlations and fluctuations can be accounted for by a loop-wise expansion of the action around
this saddle point. We find the Poisson equation to be satisfied at each order in this expansion. Clearly, the Boltz-
mann equation is not satisfied when going beyond the saddle point, and this is the reason for deviations from the
Poisson-Boltzmann equation. Particularly useful is the introduction of the Gibbs potential Γ[ψ], which only contains
one-particle irreducible diagrams (and thus reduces the number of diagrams to be considered) and which allows to
directly calculate the electrostatic potential distribution via the equation of state. We applied our formalism to the
case of a charged wall which is impenetrable to counter ions and obtained, to one-loop order and without further
approximations, the electrostatic potential, the counter-ion distribution, and the effective interactions between test
particles. We find that the counter-ion density is increased close to the wall as compared to the mean-field (Poisson-
Boltzmann, PB) solution, however, right at the wall the density is unchanged as compared to PB. The increase close
to the wall is due to correlations between counter ions, which are not captured in the PB approach and which reduce
the repulsion between counter ions. The surface potential is increased at the surface. The relative strength of the
one-loop correction is proportional to the single parameter ℓ̃B/4πµ = 2πq3ℓ2Bσ and thus is proportional to the cube

of the counter ion valency. Our results become unphysical at ℓ̃B/4πµ ≈ 12. The value of ℓ̃B/4πµ up to which our
results are accurate could only be inferred from quantitative comparisons with numerical simulations, which we plan
to do in the future. Our formalism can in principle applied to all situations where the PB equation can be solved in
closed-form. It would be particularly useful to obtain the one-loop correction for a charged wall in a salt solution,
because this would represent the bridge between Debye-Hückel and Poisson-Boltzmann theory.
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FIG. 1. a) One-loop and b) two-loop diagrams that enter the calculation of the logarithm of the partition function, Eq.(18).
The two-loop diagram to the right is one-particle reducible and thus cancels out when going to the Gibbs potential, Eq.(19).

FIG. 2. Plot of the rescaled self-energy g as a function of the rescaled distance from the wall, z/µ, as determined by Eq.(42).
The asymptotic behavior for small and large wall distance, Eqs.(45) and (46), are drawn as broken lines in a) and b), respectively.

FIG. 3. Plot of the rescaled correction to the electrostatic potential f , as defined by Eq.(50). The asymptotic results for
small and large separation from the wall, Eqs.(52) and (53), are denoted by broken lines.

FIG. 4. Plot of the rescaled one-loop correction to the counter ion density h, as defined by the Eqs.(60) and (61). One notes
that the density change at the substrate surface vanishes identically.

FIG. 5. Plot of the one-loop prediction for the rescaled density ρ̄(z) = (ℓ̃Bµ2/2)ρ(z) as a function of the rescaled distance
from the wall z/µ, for four different values of the parameter ℓ̃B/4πµ. The broken line denotes the PB result; the other three
solid lines are for ℓ̃B/4πµ = 1, 5, and 10, with the distance to the PB curve increasing as ℓ̃B/4πµ increases.
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