
ar
X

iv
:1

50
5.

06
07

0v
2

 [
m

at
h.

O
C

]
 5

 J
an

 2
01

7

Global convergence rate analysis of unconstrained optimization

methods based on probabilistic models

C. Cartis∗ K. Scheinberg†

January 6, 2017

Abstract

We present global convergence rates for a line-search method which is based on random
first-order models and directions whose quality is ensured only with certain probability. We
show that in terms of the order of the accuracy, the evaluation complexity of such a method is
the same as its counterparts that use deterministic accurate models; the use of probabilistic
models only increases the complexity by a constant, which depends on the probability of the
models being good. We particularize and improve these results in the convex and strongly
convex case.

We also analyze a probabilistic cubic regularization variant that allows approximate prob-
abilistic second-order models and show improved complexity bounds compared to probabilis-
tic first-order methods; again, as a function of the accuracy, the probabilistic cubic regular-
ization bounds are of the same (optimal) order as for the deterministic case.

Keywords: line-search methods, cubic regularization methods, random models, global convergence
analysis.

1 Introduction

We consider in this paper the unconstrained optimization problem

min
x∈Rn

f(x),

where the first (and second, when specified) derivatives of the objective function f(x) are as-
sumed to exist and be (globally) Lipschitz continuous.

Most unconstrained optimization methods rely on approximate local information to compute
a local descent step in such a way that sufficient decrease of the objective function is achieved.

∗Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2
6GG, United Kingdom (cartis@maths.ox.ac.uk). This work was partially supported by the Oxford University
EPSRC Platform Grant EP/I01893X/1.

†Department of Industrial and Systems Engineering, Lehigh University, Harold S. Mohler Laboratory, 200
West Packer Avenue, Bethlehem, PA 18015-1582, USA (katyas@lehigh.edu). The work of this author is partially
supported by NSF Grants DMS 10-16571, DMS 13-19356, CCF-1320137, AFOSR Grant FA9550-11-1-0239, and
DARPA grant FA 9550-12-1-0406 negotiated by AFOSR.

1

http://arxiv.org/abs/1505.06070v2

To ensure such sufficient decrease, the step has to satisfy certain requirements. Often in practical
applications ensuring these requirements for each step is prohibitively expensive or impossible.
This may be due to the fact that derivative information about the objective function is not
available or because full gradient (and Hessian) are too expensive to compute, or a model of the
objective function is too expensive to optimize accurately.

Recently, there has been a significant increase in interest in unconstrained optimization
methods with inexact information. Some of these methods consider the case when gradient
information is inaccurate. This error in the gradient computation may simply be bounded
in the worst case (deterministically), see, for example, [11, 20], or the error is random and
the estimated gradient is accurate in expectation, as in stochastic gradient algorithms, see for
example, [12, 19, 23, 21]. These methods are typically applied in a convex setting and do not
extend to nonconex cases. Complexity bounds are derived that bound the expected accuracy
that is achieved after a given number of iterations.

In the nonlinear optimization setting, the complexity of various unconstrained methods has
been derived under exact derivative information [7, 8, 17], and also under inexact information,
where the errors are bounded in a deterministic fashion [3, 6, 11, 14, 20]. In all the cases of the
deterministic inexact setting, traditional optimization algorithms such as line search, trust region
or adaptive regularization algorithms are applied with little modification and work in practice
as well as in theory, while the error is assumed to be bounded in some decaying manner at
each iteration. In contrast, the methods based on stochastic estimates of the derivatives, do not
assume deterministically bounded errors, however they are quite different from the ”traditional”
methods in their strategy for step size selection and averaging of the iterates. In other words,
they are not simple counterparts of the deterministic methods.

Our purpose in this paper is to derive a class of methods which inherit the best properties
of traditional deterministic algorithms, and yet relax the assumption that the derivative/model
error is bounded in a deterministic manner. Moreover, we do not assume that the error is zero
in expectation or that it has a bounded variance. Our results apply in the setting where at each
iteration, with sufficiently high probability, the error is bounded in a decaying manner, while in
the remaining cases, this error can be arbitrarily large. In this paper, we assume that the error
may happen in the computation of the derivatives and search directions, but that there is no
error in the function evaluations, when success of an iterate has to be validated.

Recently several methods for unconstrained black-box optimization have been proposed,
which rely on random models or directions [1, 13, 16], but are applied to deterministic functions.
In this paper we take this line of work one step further by establishing expected convergence
rates for several schemes based on one generic analytical framework.

We consider four cases and derive four different complexity bounds. In particular, we analyze
a line search method based on random models, for the cases of general nonconex, convex and
strongly convex functions. We also analyze a second order method - an adaptive regularization
method with cubics [7, 8] - which is known to achieve the optimal convergence rate for the
nonconvex smooth functions [5] and we show that the same convergence rate holds in expectation.

In summary, our results differ from existing literature using inexact, stochastic or random
information in the following main points:

• Our models are assumed to be ”good” with some probability, but there is no other as-
sumptions on the expected values or variance of the model parameters.

• The methods that we analyze are essentially the exact counterparts of the deterministic

2

methods, and do not require averaging of the iterates or any other significant changes.
We believe that, amongst other things, our analysis helps to understand the convergence
properties of practical algorithms, that do not always seek to ensure theoretically required
model quality.

• Our main convergence rate results provide a bound on the expected number of iterations
that the algorithms take before they achieve a desired level of accuracy. This is in contrast
to a typical analysis of randomized or stochastic methods, where what is bounded is the
expected error after a given number of iterations. Both bounds are useful, but we believe
that the bound on the expected number of steps is a somewhat more meaningful complexity
bound in our setting. The only other work that we are aware of which provides bounds in
terms of the number of required steps is [13] where probabilistic bounds are derived in the
particular context of random direct search with possible extension to trust region methods
as discussed in Section 6 of [13].

An additional goal of this paper is to present a general theoretical framework, which could
be used to analyze the behavior of other algorithms, and different possible model construction
mechanisms under the assumption that the objective function is deterministic. We propose a
general analysis of an optimization scheme by reducing it to the analysis of a stochastic process.
Convergence results for a trust region method in [1] also rely on a stochastic process analysis,
but only in terms of behavior in the limit. These results have now been extended to noisy
(stochastic) functions, see [9, 10]. Deriving convergence rates for methods applied to stochastic
functions is the subject of future work and is likely to depend on the results in this paper.

The rest of the paper is organized as follows. In Section 2 we describe the general scheme
which encompasses several unconstrained optimization methods. This scheme is based on using
random models, which are assumed to satisfy some ”quality” conditions with probability at
least p, conditioned on the past. Applying this optimization scheme results in a stochastic
process, whose behavior is analyzed in the later parts of Section 2. Analysis of the stochastic
process allows us to bound the expected number of steps of our generic scheme until a desired
accuracy is reached. In Section 3 we analyze a linesearch algorithm based on random models
and show how its behavior fits into our general framework for the cases of nonconex, convex and
strongly convex functions. In Section 4 we apply our generic analysis to the case of the Adaptive
Regularization method with Cubics (ARC). Finally, in Section 5 we describe different settings
where the models of the objective functions satisfy the probabilistic conditions of our schemes.

2 A general optimization scheme with random models

This section presents the main features of our algorithms and analysis, in a general framework
that we will, in subsequent sections, particularize to specific algorithms (such as linesearch and
cubic regularization) and classes of functions (convex, nonconvex). The reasons for the initial
generic approach is to avoid repetition of the common elements of the analysis for the different
algorithms and to emphasize the key ingredients of our analysis, which is possibly applicable to
other algorithms (provided they satisfy our framework).

3

2.1 A general optimization scheme

We first describe a generic algorithmic framework that encompasses the main components of
the unconstrained optimization schemes we analyze in this paper. The scheme relies on building
a model of the objective function at each iteration, minimizing this model or reducing it in
a sufficient manner and considering the step which is dependent on a stepsize parameter and
which provides the model reduction (the stepsize parameter may be present in the model or
independent of it). This step determines a new candidate point. The function value is then
computed (accurately) at the new candidate point. If the function reduction provided by the
candidate point is deemed sufficient, then the iteration is declared successful, the candidate
point becomes the new iterate and the step size parameter is increased. Otherwise, the iteration
is unsuccessful, the iterate is not updated and the step size parameter is reduced.

We summarize the main steps of the scheme below.

Algorithm 2.1 Generic optimization framework based on random models

Initialization
Choose a class of (possibly random) models mk(x), choose constants γ ∈ (0, 1), θ ∈ (0, 1),
αmax > 0. Initialize the algorithm by choosing x0, m0(x), 0 < α0 < αmax.

1. Compute a model and a step
Compute a local (possibly random) model mk(x) of f around xk.
Compute a step sk(αk) which reduces mk(x), where the parameter αk > 0 is present in the
model or in the step calculation.

2. Check sufficient decrease
Compute f(xk + sk(αk)) and check if sufficient reduction (parametrized by θ) is achieved
in f with respect to mk(x

k)−mk(x
k + sk(αk)).

