Skip to main content
Log in

Proteolytic activation of the epithelial sodium channel and therapeutic application of a serine protease inhibitor for the treatment of salt-sensitive hypertension

  • Review Article
  • The 36th IUPS Satellite Symposium: The Kidney and Hypertension
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Proteases are involved in numerous essential biological processes including blood clotting, controlled cell death, and tissue differentiation. Prostasin, a glycosylphosphatidylinositol-anchored serine protease, has been identified as a potential regulator of the epithelial sodium channel (ENaC) function in the kidney, lung, and airways. ENaC is composed of three homologous subunits α, β, and, γ. The dual cleavage of α subunit by furin and γ subunit by prostasin and furin releases inhibitory segments from ENaC, leading to the channel activation. Protease nexin-1, an endogenous prostasin inhibitor, inhibits ENaC activity through the suppression of prostasin activity, strongly suggesting the possibility that a coordinated regulation of serine proteases and serine protease inhibitors plays a key role in the sodium handling in the kidney. Camostat mesilate (CM), a synthetic serine protease inhibitor, reduced prostasin activity and subsequently decreased ENaC current. Oral administration of CM to Dahl salt-sensitive rats resulted in a significant decrease in blood pressure with an elevation of the urinary sodium/potassium ratio. These findings suggest that synthetic serine protease inhibitors such as CM might represent a new class of antihypertensive drugs in patients with salt-sensitive hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Neurath H. The versatility of proteolytic enzymes. J Cell Biochem. 1986;32(1):35–49.

    Article  PubMed  CAS  Google Scholar 

  2. Yu JX, Chao L, Chao J. Prostasin is a novel human serine proteinase from seminal fluid. Purification, tissue distribution, and localization in prostate gland. J Biol Chem. 1994;269(29):18843–8.

    PubMed  CAS  Google Scholar 

  3. Yu JX, Chao L, Ward DC, Chao J. Structure and chromosomal localization of the human prostasin (PRSS8) gene. Genomics. 1996;32(3):334–40.

    Article  PubMed  CAS  Google Scholar 

  4. Yu JX, Chao L, Chao J. Molecular cloning, tissue-specific expression, and cellular localization of human prostasin mRNA. J Biol Chem. 1995;270(22):13483–9.

    PubMed  CAS  Google Scholar 

  5. Vallet V, Pfister C, Loffing J, Rossier BC. Cell-surface expression of the channel activating protease xCAP-1 is required for activation of ENaC in the Xenopus oocyte. J Am Soc Nephrol. 2002;13(3):588–94.

    PubMed  CAS  Google Scholar 

  6. Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC. An epithelial serine protease activates the amiloride-sensitive sodium channel. Nature. 1997;389(6651):607–10.

    Article  PubMed  CAS  Google Scholar 

  7. Chraibi A, Vallet V, Firsov D, Hess SK, Horisberger JD. Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes. J Gen Physiol. 1998;111(1):127–38.

    Article  PubMed  CAS  Google Scholar 

  8. Barbry P, Lazdunski M. Structure and regulation of the amiloride-sensitive epithelial sodium channel. Ion Channels. 1996;4:115–67.

    PubMed  CAS  Google Scholar 

  9. Garty H, Palmer LG. Epithelial sodium channels: function, structure, and regulation. Physiol Rev. 1997;77(2):359–96.

    PubMed  CAS  Google Scholar 

  10. Rossier BC. 1996 Homer Smith Award Lecture. Cum grano salis: the epithelial sodium channel and the control of blood pressure. J Am Soc Nephrol. 1997;8(6):980–92.

    PubMed  CAS  Google Scholar 

  11. Firsov D, Schild L, Gautschi I, Merillat AM, Schneeberger E, Rossier BC. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci USA. 1996;93(26):15370–5.

    Article  PubMed  CAS  Google Scholar 

  12. Hansson JH, Schild L, Lu Y, Wilson TA, Gautschi I, Shimkets R, Nelson-Williams C, Rossier BC, Lifton RP. A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci USA. 1995;92(25):11495–9.

    Article  PubMed  CAS  Google Scholar 

  13. Oh YS, Warnock DG. Disorders of the epithelial Na(+) channel in Liddle’s syndrome and autosomal recessive pseudohypoaldosteronism type 1. Exp Nephrol. 2000;8(6):320–5.

    Article  PubMed  CAS  Google Scholar 

  14. Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest. 1999;104(7):R19–23.

    Article  PubMed  CAS  Google Scholar 

  15. Caldwell RA, Boucher RC, Stutts MJ. Neutrophil elastase activates near-silent epithelial Na+ channels and increases airway epithelial Na+ transport. Am J Physiol Lung Cell Mol Physiol. 2005;288(5):L813–9.

    Article  PubMed  CAS  Google Scholar 

  16. Passero CJ, Mueller GM, Rondon-Berrios H, Tofovic SP, Hughey RP, Kleyman TR. Plasmin activates epithelial Na+ channels by cleaving the gamma subunit. J Biol Chem. 2008;283(52):36586–91.