3. Successful step
If sufficient reduction is achieved then, xk+1 := xk+sk(αk), set αk+1 = min{αmax, γ

−1αk}.
Let k := k + 1.

4. Unsuccessful step
Otherwise, xk+1 := xk, set αk+1 = γαk. Let k := k + 1.

Let us illustrate how the above scheme relates to standard optimization methods. In line-
search methods, one minimizes a linear model mk(x) = f(xk) + (x − xk)T gk (subject to some
normalization), or a quadratic one mk(x) = f(xk) + (x− xk)T gk + 1

2(x− xk)⊤bk(x− xk) (when
the latter is well-defined, with bk - a Hessian approximation matrix), to find directions dk = −gk

or dk = −(bk)−1gk, respectively. Then the step is defined as sk(αk) = αkd
k for some αk and,

commonly, the (Armijo) decrease condition is checked,

f(xk)− f(xk + sk(αk)) ≥ −θsk(αk)
T gk,

where −θsk(αk)
T gk is a multiple of mk(x

k)−mk(x
k + sk(αk)). Note that if the model stays the

same in that mk(x) ≡ mk−1(x) for each k, such that (k− 1)st iteration is unsuccessful, then the
above framework essentially reduces to a standard deterministic linesearch.

4

In the case of cubic regularization methods, sk(αk) is computed to approximately minimize
a cubic model mk(x) = f(xk) + (x − xk)T gk + 1

2(x − xk)⊤bk(x − xk) + 1
3αk

‖x − xk‖3 and the
sufficient decrease condition is

f(xk)− f(xk + sk(αk))

m(xk)−m(xk + sk(αk))
≥ θ > 0.

Note that here as well, in the deterministic case, gk = gk−1 and bk = bk−1 for each k such that
(k − 1)st iteration is unsuccessful but αk 6= αk−1.

The key assumption in the usual deterministic case is that the models mk(x) are sufficiently
accurate in a small neighborhood of the current iterate xk. The goal of this paper is to relax
this requirement and allow the use of random local models which are accurate only with certain
probability (conditioned on the past). In that case, note that the models need to be re-drawn
after each iteration, whether successful or not.

Note that our general setting includes the cases when the model (the derivative information,
for example) is always accurate, but the step sk is computed approximately, in a probabilistic
manner. For example, sk can be an approximation of −(bk)−1gk. It is easy to see how ran-
domness in sk calculation can be viewed as the randomness in the model, by considering that
instead of the accurate model

f(xk) + (x− xk)T gk +
1

2
(x− xk)⊤bk(x− xk)

we use an approximate model

mk(x) = f(xk)− (x− xk)T bksk +
1

2
(x− xk)⊤bk(x− xk).

Hence, as long as the accuracy requirements are carried over accordingly the approximate random
models subsume the case of approximate random step computations. The next section makes
precise our requirements on the probabilistic models.

2.2 Generic probabilistic models

We will now introduce the key probabilistic ingredients of our scheme. In particular we assume
that our models mk are random and that they satisfy some notion of good quality with some
probability p. We will consider random models Mk, and then use the notation mk = Mk(ωk) for
their realizations. The randomness of the models will imply the randomness of the points xk,
the step length parameter αk, the computed steps sk and other quantities produced by the
algorithm. Thus, in our paper, these random variables will be denoted by Xk, Ak, S

k and so
on, respectively, while xk = Xk(ωk), αk = Ak(ωk), s

k = Sk(ωk), etc, denote their realizations
(we will omit the ωk in the notation for brevity).

For each specific optimization method, we will define a notion of sufficiently accurate models.
The desired accuracy of the model depends on the current iterate xk, step parameter αk and,
possibly, the step sk(αk). This notion involves model properties which make sufficient decrease
in f achievable by the step sk(αk). Specific conditions on the models will be stated for each
algorithm in the respective sections and how these conditions may be achieved will be discussed
in Section 5.

5

Definition 2.1 [sufficiently accurate models; true and false iterations] We say that a
sequence of random models {Mk} is (p)-probabilistically “sufficiently accurate” for a correspond-
ing sequence {Ak,X

k}, if the following indicator random variable

Ik = 1{Mk is a sufficiently accurate model of f for the given Xkand Ak}

satisfy the following submartingale-like condition

P (Ik = 1| FM
k−1) ≥ p, (1)

where FM
k−1 = σ(M0, . . . ,Mk−1) is the σ-algebra generated by M0, . . . ,Mk−1 - in other words,

the history of the algorithm up to iteration k.
We say that iteration k is a true iteration if the event Ik = 1 occurs. Otherwise the iteration

is called false.

Note thatMk is a random model that, given the past history, encompasses all the randomness
of iteration k of our algorithm. The iterates Xk and the step length parameterAk are random
variables defined over the σ-algebra generated by M0, . . . ,Mk−1. Each Mk depends on Xk and
Ak and hence on M0, . . . ,Mk−1. Definition 2.1 serves to enforce the following property: even
though the accuracy of Mk may be dependent on the history, (M1, . . . ,Mk−1), via its dependence
on Xk and Ak, it is sufficiently good with probability at least p, regardless of that history. This
condition is more reasonable than complete independence of Mk from the past, which is difficult
to ensure. It is important to note that, from this assumption, it follows that whether or not the
step is deemed successful and the iterate xk is updated, our scheme always updates the model
mk, unless mk is somehow known to be sufficiently accurate for xk+1 = xk and αk+1. We will
discuss this in more detail in Section 5.

When Algorithm 2.1 is based on probabilistic models (and all its specific variants under con-
sideration), it results in a discrete time stochastic process. This stochastic process encompasses
random elements such Ak, X

k, Sk, which are directly computed by the algorithm, but also
some quantities that can be derived as functions of Ak, X

k, Sk, such as f(Xk), ‖∇f(Xk)‖ and
a quantity Fk, which we will use to denote some measure of progress towards optimality. Each
realization of the sequence of random models results in a realization of the algorithm, which in
turn produces the corresponding sequences {αk}, {x

k}, {sk}, {f(xk)}, {‖∇f(xk)‖} and {fk}
1.

We will analyze the stochastic processes restricting our attention to some of the random quan-
tities that belong to this process and will ignore the rest, for the brevity of the presentation.
Hence when we say that Algorithm 2.1 generates the stochastic process {Xk,Ak}, this means
we want to focus on the properties of these random variables, but keeping in mind that there
are other random quantities in this stochastic process.

We will derive complexity bounds for each algorithm in the following sense. We will define
the accuracy goal that we aim to reach and then we will bound the expected number of steps
that the algorithm takes until this goal is achieved. The analyses will follow common steps,
and the main ingredients are described below. We then apply these steps to each case under
consideration.

2.3 Elements of global convergence rate analysis

First we recall a standard notion from stochastic processes.

1Note that throughout, f(xk) 6= fk, since fk is a related measure of progress towards optimality.

6

Hitting time. For a given discrete time stochastic process, Zt, recall the concept of a hitting
time for an event {Zt ∈ S}. This is a random variable, defined as TS = min{t : Zt ∈ S} - the
first time the event {Zt ∈ S} occurs. In our context, set S will either be a set of real numbers
larger than some given value, or smaller than some other given value.

Number of iterations Nǫ to reach ǫ accuracy. Given a level of accuracy ǫ, we aim to
derive a bound on the expected number of iterations E(Nǫ) which occur in the algorithm until
the given accuracy level is reached. The number of iterations Nǫ is a random variable, which can
be defined as a hitting time of some stochastic process, dependent on the case under analysis.
In particular,

• If f(x) is not known to be convex, then Nǫ is the hitting time for {‖∇f(Xk)‖ ≤ ǫ}, namely,
the number of steps the algorithm takes until ‖∇f(Xk)‖ ≤ ǫ occurs for the first time.

• If f(x) is convex or strongly convex then Nǫ is the hitting time for {f(Xk) − f∗ ≤ ǫ},
namely, the number of steps the algorithm takes until f(Xk)− f∗ ≤ ǫ occurs for the first
time, where f∗ = f(x∗) with x∗, a global minimizer of f .

We will bound E(Nǫ) by observing that for all k < Nǫ the stochastic process induced by
Algorithm 2.1 behaves in a certain way. To formalize this, we need to define the following
random variable and its upper bound.

Measure of progress towards optimality, Fk. This measure is defined by the total function
decrease or by the distance to the optimum. In particular,

• If f(x) is not known to be convex, then Fk = f(X0)− f(Xk).

• If f(x) is convex, then Fk = 1/(f(Xk)− f∗).

• If f(x) is strongly convex, then Fk = log(1/(f(Xk)− f∗)).

Upper bound Fǫ on Fk. From the algorithm construction, Fk defined above is always non-
decreasing and there exists a deterministic upper bound Fǫ in each case, defined as follows.

• If f(x) is not known to be convex, then Fǫ = f(X0)− f∗, where f∗ is a global lower bound
on f .

• If f(x) is convex, then Fǫ = 1/ǫ.

• If f(x) is strongly convex, then Fǫ = log(1/ǫ).

We observe that Fk is a nondecreasing process and Fǫ is the largest possible value that Fk

can achieve.
Our analysis will be based on the following observations, which are borrowed from the global

rate analysis of the deterministic methods [15].

• Guaranteed amount of increase in fk. For all k < Nǫ (i.e., until the desired accuracy
has been reached), if the kth iteration is true and successful, then fk is increased by an
amount proportional to αk.

7

• Guaranteed threshold for αk. There exists a constant, which we will call C, such that
if αk ≤ C and the kth iteration is true, then the kth iteration is also successful, and hence
αk+1 = γ−1αk. This constant C depends on the algorithm and Lipschitz constants of f .

• Bound on the number of iterations. If all iterations were true, then by the above
observations, αk ≥ γC and, hence, fk increases by at least a constant for all k. From this
a bound on the number of iterations, knowing that fk cannot exceed Fǫ.

In our case not all iterations are true, however, under the assumption that they “tend” to be
true, as we will show, when Ak ≤ C, then iterations “tend” to be successful, Ak “tends” to
stay near the value C and the values Fk “tend” to increase by a constant. The analysis is then
performed via a study of stochastic processes, which we describe in detail next.

2.4 Analysis of the stochastic processes

Let us consider the stochastic process {Ak, Fk} generated by Algorithm 2.1 using random, p-
probabilistically sufficiently accurate models Mk, with Fk defined above. Under the assumption
that the sequence of models Mk are p-probabilistically sufficiently accurate, each iteration is
true with probability at least p, conditioned on the past.

We assume now (and we show later for each specific case) that {Ak, Fk} obeys the following
rules for all k < Nǫ.

Assumption 2.1 There exist a constant C > 0 and a nondecreasing function h(α), α ∈ R,
which satisfies h(α) > 0 for any α > 0, such that for any realization of Algorithm 2.1 the
following hold for all k < Nǫ:

(i) If iteration k is true (i.e. Ik = 1) and successful, then fk+1 ≥ fk + h(αk).

(ii) If αk ≤ C and iteration k is true then iteration k is also successful, which implies αk+1 =
γ−1αk.

(iii) fk+1 ≥ fk for all k.

For future use let us state an auxiliary lemma.

Lemma 2.1 Let Nǫ be the hitting time as defined on page 7. For all k < Nǫ, let Ik be the
sequence of random variables in Definition 2.1 so that (1) holds. Let Wk be a nonnegative
stochastic process such that σ(Wk) ⊂ FM

k−1, for any k ≥ 0. Then

E

(

Nǫ−1
∑

k=0

WkIk

)

≥ pE

(

Nǫ−1
∑

k=0

Wk

)

.

Similarly,

E

(

Nǫ−1
∑

k=0

Wk(1− Ik)

)

≤ (1− p)E

(

Nǫ−1
∑

k=0

Wk

)

.

8

Proof. The proof is a simple consequence of properties of expectations, see for example, [22,
property H∗, page 216],

E(Ik|Wk) = E(E(Ik| F
M
k−1)|Wk) ≥ E(p|Wk) ≥ p,

where we also used that σ(Wk) ⊂ FM
k−1. Hence by the law of total expectation, we have

E(WkIk) = E(WkE(Ik|Wk)) ≥ pE(Wk). Similarly, we can derive E(1{k < Nǫ}WkIk) ≥
pE(1{k < Nǫ}Wk), because 1{k < Nǫ} is also determined by FM

k−1. Finally,

E

(

Nǫ−1
∑

k=0

WkIk

)

= E

(∞
∑

k=0

1{k < Nǫ}WkIk

)

≥ pE

(∞
∑

k=0

1{k < Nǫ}Wk

)

= pE

(

Nǫ−1
∑

k=0

Wk

)

.

The second inequality is proved analogously. �

Let us now define two indicator random variables, in addition to Ik defined earlier,

Λk = 1{Ak > C},

and
Θk = 1{Iteration k is successful i.e., Ak+1 = γ−1Ak}.

Note that σ(Λk) ⊂ FM
k−1 and σ(Θk) ⊂ FM

k , that is the random variable Λk is fully determined
by the first k − 1 steps of the algorithm, while Θk is fully determined by the first k steps. We
will use λk, ik and θk to denote realizations of Λk, Ik and Θk, respectively.

These indicators will help us define our algorithm more rigorously as a stochastic process.
Without loss of generality, we assume that C = γcα0 < γαmax for some positive integer c. In
other words, C is the largest value that the step size Ak actually achieves for which part (ii)
of Assumption 2.1 holds. The condition C < γαmax is a simple technical condition, which is
not necessary, but which simplifies the presentation later in this section. Under Assumption
2.1, recalling the update rules for αk in Algorithm 2.1 and the assumption that true iterations
occur with probability at least p, we can write the stochastic process {Ak, Fk} as obeying the
expressions below:

Ak+1 =

γ−1Ak if Ik = 1 and Λk = 0,
γAk if Ik = 0 and Λk = 0,
min{αmax, γ

−1Ak} if Θk = 1 and Λk = 1,
γAk if Θk = 0 and Λk = 1,

(2)

Fk+1 ≥

Fk + h(Ak) if Ik = 1 and Λk = 0,
Fk if Ik = 0 and Λk = 0,
Fk + h(Ak) ΘkIk = 1 and Λk = 1,
Fk ΘkIk = 0 and Λk = 1.

(3)

We conclude that, when Ak ≤ C, a successful iteration happens with probability at least p,
and in that case Ak+1 = γ−1Ak, and that an unsuccessful iteration happens with probability
at most 1 − p, in which case Ak+1 = γAk. Note that there is no known probability bound for
the different outcomes when Ak > C. However, we know that Ik = 1 with probability at least p
and if, in addition, iteration k happens to be successful, then Fk is increased by at least h(Ak).

In summary, from the above discussion, we have

for all k < Nǫ, Algorithm 2.1 under Assumption 2.1 yields
the stochastic process {Ak, Fk} in (2) and (3).

9

2.5 Bounding the number of steps for which αk ≤ C

In this subsection we derive a bound on E

(

∑Nǫ−1
k=0 (1− Λk)

)

. The bound for E(
∑Nǫ−1

k=0 Λk) will

be derived in the next section.
The following simple result holds for every realization of the algorithm and stochastic process

{Λk, Ik,Θk}.

Lemma 2.2 For any l ∈ {0, . . . , Nǫ − 1} and for all realizations of Algorithm 2.1, we have

l
∑

k=0

(1− Λk)Θk ≤
1

2
(l + 1).

Proof. By the definition of Λk and Θk we know that when (1 − Λk)Θk = 1 then we have
a successful iteration and Ak ≤ C. In this case Ak+1 = γ−1Ak. It follows that amongst all
iterations, at most half can be successful and have Ak ≤ C, because for each such iteration,
when Ak gets increased by a factor of γ−1, there has to be at least one iteration when Ak is
decreased by the same factor, since A0 ≥ C. �

Using this we derive the bound.

Lemma 2.3

E

(

Nǫ−1
∑

k=0

(1− Λk)

)

≤
1

2p
E(Nǫ)

Proof. By Lemma 2.1 applied to Wk = 1− Λk we have

E

(

Nǫ−1
∑

k=0

(1− Λk)Ik

)

≥ pE

(

Nǫ−1
∑

k=0

(1− Λk)

)

. (4)

From the fact that all true iterations are successful when αk ≤ C,

Nǫ−1
∑

k=0

(1− Λk)Ik ≤

Nǫ−1
∑

k=0

(1− Λk)Θk. (5)

Finally, from Lemma 2.2
Nǫ−1
∑

k=0

(1− Λk)Ik ≤
1

2
Nǫ. (6)

Taking expectations in (5) and (6) and combining with (4), we obtain the result of the
lemma. �

2.6 Bounding the expected number of steps for which αk > C

Let us now consider the bound on E

(

∑Nǫ−1
k=0 Λk

)

. We introduce the additional notation Λ̄k =

1{Ak > C} + 1{Ak = C}. In other words Λ̄k = 1 when either Λk = 1 or Ak = C. We now
define:

10

• N1 =
∑Nǫ−1

k=0 Λ̄k(1−Ik)Θk, which is the number of false successful iterations, when Ak ≥ C.

• M1 =
∑Nǫ−1

k=0 Λ̄k(1− Ik), which is the number of false iterations, when Ak ≥ C.

• N2 =
∑Nǫ−1

k=0 Λ̄kIkΘk, which is the number of true successful iterations, when Ak ≥ C.

• M2 =
∑Nǫ−1

k=0 Λ̄kIk, which is the number of true iterations, when Ak ≥ C.

• N3 =
∑Nǫ−1

k=0 ΛkIk(1 − Θk), which is the number of true unsuccessful iterations, when
Ak > C.

• M3 =
∑Nǫ−1

k=0 Λk(1−Θk), which is the number of unsuccessful iterations, when Ak > C.