    Article  PubMed  CAS  Google Scholar 

  17. Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, Pilewski JM, Hughey RP, Kleyman TR. Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the gamma-subunit. J Biol Chem. 2007;282(9):6153–60.

    Article  PubMed  CAS  Google Scholar 

  18. Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, Carattino MD, Johnson JP, Stockand JD, Kleyman TR. Epithelial sodium channels are activated by furin-dependent proteolysis. J Biol Chem. 2004;279(18):18111–4.

    Article  PubMed  CAS  Google Scholar 

  19. Rossier BC. The epithelial sodium channel: activation by membrane-bound serine proteases. Proc Am Thorac Soc. 2004;1(1):4–9.

    Article  PubMed  CAS  Google Scholar 

  20. Vuagniaux G, Vallet V, Jaeger NF, Hummler E, Rossier BC. Synergistic activation of ENaC by three membrane-bound channel-activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum- and glucocorticoid-regulated kinase (Sgk1) in Xenopus oocytes. J Gen Physiol. 2002;120(2):191–201.

    Article  PubMed  CAS  Google Scholar 

  21. Carattino MD, Sheng S, Bruns JB, Pilewski JM, Hughey RP, Kleyman TR. The epithelial Na+ channel is inhibited by a peptide derived from proteolytic processing of its alpha subunit. J Biol Chem. 2006;281(27):18901–7.

    Article  PubMed  CAS  Google Scholar 

  22. Sheng S, Carattino MD, Bruns JB, Hughey RP, Kleyman TR. Furin cleavage activates the epithelial Na+ channel by relieving Na+ self-inhibition. Am J Physiol Renal Physiol. 2006;290(6):F1488–96.

    Article  PubMed  CAS  Google Scholar 

  23. Kitamura K, Tomita K. Regulation of renal sodium handling through the interaction between serine proteases and serine protease inhibitors. Clin Exp Nephrol. 2010;14(5):405–10.

    Article  PubMed  CAS  Google Scholar 

  24. Carattino MD, Passero CJ, Steren CA, Maarouf AB, Pilewski JM, Myerburg MM, Hughey RP, Kleyman TR. Defining an inhibitory domain in the alpha-subunit of the epithelial sodium channel. Am J Physiol Renal Physiol. 2008;294(1):F47–52.

    Article  PubMed  CAS  Google Scholar 

  25. Hughey RP, Bruns JB, Kinlough CL, Kleyman TR. Distinct pools of epithelial sodium channels are expressed at the plasma membrane. J Biol Chem. 2004;279(47):48491–4.

    Article  PubMed  CAS  Google Scholar 

  26. Caldwell RA, Boucher RC, Stutts MJ. Serine protease activation of near-silent epithelial Na+ channels. Am J Physiol Cell Physiol. 2004;286(1):C190–4.

    Article  PubMed  CAS  Google Scholar 

  27. Chen LM, Zhang X, Chai KX. Regulation of prostasin expression and function in the prostate. Prostate. 2004;59(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  28. Baker JB, Low DA, Simmer RL, Cunningham DD. Protease-nexin: a cellular component that links thrombin and plasminogen activator and mediates their binding to cells. Cell. 1980;21(1):37–45.

    Article  PubMed  CAS  Google Scholar 

  29. Gronke RS, Bergman BL, Baker JB. Thrombin interaction with platelets. Influence of a platelet protease nexin. J Biol Chem. 1987;262(7):3030–6.

    PubMed  CAS  Google Scholar 

  30. Scott RW, Bergman BL, Bajpai A, Hersh RT, Rodriguez H, Jones BN, Barreda C, Watts S, Baker JB. Protease nexin. Properties and a modified purification procedure. J Biol Chem. 1985;260(11):7029–34.

    PubMed  CAS  Google Scholar 

  31. Wakida N, Kitamura K, Tuyen DG, Maekawa A, Miyoshi T, Adachi M, Shiraishi N, Ko T, Ha V, Nonoguchi H, Tomita K. Inhibition of prostasin-induced ENaC activities by PN-1 and regulation of PN-1 expression by TGF-beta1 and aldosterone. Kidney Int. 2006;70(8):1432–8.

    Article  PubMed  CAS  Google Scholar 

  32. Fan B, Wu TD, Li W, Kirchhofer D. Identification of hepatocyte growth factor activator inhibitor-1B as a potential physiological inhibitor of prostasin. J Biol Chem. 2005;280(41):34513–20.

    Article  PubMed  CAS  Google Scholar 

  33. Iwashita K, Kitamura K, Narikiyo T, Adachi M, Shiraishi N, Miyoshi T, Nagano J, Tuyen DG, Nonoguchi H, Tomita K. Inhibition of prostasin secretion by serine protease inhibitors in the kidney. J Am Soc Nephrol. 2003;14(1):11–6.

    Article  PubMed  CAS  Google Scholar 

  34. Myerburg MM, Butterworth MB, McKenna EE, Peters KW, Frizzell RA, Kleyman TR, Pilewski JM. Airway surface liquid volume regulates ENaC by altering the serine protease-protease inhibitor balance. J Biol Chem. 2006;281(38):27942–9.