Since E
(

∑Nǫ−1
k=0 Λk

)

= E

(

∑Nǫ−1
k=0 Λk(1− Ik)

)

+E

(

∑Nǫ−1
k=0 ΛkIk

)

≤ E(M1)+E(M2), our goal

is to bound E(M1) + E(M2).
Our next observation is simple but central in our analysis. It reflects the fact that the gain

in Fk is bounded from above by Fǫ and when Ak ≥ C this gain is bounded from below as well,
hence allowing us to bound the total number of true successful iterations when Ak ≥ C. The
following two lemmas holds for every realization.

Lemma 2.4 For any l ∈ {0, . . . , Nǫ − 1} and for all realizations of Algorithm 2.1, we have

l
∑

k=0

Λ̄kIkΘk ≤
Fǫ

h(C)
,

and so

N2 ≤
Fǫ

h(C)
. (7)

Proof. Consider any k for which ΛkIkΘk = 1. From Assumption 2.1 we know that whenever
an iteration is true and successful then Fk get increased by at least h(Ak) ≥ h(C), since Ak ≥ C
and h is nondecreasing. We also know that on other iterations Fk does not decrease. The bound
Fk ≤ Fǫ trivially gives us the desired result. �

Another key observation is that

M2 ≤ N2 +N3 ≤ N2 +M3, (8)

where the first inequality follows from the fact that for all k < Nǫ and for all realizations,
(Λ̄k −Λk)Ik(1−Θk) = 0, in other words there are no true unsuccessful iterations when Ak = C.

Lemma 2.5 For any l ∈ {0, . . . , Nǫ − 1} and for all realizations of Algorithm 2.1, we have

l
∑

k=0

Λk(1−Θk) ≤
l
∑

k=0

Λ̄kΘk + logγ

(

C

α0

)

11

Proof. Ak is increased on successful iterations and decreased on unsuccessful ones. Hence the
total number of steps when Ak > C and Ak is decreased, is bounded by the total number of
steps when Ak ≥ C is increased plus the number of steps it is required to reduce Ak from its
initial value α0 to C. �

From Lemma 2.5 applied to l = Nǫ − 1, we can deduce that

M3 ≤ N1 +N2 + logγ(C/α0). (9)

We also have the following lemma.

Lemma 2.6

E(M1) ≤
1− p

p
E(M2). (10)

Proof. By applying both inequalities in Lemma 2.1 with Wk = Λ̄k, we obtain

E

(

Nǫ−1
∑

k=0

Λ̄kIk

)

≥ pE

(

Nǫ−1
∑

k=0

Λ̄k

)

and

E

(

Nǫ−1
∑

k=0

Λ̄k(1− Ik)

)

≤ (1− p)E

(

Nǫ−1
∑

k=0

Λ̄k

)

which gives us

E

(

Nǫ−1
∑

k=0

Λ̄k(Ik − 1)

)

≤
1− p

p
E

(

Nǫ−1
∑

k=0

Λ̄kIk

)

.

�

Lemma 2.7 Under the condition that p > 1/2, we have

E

(

Nǫ−1
∑

k=0

Λk

)

≤
2Fǫ

h(C)(2p − 1)
+

logγ(C/α0)

2p− 1
.

Proof. Recall that E
(

∑Nǫ−1
k=0 Λk

)

= E(M1 +M2). Using (8) and (10) it follows that

E(N1) ≤ E(M1) ≤
1− p

p
E(M2) ≤

1− p

p
E(N2 +M3) =

1− p

p
[E(N2) + E(M3)]. (11)

Taking into account (9) and using the bound (7) on N2 we have

E(M3) ≤ E(N1) + E(N2) + logγ(C/α0) ≤ E(N1) + Fǫ/h(C) + logγ(C/α0). (12)

Plugging this into (11) and using the bound (7) on N2 again, we obtain

E(N1) ≤
1− p

p

[

Fǫ

h(C)
+ E(N1) +

Fǫ

h(C)
+ logγ

(

C

α0

)]

,

12

and, hence,
2p− 1

p
E(N1) ≤

1− p

p

[

2Fǫ

h(C)
+ logγ

(

C

α0

)]

.

This finally implies

E(N1) ≤
1− p

2p− 1

[

2Fǫ

h(C)
+ logγ

(

C

α0

)]

. (13)

Now we can bound the expected total number of iterations when αk > C, using (7), (12) and
(13) and adding the terms to obtain the result of the lemma, namely,

E(M1 +M2) ≤ E(M1 +M3 +N2) ≤
1

p
E(M3 +N2) ≤

1

2p− 1

(

2Fǫ

h(C)
+ logγ

(

C

α0

))

.

�

2.7 Final bound on the expected stopping time

We finally have the following theorem which trivially follows from Lemmas 2.3 and 2.7.

Theorem 2.1 Under the condition that p > 1/2, the hitting time Nǫ is bounded in expectation
as follows

E(Nǫ) ≤
2p

(2p − 1)2

(

2Fǫ

h(C)
+ logγ

(

C

α0

))

.

Proof. Clearly

E(Nǫ) = E

(

Nǫ−1
∑

k=0

Λk

)

+ E

(

Nǫ−1
∑

k=0

(1− Λk)

)

and, hence, using Lemmas 2.3 and 2.7 we have

E(Nǫ) ≤
1

2p
E(Nǫ) +

1

2p − 1

(

2Fǫ

h(C)
+ logγ

(

C

α0

))

.

The result of the theorem easily follows. �

Summary of our complexity analysis framework. We have considered a(ny) algorithm
in the framework Algorithm 2.1 with probabilistically sufficiently accurate models as in Defini-
tion 2.1. We have developed a methodology to obtain (complexity) bounds on the number of
iterations Nǫ that such an algorithm takes to reach desired accuracy. It is important to note
that, while we simply provide the bound on E(Nǫ) it is easy to extend the analysis of the same
stochastic processes to provide bounds on P{Nǫ > K}, for any K larger than the bound on
E(Nǫ), in particular it can be shown that P{Nǫ > K} decays exponentially with K.

While in our analysis we assumed that the constant γ by which we decrease and increase αk

is the same, our analysis can be quite easily extended to the case when the constants for increase
and decrease are different, say γinc and γdec. In this case the threshold on the probability p may
no longer be 1/2 but will be larger if γinc/γdec < 1 and smaller, otherwise. Some of the constants
in the upper bound on E(Nǫ) with change accordingly.

13

Our approach is valid provided that all of the conditions in Assumption 2.1 hold. Next
we show that all these conditions are satisfied by steepest-descent linesearch methods in the
nonconvex, convex and strongly convex case; by general linesearch methods in the nonconvex
case; by cubic regularization methods (ARC) for nonconvex objectives. In particular, we will
specify what we mean by a probablistically sufficiently accurate first-order and second-order
model in the case of linesearch and cubic regularization methods, respectively.

3 The line-search algorithm

We will now apply the generic analysis outlined in the previous section to the case of the following
simple probabilistic line-search algorithm.

Algorithm 3.1 A line-search algorithm with random models

Initialization
Choose constants γ ∈ (0, 1), θ ∈ (0, 1) and αmax > 0. Pick initial x0 and α0 < αmax.
Repeat for k = 0, 1, . . .

1. Compute a model and a step
Compute a random model mk and use it to generate a direction gk.
Set the step sk = −αkg

k.

2. Check sufficient decrease
Check if

f(xk − αkg
k) ≤ f(xk)− αkθ‖g

k‖2. (14)

3. Successful step
If (14) holds, then xk+1 := xk − αkg

k and αk+1 = min{αmax, γ
−1αk}. Let k := k + 1.

4. Unsuccessful step
Otherwise, xk+1 := xk, set αk+1 = γαk. Let k := k + 1.

For the linesearch algorithm, the key ingredient is a search direction selection on each iter-
ation. In our case we assume that the search direction is random and satisfies some accuracy
requirement that we discuss below. The choice of model in this algorithm is a simple linear model
mk(x), which gives rise to the search direction gk, specifically, mk(x) = f(xk) + (x − xk)T gk.
We will consider more general models in the next section, Section 3.2.

Recall Definition 2.1. Here we describe the specific requirement we apply to the models in
the case of line search.

Definition 3.1 We say that a sequence of random models and corresponding directions {Mk, Gk}
is (p)-probabilistically ”sufficiently accurate” for Algorithm 3.1 for a corresponding sequence
{Ak,X

k}, if there exists a constant κ > 0, such that the indicator variables

Ik = 1{‖Gk −∇f(Xk)‖ ≤ κAk‖G
k‖}

satisfy the following submartingale-like condition

P (Ik = 1|FM
k−1) ≥ p,

where FM
k−1 = σ(M0, . . . ,Mk−1) is the σ-algebra generated by M0, . . . ,Mk−1.

14

As before, each iteration for which Ik = 1 holds is called a true iteration. It follows that for
every realization of the algorithm, on all true iterations, we have

‖gk −∇f(xk)‖ ≤ καk‖g
k‖, (15)

which implies, using αk ≤ αmax and the triangle inequality, that

‖gk‖ ≥
‖∇f(xk)‖

1 + καmax
. (16)

For the remainder of the analysis of Algorithm 3.1, we make the following assumption.

Assumption 3.1 The sequence of random models and corresponding directions {Mk, Gk}, gen-
erated in Algorithm 3.1, is (p)-probabilistically ”sufficiently accurate” for the corresponding ran-
dom sequence {Ak,X

k}, with p > 1/2.

We also make a standard assumption on the smoothness of f(x) for the remainder of the
paper.

Assumption 3.2 f ∈ C1(Rn), is globally bounded below by f∗, and has globally Lipschitz
continuous gradient ∇f , namely,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ R
n and some L > 0. (17)

3.1 The nonconvex case, steepest descent

As mentioned before, our goal in the nonconvex case is to compute a bound on the expected
number of iterations k that Algorithm 3.1 requires to obtain an iterate xk for which ‖∇f(xk)‖ ≤
ǫ. We will now compute the specific quantities and expressions defined in Sections 2.3 and 2.4,
that allow us to apply the analysis of our general framework to the specific case of Algorithm
3.1 for nonconvex functions.

Let Nǫ denote, as before, the number of iterations that are taken until ‖∇f(Xk)‖ ≤ ǫ
occurs (which is a random variable). Let us consider the stochastic process {Ak, Fk} with
Fk = f(x0)− f(Xk) and let Fǫ = f(x0)− f∗. Then Fk ≤ Fǫ, for all k.

Next we show that Assumption 2.1 is verified. First we derive an expression for the constant
C, related to the size of the stepsize αk.

Lemma 3.1 Let Assumption 3.2 hold. For every realization of Algorithm 3.1, if iteration k is
true (i.e. Ik = 1), and if

αk ≤ C =
1− θ

0.5L+ κ
, (18)

then (14) holds. In other words, when (18) holds, any true iteration is also a successful one.

Proof. Condition (17) implies the following overestimation property for all x and s in R
n,

f(x+ s) ≤ f(x) + sT∇f(x) +
L

2
‖s‖2,

which implies

f(xk − αkg
k) ≤ f(xk)− αk(g

k)T∇f(xk) + L
2α

2
k‖g

k‖2.

15

Applying the Cauchy-Schwarz inequality and (15) we have

f(xk − αkg
k) ≤ f(xk)− αk(g

k)T [∇f(xk)− gk]− αk‖g
k‖2
[

1− L
2αk

]

≤ f(xk) + αk‖g
k‖ · ‖∇f(xk)− gk‖ − αk‖g

k‖2
[

1− L
2αk

]

≤ f(xk)− αk‖g
k‖2

[

1−
(

κ+ L
2

)

αk

]

.

It follows that (14) holds whenever f(xk)−αk‖g
k‖2[1− (κ+0.5L)αk] ≤ f(xk)−αkθ‖g

k‖2 which
is equivalent to (18). �

From Lemma 3.1, and from (14) and (16), for any realization of Algorithm 3.1 which gives
us the specific sequence {αk, fk}, the following hold.

• If k is a true and successful iteration, then

fk+1 ≥ fk +
θ‖∇f(xk)‖2αk

(1 + καmax)2

and
αk+1 = γ−1αk.

• If αk ≤ C, where C is defined in (18), and iteration k is true, then it is also successful.

Hence, Assumption 2.1 holds and the process {Ak, Fk} behaves exactly as our generic process

(2)-(3) in Section 2.4, with C defined in (18) and the specific choice of h(Ak) =
θǫ2Ak

(1+καmax)2
.

Finally, we use Theorem 2.1 and substituting the expressions for C, h(C) and Fǫ into the
bound on E(Nǫ) we obtain the following complexity result.

Theorem 3.1 Let Assumptions 3.1 and 3.2 hold. Then the expected number of iterations that
Algorithm 3.1 takes until ‖∇f(Xk)‖ ≤ ǫ occurs is bounded as follows

E(Nǫ) ≤
2p

(2p− 1)2

[

M

ǫ2
+ logγ

(

1− θ

α0(0.5L + κ)

)]

,

where M = (f(x0)−f∗)(1+καmax)2(0.5L+κ)
θ(1−θ) is a constant independent of p and ǫ.

Remark 3.1 We note that the dependency of the expected number of iterations on ǫ is of the
order 1/ǫ2, as expected from a line-search method applied to a smooth nonconvex problem. The
dependency on p is rather intuitive as well: if p = 1, then the deterministic complexity is
recovered, while as p approaches 1/2, the expected number of iterations goes to infinity, since the
models/directions are arbitrarily bad as often as they are good.

3.2 The nonconvex case, general descent

In this subsection, we explain how the above analysis of the line-search method extends from
the nonconvex steepest descent case to a general nonconvex descent case.

In particular, we consider that in Algorithm 3.1, sk = αkd
k (instead of −αkg

k), where dk is
any direction that satisfies the following standard conditions.

16

• There exists a constant β > 0, such that

(dk)T gk

‖dk‖ · ‖gk‖
≤ −β, ∀k. (19)

• There exist constants κ1, κ2 > 0, such that

κ1‖g
k‖ ≤ ‖dk‖ ≤ κ2‖g

k‖, ∀k. (20)

The sufficient decrease condition (14) is replaced by

f(xk + αkd
k) ≤ f(xk) + αkθ(d

k)T gk. (21)

It is easy to show that a simple variant of Lemma 3.1 applies.

Lemma 3.2 Let Assumption 3.2 hold. Consider Algorithm 3.1 with sk = αkd
k and sufficient

decrease condition (21). Assume that dk satisfies (19) and (20). Then, for every realization of
the resulting algorithm, if iteration k is true (i.e. Ik holds), and if

αk ≤ C =
β(1 − θ)

0.5Lκ2 + κ
, (22)

then (21) holds. In other words, when (22) holds, any true iteration is also a successful one.

Proof. The first displayed equation in the proof of Lemma 3.1 provides

f(xk + αkd
k) ≤ f(xk) + αk(d

k)T∇f(xk) + L
2α

2
k‖d

k‖2.

Applying the Cauchy-Schwarz inequality, (15) and the conditions (20) on dk we have

f(xk + αkd
k) ≤ f(xk) + αk(d

k)T [∇f(xk)− gk] + αk(d
k)T gk + L

2α
2
k‖d

k‖2

≤ f(xk) + αk‖d
k‖ · ‖∇f(xk)− gk‖+ αk(d

k)T gk + L
2α

2
k‖d

k‖2

≤ f(xk) + α2
kκ‖d

k‖‖gk‖+ αk(d
k)T gk + L

2α
2
kκ2‖d

k‖‖gk‖

= f(xk) + αk(d
k)T gk + α2

k‖d
k‖‖gk‖

(

κ+ κ2
L
2

)

.

It follows that (21) holds whenever

αk(d
k)T gk + α2

k‖d
k‖‖gk‖

(

κ+ κ2
L

2

)

≤ αkθ(d
k)T gk,

or equivalently, since αk > 0, whenever

αk‖d
k‖‖gk‖

(

κ+ κ2
L

2

)

≤ −(1− θ)(dk)T gk.

Using (19), the latter displayed equation holds whenever αk satisfies (22). �

We conclude this extension to general descent directions by observing that if k is a true and
successful iteration, using the sufficient decrease condition (21), the conditions (19) and (20) on
dk and (16), we obtain that

fk+1 ≥ fk +
θκ1β‖∇f(xk)‖2αk

(1 + καmax)2
.

Hence, Assumption 2.1 holds for this case as well and the remainder of the analysis is exactly
the same as for the steepest descent case.

17

3.3 The convex case

We now analyze the expected complexity of Algorithm 3.1 in the case when f(x) is a convex
function, that is when the following assumption holds.

Assumption 3.3 f ∈ C1(Rn) is convex and has bounded level sets so that

‖x− x∗‖ ≤ D for all x with f(x) ≤ f(x0), (23)

where x∗ is a global minimizer of f . Let f∗ = f(x∗).

In this case, our goal is to bound the expectation of Nǫ - the number of iterations taken by
Algorithm 3.1 until

f(Xk)− f∗ ≤ ǫ (24)

occurs. We denote f(Xk) − f∗ by ∆f
k and define Fk = 1

∆f
k

. Clearly, Nǫ is also the number of

iterations taken until Fk ≥ 1
ǫ = Fǫ occurs.

Regarding Assumption 2.1, Lemma 3.1 provides the value for the constant C, namely, that
whenever Ak ≤ C with C = 1−θ

0.5L+κ , then every true iteration is also successful. We now show
that on true and successful iterations, Fk is increased by at least some function value h(Ak) for
all k < Nǫ.

Lemma 3.3 Let Assumptions 3.2 and 3.3 hold. Consider any realization of Algorithm 3.1. For
every iteration k that is true and successful, we have

fk+1 ≥ fk +
θαk

D2(1 + καmax)2
. (25)

Proof. Note that convexity of f implies that for all x and y,

f(x)− f(y) ≥ ∇f(y)T (x− y),

and so by using x = x∗ and y = xk, we have

−∆f
k = f(x∗)− f(xk) ≥ ∇f(xk)T (x∗ − xk) ≥ −D‖∇f(xk)‖,

where to obtain the last inequality, we used Cauchy-Schwarz inequality and (23). Thus when k
is a true iteration, (16) further provides

1

D
∆f

k ≤ ‖∇f(xk)‖ ≤ (1 + καmax)‖g
k‖.