    Article  PubMed  CAS  Google Scholar 

  35. Olivier R, Scherrer U, Horisberger JD, Rossier BC, Hummler E. Selected contribution: limiting Na+ transport rate in airway epithelia from alpha-ENaC transgenic mice: a model for pulmonary edema. J Appl Physiol. 2002;93(5):1881–7.

    PubMed  CAS  Google Scholar 

  36. Harris M, Firsov D, Vuagniaux G, Stutts MJ, Rossier BC. A novel neutrophil elastase inhibitor prevents elastase activation and surface cleavage of the epithelial sodium channel expressed in Xenopus laevis oocytes. J Biol Chem. 2007;282(1):58–64.

    Article  PubMed  CAS  Google Scholar 

  37. Rapp JP. Dahl salt-susceptible and salt-resistant rats. A review. Hypertension. 1982;4(6):753–63.

    PubMed  CAS  Google Scholar 

  38. Bayorh MA, Ganafa AA, Emmett N, Socci RR, Eatman D, Fridie IL. Alterations in aldosterone and angiotensin II levels in salt-induced hypertension. Clin Exp Hypertens. 2005;27(4):355–67.

    PubMed  CAS  Google Scholar 

  39. Kobori H, Nishiyama A. Effects of tempol on renal angiotensinogen production in Dahl salt-sensitive rats. Biochem Biophys Res Commun. 2004;315(3):746–50.

    Article  PubMed  CAS  Google Scholar 

  40. Kobori H, Nishiyama A, Abe Y, Navar LG. Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet. Hypertension. 2003;41(3):592–7.

    Article  PubMed  CAS  Google Scholar 

  41. Bayorh MA, Mann G, Walton M, Eatman D. Effects of enalapril, tempol, and eplerenone on salt-induced hypertension in Dahl salt-sensitive rats. Clin Exp Hypertens. 2006;28(2):121–32.

    Article  PubMed  CAS  Google Scholar 

  42. Kobayashi N, Yoshida K, Nakano S, Ohno T, Honda T, Tsubokou Y, Matsuoka H. Cardioprotective mechanisms of eplerenone on cardiac performance and remodeling in failing rat hearts. Hypertension. 2006;47(4):671–9.

    Article  PubMed  CAS  Google Scholar 

  43. Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension. 2006;47(6):1084–93.

    Article  PubMed  CAS  Google Scholar 

  44. Takeda Y, Zhu A, Yoneda T, Usukura M, Takata H, Yamagishi M. Effects of aldosterone and angiotensin II receptor blockade on cardiac angiotensinogen and angiotensin-converting enzyme 2 expression in Dahl salt-sensitive hypertensive rats. Am J Hypertens. 2007;20(10):1119–24.

    Article  PubMed  CAS  Google Scholar 

  45. Aoi W, Niisato N, Miyazaki H, Marunaka Y. Flavonoid-induced reduction of ENaC expression in the kidney of Dahl salt-sensitive hypertensive rat. Biochem Biophys Res Commun. 2004;315(4):892–6.

    Article  PubMed  CAS  Google Scholar 

  46. Aoi W, Niisato N, Sawabe Y, Miyazaki H, Marunaka Y. Aldosterone-induced abnormal regulation of ENaC and SGK1 in Dahl salt-sensitive rat. Biochem Biophys Res Commun. 2006;341(2):376–81.

    Article  PubMed  CAS  Google Scholar 

  47. Aoi W, Niisato N, Sawabe Y, Miyazaki H, Tokuda S, Nishio K, Yoshikawa T, Marunaka Y. Abnormal expression of ENaC and SGK1 mRNA induced by dietary sodium in Dahl salt-sensitively hypertensive rats. Cell Biol Int. 2007;31(10):1288–91.

    Article  PubMed  CAS  Google Scholar 

  48. Kakizoe Y, Kitamura K, Ko T, Wakida N, Maekawa A, Miyoshi T, Shiraishi N, Adachi M, Zhang Z, Masilamani S, Tomita K. Aberrant ENaC activation in Dahl salt-sensitive rats. J Hypertens. 2009;27(8):1679–89.

    Article  PubMed  CAS  Google Scholar 

  49. Maekawa A, Kakizoe Y, Miyoshi T, Wakida N, Ko T, Shiraishi N, Adachi M, Tomita K, Kitamura K. Camostat mesilate inhibits prostasin activity and reduces blood pressure and renal injury in salt-sensitive hypertension. J Hypertens. 2009;27(1):181–9.

    Article  PubMed  CAS  Google Scholar 

  50. Yamasaki Y, Satomi S, Murai N, Tsuzuki S, Fushiki T. Inhibition of membrane-type serine protease 1/matriptase by natural and synthetic protease inhibitors. J Nutr Sci Vitaminol (Tokyo). 2003;49(1):27–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichiro Kitamura.

About this article

Cite this article

Kitamura, K., Tomita, K. Proteolytic activation of the epithelial sodium channel and therapeutic application of a serine protease inhibitor for the treatment of salt-sensitive hypertension. Clin Exp Nephrol 16, 44–48 (2012). https://doi.org/10.1007/s10157-011-0506-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0506-1

Keywords

Navigation