When k is also successful,

∆f
k −∆f

k+1 = f(xk)− f(xk+1) ≥ θαk‖g
k‖2 ≥

θαk

D2(1 + καmax)2
(∆f

k)
2.

Dividing the above expression by ∆f
k∆

f
k+1, we have that on all true and successful iterations

1

∆f
k+1

−
1

∆f
k

≥
θαk

D2(1 + καmax)2
∆f

k

∆f
k+1

≥
θαk

D2(1 + καmax)2
,

since ∆f
k ≥ ∆f

k+1. Recalling the definition of fk completes the proof. �

Similarly to the nonconvex case, we conclude from Lemmas 3.1 and 3.3, that for any real-
ization of Algorithm 3.1 the following have to happen.

18

• If k is a true and successful iteration, then

fk+1 ≥ fk +
θαk

D2(1 + καmax)2

and
αk+1 = γ−1αk.

• If αk ≤ C, where C is defined in (18), and iteration k is true, then it is also successful.

Hence, Assumption 2.1 holds and the process {Ak, Fk} behaves exactly as our generic process
(2)-(3) in Section 2.4, with C defined in (18) and the specific choice of h(Ak) =

θAk
D2(1+καmax)2

.

Theorem 2.1 can be immediately applied together with the above expressions for C, h(C)
and Fǫ, yielding the following complexity bound.

Theorem 3.2 Let Assumptions 3.1, 3.2 and 3.3 hold. Then the expected number of iterations
that Algorithm 3.1 takes until f(Xk)− f∗ ≤ ǫ occurs is bounded by

E(Nǫ) ≤
2p

(2p− 1)2

[

M

ǫ
+ logγ

(

1− θ

α0(0.5L + κ)

)]

,

where M = (1+καmax)2D2(0.5L+κ)
θ(1−θ) is a constant independent of p and ǫ.

Remark 3.2 We again note the same dependence on ǫ in the complexity bound in Theorem 3.2
as in the deterministic convex case and on p, as in the nonconvex case.

3.4 The strongly convex case

We now consider the case of strongly convex objective functions, hence the following assumption
holds.

Assumption 3.4 f ∈ C1(Rn) is strongly convex, namely, for all x and y and some µ > 0,

f(x) ≥ f(y) +∇f(y)T (x− y) +
µ

2
‖x− y‖2.

Recall our notation ∆f
k = f(Xk)− f∗. Our goal here is again, as in the convex case, to bound

the expectation on the number of iteration that occur until ∆f
k ≤ ǫ. In the strongly convex case,

however, this bound is logarithmic in 1
ǫ , just as it is in the case of the deterministic algorithm.

Lemma 3.4 Let Assumption 3.4 hold. Consider any realization of Algorithm 3.1. For every
iteration k that is true and successful, we have

f(xk)− f(xk+1) = ∆f
k −∆f

k+1 ≥
2µθ

(1 + καmax)2
αk∆

f
k , (26)

or equivalently,

∆f
k+1 ≤

(

1−
2µθ

(1 + καmax)2
αk

)

∆f
k . (27)

19

Proof. Assumption 3.4 implies, for x = xk and y = x∗, that [see [15], Th 2.1.10]

∆f
k ≤

1

2µ
‖∇f(xk)‖2

or equivalently,
√

2µ∆f
k ≤ ‖∇f(xk)‖ ≤ (1 + καmax)‖g

k‖,

where in the second inequality we used (16). The bound (26) now follows from the sufficient
decrease condition (14). �

Note that from (26) we have that if ∆f
k > 0 and αk > (1+ καmax)

2/(2µθ) then the iteration
is unsuccessful. Hence, for an iteration to be successful we must have αk ≤ (1+ καmax)

2/(2µθ).
We also know that a true iteration is successful when αk ≤ C, where C defined in (18), assuming
that C ≤ (1+καmax)

2/(2µθ). To simplify the analysis we will simply assume that this inequality
holds, by an appropriate choice of the parameters, which can done without loss of generality.

We now define Fk = log 1

∆f
k

and Fǫ = log 1
ǫ , and the hitting time Nǫ is the number of

iterations taken until ∆f
k ≤ ǫ.

As in the convex case, using Lemmas 3.1 and 3.4, we conclude that, for any realization of
Algorithm 3.1, the following have to happen.

• If k is a true and successful iteration, then

fk+1 ≥ fk − log

(

1−
2µθ

(1 + καmax)2
αk

)

.

and
αk+1 = γ−1αk.

• If αk ≤ C, where C defined in (18), and iteration k is true, then it is also successful.

Hence, again, Assumption 2.1 holds and the process {Ak, Fk} behaves exactly as our generic
process (2)-(3) in Section 2.4, with C defined in (18) and the specific choice of

h(Ak) = − log

(

1−
2µθ

(1 + καmax)2
Ak

)

.

By using the above expressions for C, h(C) and Fǫ, again as in the convex case, we have the
following complexity bound for the strongly convex case.

Theorem 3.3 Let Assumptions 3.1, 3.2 and 3.4 hold. Then the expected number of iterations
that Algorithm 3.1 takes until f(Xk)− f∗ ≤ ǫ occurs is bounded by

E(Nǫ) ≤
2p

(2p − 1)2

[

M log

(

1

ǫ

)

+ logγ

(

1− θ

α0(0.5L+ κ)

)]

,

where M = − log
(

1− 2µθ(1−θ)
(1+καmax)2(0.5L+κ)

)

is a constant independent of p and ǫ.

Remark 3.3 Again, note the same dependence of the complexity bound in Theorem 3.3 on ǫ
as for the deterministic line-search algorithm, and the same dependence on p as for the other
problem classes discussed above.

20

4 Probabilistic second-order models and cubic regularization

methods

In this section we consider a randomized version of second-order methods, whose deterministic
counterpart achieves optimal complexity rate [8, 5]. As in the line-search case, we show that in
expectation, the same rate of convergence applies as in the deterministic (cubic regularization)
case, augmented by a term that depends on the probability of having accurate models. Here we
revert back to considering general objective functions that are not necessarily convex.

4.1 A cubic regularization algorithm with random models

Let us now consider a cubic regularization method where the following model

mk(x
k + s) = f(xk) + sT gk +

1

2
sT bks+

σk
3
‖s‖3, (28)

is approximately minimized on each iteration k with respect to s, for some vector gk and a
matrix bk and some regularization parameter σk > 0. As before we assume that gk and bk are
realizations of some random variables Gk and Bk, which imply that the model is random and we
assume that it is sufficiently accurate with probability at least p; the details of this assumption
will be given after we state the algorithm.

The step sk is computed as in [7, 8] to approximately minimize the model (28), namely, it is
required to satisfy

(sk)T gk + (sk)T bksk + σk‖s
k‖3 = 0 and (sk)T bksk + σk‖s

k‖3 ≥ 0 (29)

and
‖∇mk(x

k + sk)‖ ≤ κθ min{1, ‖sk‖}‖gk‖, (30)

where κθ ∈ (0, 1) is a user-chosen constant.
Note that (29) is satisfied if sk is the global minimizer of the modelmk over some subspace; in

fact, it is sufficient for sk to be the global minimizer of mk along the line αsk [8]2 Condition (30)
is a relative termination condition for the model minimization (say over increasing subspaces)
and it is clearly satisfied at stationary points of the model; ideally it will be satisfied sooner at
least in the early iterations of the algorithm [8].

The probabilistic Adaptive Regularization with Cubics (ARC) framework is presented below.

Algorithm 4.1 An ARC algorithm with random models

Initialization
Choose parameters γ ∈ (0, 1), θ ∈ (0, 1), σmin > 0 and κθ ∈ (0, 1). Pick initial x0 and
σ0 > σmin. Repeat for k = 0, 1, . . .,

2Note that a recently-proposed cubic regularization variant [2] can dispense with the approximate global
minimization condition altogether while maintaining the optimal complexity bound of ARC. A probabilistic
variant of [2] can be constructed similarly to probabilistic ARC, and our analysis here can be extended to provide
same-order complexity bounds.

21

1. Compute a model
Compute an approximate gradient gk and Hessian bk and form the model (28).

2. Compute the trial step sk

Compute the trial step sk to satisfy (29) and (30).

3. Check sufficient decrease
Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

f(xk)−mk(xk + sk)
. (31)

4. Update the iterate
Set

xk+1 =

{

xk + sk if ρk ≥ θ [k successful]
xk otherwise [k unsuccessful]

(32)

5. Update the regularization parameter σk
Set

σk+1 =

{

max{γσk, σmin} if ρk ≥ θ
1
γσk otherwise.

(33)

Remark 4.1 Typically (see e.g. [7]) one would further refine (32) and (33) by distinguishing
between successful and very successful iterations, when ρk is not just positive but close to 1.
It is beneficial in the deterministic setting to keep the regularization parameter unchanged on
successful iterations when ρk is greater than θ but is not close to 1 and only to decrease it when
ρk is substantially larger than θ. For simplicity and uniformity of our general framework, we
simplified the parameter update rule. However, the analysis presented here can be quite easily
extended to the more general case by slightly extending the flexibility of the stochastic processes.
In practice it is yet unclear if the same strategy will be beneficial, as “accidentally” bad models
and the resulting unsuccessful steps may drive the parameter σk to be larger than it should be,
and hence a more aggressive decrease of σk may be desired. This practical study is a subject of
future research.

Remark 4.2 We have stated Algorithm 4.1 so that it is as close as possible to known/deterministic
ARC frameworks for ease of reading. We note however, that it is perfectly coherent with the
generic algorithmic framework, Algorithm 2.1, if one sets αk = 1/σk and ρk ≥ θ as the sufficient
decrease condition. We will exploit this connection in the analysis that follows.

The requirement of sufficient model accuracy considered here is similar to the definition of
probabilistically fully quadratic models introduced in [1], though note that we only require the
second-order condition along the trial step sk.

Definition 4.1 We say that a sequence of random models and corresponding directions {Mk}
is (p)-probabilistically ”sufficiently accurate” for Algorithm 4.1 if there exist constants κg and
κH such that for any corresponding random sequence {Ak = 1/Σk,X

k}, the random indicator
variables

Ik = 1{‖∇f(Xk)−Gk‖ ≤ κg‖S
k‖2 and ‖(H(Xk)−Bk)Sk‖ ≤ κH‖Sk‖2}

22

satisfy the following submartingale-like condition

P (Ik = 1|FM
k−1) ≥ p,

where FM
k−1 = σ(M0, . . . ,Mk−1) is the σ-algebra generated by M0, . . . ,Mk−1.

As before, for any realization of Algorithm 4.1, we refer to iterations k when Ik occurs as
true iterations, and otherwise, as false iterations. Hence for all true iterations k,

‖∇f(xk)− gk‖ ≤ κg‖s
k‖2 and ‖(H(xk)− bk)sk‖ ≤ κH‖sk‖2. (34)

For the remainder of the analysis of Algorithm 4.1 we make the following assumption.

Assumption 4.1 The sequence of random models and corresponding directions {Mk, Sk}, gen-
erated in Algorithm 4.1, is (p)-probabilistically ”sufficiently accurate” for the corresponding ran-
dom sequence {Ak = 1/Σk,X

k}, with p > 1/2.

Regarding the possibly nonconvex objective f , in addition to Assumption 3.2, we also need
the following assumption.

Assumption 4.2 f ∈ C2(Rn) and has globally Lipschitz continuous Hessian H, namely,

‖H(x)−H(y)‖ ≤ LH‖x− y‖ for all x, y ∈ R
n and some LH > 0. (35)

4.2 Global convergence rate analysis, nonconvex case

The next four lemmas give useful properties of Algorithm 4.1 that are needed later for our
stochastic analysis.

Lemma 4.1 (Lemma 3.3 in [7]) Consider any realization of Algorithm 4.1. Then on each
iteration k we have

f(xk)−mk(x
k + sk) ≥

1

6
σk‖s

k‖3. (36)

Thus on every successful iteration k, we have

f(xk)− f(xk+1) ≥
θ

6
σk‖s

k‖3. (37)

Proof. Clearly, (37) follows from (36) and the sufficient decrease condition (31)-(32). It remains
to prove (36). Combining the first condition on step sk in (29), with the model expression (28)
for s = sk we can write

f(xk)−mk(x
k + sk) =

1

2
(sk)TBksk +

2

3
σk‖s

k‖3.

The second condition on sk in (29) implies (sk)TBksk ≥ −σk‖s
k‖3, which, when used with the

above equation, gives (36). �

23

Lemma 4.2 Let Assumptions 3.2 and 4.2 hold. For any realization of Algorithm 4.1, if iteration
k is true (i.e., Ik = 1), and if

σk ≥ σc =
2κg + κH + L+ LH

1− 1
3θ

, (38)

then iteration k is also successful.

Proof. Clearly, if ρk − 1 ≥ 0, then k is successful by definition. Let us consider the case when
ρk < 1; then if 1− ρk ≤ 1− θ, k is successful. We have from (31), that

1− ρk =
f(xk + sk)−mk(x

k + sk)

f(xk)−mk(xk + sk)
.

Taylor expansion and triangle inequalities give, for some ξk ∈ [xk, xk + sk],

f(xk + sk)−mk(x
k + sk)

= [∇f(xk)− gk]T sk + 1
2(s

k)T [H(ξk)−H(xk)]sk + 1
2(s

k)T [H(xk)− bk]sk − 1
3σk‖s

k‖3

≤ ‖∇f(xk)− gk‖ · ‖sk‖+ 1
2‖H(ξk)−H(xk)‖ · ‖sk‖2 + 1

2‖(H(xk)− bk)sk‖ · ‖sk‖ − 1
3σk‖s

k‖3

≤
(

κg +
LH
2 + κH

2 − 1
3σk

)

‖sk‖3 = (6κg + 3LH + 3κH − 2σk)
1
6‖s

k‖3,

where the last inequality follows from the fact that the iteration is true and hence (34) holds,
and from Assumption 4.2. This and (36) now give that 1− ρk ≤ 1− θ when σk satisfies (38). �

Note that for the above lemma to hold σc does not have to depend on L. However, in
what follows we will need another condition on σc, which will involve L; hence for simplicity of
notation we introduced σc above to satisfy all necessary bounds.

Lemma 4.3 Let Assumptions 3.2 and 4.2 hold. Consider any realization of Algorithm 4.1. On
each true iteration k we have

‖sk‖ ≥

√

1− κθ
σk + κs

‖∇f(xk + sk)‖, (39)

where κs = 2κg + κH + L+ LH .

Proof. Triangle inequality, equality ∇mk(x
k + s) = gk + bks+ σk‖s‖s and condition (30) on sk

together give

‖∇f(xk + sk)‖ ≤ ‖∇f(xk + sk)−∇mk(x
k + sk)‖+ ‖∇mk(x

k + sk)‖
≤ ‖∇f(xk + sk)− gk − bksk‖+ σk‖s

k‖2 + κθ min{1, ‖sk‖}‖gk‖.
(40)

Recalling Taylor expansion of ∇f(xk)

∇f(xk + sk) = ∇f(xk) +

∫ 1

0
H(xk + tsk)skdt,

24

and applying triangle inequality, again, we have

‖∇f(xk + sk)− gk − bksk‖ ≤ ‖∇f(xk)− gk‖+
∥

∥

∥

∫ 1
0 [H(xk + tsk)−H(xk)]skdt

∥

∥

∥
+ ‖H(xk)sk − bksk‖

≤
{

κg +
1
2LH + κH

}

‖sk‖2,

where to get the second inequality, we also used (34) and Assumption 4.2.
We can bound ‖gk‖ as follows

‖gk‖ ≤ ‖gk−∇f(xk)‖+‖∇f(xk)−∇f(xk+sk)‖+‖∇f(xk+sk)‖ ≤ κg‖s
k‖2+L‖sk‖+‖∇f(xk+sk)‖.

Thus finally, we can bound all the terms on the right hand side of (40) in terms of ‖sk‖2 and
using the fact that κθ ∈ (0, 1) we can write

(1− κθ)‖∇f(xk + sk)‖ ≤ (2κg + κH + L+ LH + σk)‖s
k‖2,

which is equivalent to (39). �

Lemma 4.4 Let Assumptions 3.2 and 4.2 hold. Consider any realization of Algorithm 4.1. On
each true and successful iteration k, we have

f(xk)− f(xk+1) ≥
κf

(max{σk, σc})3/2
‖∇f(xk+1)‖3/2, (41)

where κf := θ
12

√
2
(1− κθ)

3/2σmin and σc is defined in (38).

Proof. Combining Lemma 4.3, inequality (37) from Lemma 4.1 and the definition of successful
iteration in Algorithm 4.1 we have, for all true and successful iterations k,

f(xk)− f(xk+1) ≥
θ

6
(1− κθ)

3/2 σk
(σk + κs)3/2

‖∇f(xk+1)‖3/2. (42)

Using that σk ≥ σmin and that κs ≤ σc, (42) implies (41). �

The stochastic processes and global convergence rate analysis We are now ready to
cast Algorithm 4.1 and its behavior into the generic stochastic analysis framework of Section 2.

For each realization of Algorithm 4.1, we define

αk =
1

σk
and fk = f(x0)− f(xk),

and consider the corresponding stochastic process {Ak = 1/Σk, Fk = f(X0) − f(Xk)}. Let
Fǫ = f(x0)− f∗ denote the upper bound on the progress measure Fk.

As in the case of the line-search algorithm applied to nonconvex objectives, we would like to
bound the expected number of iterations that Algorithm 4.1 takes until ‖∇f(Xk)‖ ≤ ǫ occurs.
Here, however, for technical reasons made clear below, we count the number of iterations until
a successful iteration results in xk+1 such that ‖∇f(Xk+1)‖ ≤ ǫ. Let Nǫ denote the (random)
index of such an iteration. (Clearly, Nǫ thus defined is simply one less than the number of
iterations that occur until ‖∇f(Xk+1)‖ ≤ ǫ.)

Regarding Assumption 2.1, Lemmas 4.2 and 4.4 provide that the following must hold for
any realization of Algorithm 4.1.

25

• If k is a true and successful iteration, then

fk+1 ≥ fk +
κf

(max{σk, σc})3/2
‖∇f(xk+1)‖3/2

and
αk+1 = γ−1αk.

• If αk ≤ C = 1
σc
, where σc is defined in (38), and iteration k is true, then it is also successful.

Hence, once again, Assumption 2.1 holds and the process {Ak, Fk} behaves exactly as our generic

process (2)-(3) in Section 2.4, with C = 1
σc

=
1− 1

3
θ

2κg+κH+L+LH
, and the specific choice

h(Ak) = κf (min{Ak, C})3/2ǫ3/2.

for all k < Nǫ.
Finally, the complexity result again follows from Theorem 2.1 and the expressions for C,

h(C) and Fǫ.

Theorem 4.1 Let Assumptions 3.2, 4.1 and 4.2 hold. Then the expected number of iterations
that Algorithm 4.1 takes until ‖∇f(Xk+1)‖ ≤ ǫ occurs is bounded by

E(Nǫ) ≤
2p

(2p − 1)2

(

M

ǫ3/2
+ log

(

2κg + κH + L+ LH

σ0(1− 1/3θ)

))

,

where M =
(f(x0)−f∗)(2κg+κH+L+LH)3/2

κf (1−1/3θ)3/2
is a constant independent of p and ǫ.

Remark 4.3 We note that the dependency on ǫ in the above bound on the expected number
of iterations is of the order ǫ−3/2, which is of the same order as for the deterministic ARC
algorithm and is the optimal rate for nonconvex optimization using second order models [5].
The dependence on p is, again, the same as in the case of line-search and it is intuitive.

Remark 4.4 Theorem ?? stating that lim inf k → ∞‖∇f(Xk)‖ = 0 almost surely, holds for
Algorithm 4.1 since a similar proof applies.

5 Random models

In this section we will discuss and motivate the definition of probabilistically ”sufficiently accu-
rate” models. In particular, Definition 3.1 is a modification of the definition of probabilistically
fully-linear models, which is used in [1]. Similarly, Definition 4.1 is similar to that of probabilis-
tically fully-quadratic models in [1]. These definitions serve to provide properties of the model
(with some probability) which are sufficient for first-order (in the case of Definition 3.1) and
second-order (in the case of Definition 4.1) convergence rates.

We will now describe several setting where the models are random and satisfy our definitions.

26

5.1 Stochastic gradients and batch sampling

In [4] an adaptive sample size strategy was proposed in the setting where ∇f(x) =
∑N

i=1∇fi(x),
for large values of N . In this case computing ∇f(x) accurately can be prohibitive, hence, instead
an estimate ∇fS(x) =

∑

i∈S ∇fi(x) is often computed in hopes that it provides a good estimate
of the gradient and a descent direction. It is observed in [4] that if sample sets Sk on each
iteration ensure that

‖∇fSk
(xk)−∇f(xk)‖ ≤ µ‖∇fSk

(xk)‖ (43)

for some µ ∈ (0, 1), then using a fixed step size

αk ≡ α ≤
1− µ

L
(44)

the step sk = −α∇fSk
(x) is always a descent step and the line search algorithm converges with

the rate O(log(1/ǫ)) if f is strongly convex. Clearly, condition (43) implies that the model
Mk(x) = f(xk) +∇fSk

(xk)⊤(x− xk) is sufficiently accurate according to Definition 3.1 for the
given fixed step size α. Hence Assumption 3.1 on the models can be viewed as a relaxed version
of those in [4], since we allow the condition (43) to fail, as long as it fails with probability less
than 1/2, conditioned on the past. Moreover, we analyze the practical version of line search
algorithm, with a variable step size, which does not have to remain smaller than 1−µ

L and we
provide convergence rates in convex, strongly convex and nonconvex setting.

Convergence in expectation of a stochastic algorithm is further shown in [4]. In particular,
under the assumption that the variance of ‖∇fi(x)‖ is bounded for all i and that ES [∇fS(x

k)] =
∇f(xk), it is shown that, for Xk computed after k steps of stochastic gradient descent with a
fixed step size, E[f(Xk)] converges linearly of f∗, when f(x) is strongly convex and if |Sk| - the
size of the sample set Sk - grows exponentially with k.

Here, again, our results can be viewed as a generalization of the results in [4]. Indeed, let us
assume that ES [∇fS(x

k)] = ∇f(xk) for each xk and let tk = |Sk| - the size of the sample set Sk.
Since variance of ‖∇fi(x)‖ is bounded for all i, we have that ESk

[‖∇fSk
(xk)−∇f(xk)‖] ≤ w

tk
, for

some fixed w, where the expectation is taken over all random sample sets Sk of size tk. In other
words, the variance of one sample of the stochastic gradient ‖∇fi(x)‖ is bounded and hence the
variance of ∇fSk

(xk) decays as the size of Sk increases.
By Chebychev inequality

Pr{‖∇fSk
(xk)−∇f(xk)‖ > min{1/2, αk}‖∇f(xk)‖} ≤

w

min{1/2, αk}2‖∇f(xk)2‖|Sk|
.

If ‖∇fSk
(xk)−∇f(xk)‖ ≤ min{1/2, αk}‖∇f(xk)‖, for a particular xk and a sample set Sk, then

by applying triangle inequality we have

‖∇fSk
(xk)−∇f(xk)‖ ≤

αk‖∇fSk
(xk)‖

2
.

Hence the probability of the event ‖∇fS(x
k)−∇f(xk)‖ ≤

αk‖∇fSk
(xk)‖

2 is at least

1−
w

min{1/2, αk}2‖∇f(xk)‖2|Sk|
≥ 1−

w

min{1/2, αk}2(1 + αk)2‖∇fSk
(xk)‖2|Sk|

,

hence as long as |Sk| is chosen sufficiently large, then this probability is greater than 1/2 and
∇fS(x

k) provides us with a probabilistically sufficiently accurate model according to Definition

27

3.1. Hence the theory described in this paper applies to the case of line search based on stochastic
gradient. Note that, on top of the results in [4], we not only analyze line search in nonconvex and
convex setting, but also show the bound on the expected number of iterations until the desired
accuracy is reached, rather than the expected accuracy after a given number of iterations. As
we have shown earlier, this implies lim inf-type convergence with probability one. Moreover,
as mentioned on page 13, it is not difficult to extend our analysis to show that the number of
iterations until the desired accuracy is reached has exponentially decaying tails.

Analyzing complexity of methods in this setting in terms of the total number of gradient
samples is a subject of some current research [18]. We leave the exact comparison that can
be obtained from our results and those existing in current literature as future research, as
this requires defining a sample size selection strategy and possible improvement of our results.
Similarly, we leave for future research the derivations of the models in this setting that satisfy
Definition 4.1 for the use within the ARC algorithm.

5.2 Models based on random sampling of function values

The motivation behind the notions of probabilistically fully-linear and fully-quadratic models
introduced in [1] is based on derivative-free models, which are models based on function values,
rather than gradient estimates. We will now show how such models fit into our framework.

Let us first recall the definition of probabilistically fully-linear and quadratic models and
pose it in the terms closest to the ones used in this paper

Definition 5.1 1. We say that a sequence of random models {Mk} is (p)-probabilistically
fully-linear if there exists constant κg such that for any corresponding random sequence
∆k, X

k, the random indicator variables

I lk = 1 {‖∇f(Xk)−Gk‖ ≤ κg∆k}

satisfy the following submartingale-like condition

P (I lk = 1|FM
k−1) ≥ p,

where FM
k−1 = σ(M0, . . . ,Mk−1) is the σ-algebra generated by M0, . . . ,Mk−1.

2. We call sequence {Mk} is (p)-probabilistically fully-quadratic if there exist constants κg
and κH such that for any corresponding random sequence ∆k, X

k, the random indicator
variables

Iqk = 1{‖∇f(Xk)−Gk‖ ≤ κg∆
2
k and ‖H(Xk)−Bk‖ ≤ κH∆k}

satisfy the following submartingale-like condition

P (Iqk = 1|FM
k−1) ≥ p,

where FM
k−1 = σ(M0, . . . ,Mk−1) is the σ-algebra generated by M0, . . . ,Mk−1.

The key difference between the conditions in Definition 5.1 and those in Definitions 3.1 and
4.1 is the right hand side of the error bounds - in the case of fully-linear and fully-quadratic
models ∆k is a random variable that does not depend on Mk, but in the case of this paper, ∆k

28

is replaced by Ak‖Gk‖ in the case of Definition 3.1 and by ‖Sk‖ in the case of Definition 4.1.
In other words, the accuracy of the model has to be proportional to the step size which this
model produces. Since in [1] trust region methods are analyzed instead of line search and ARC,
Definition 5.1 is sufficient.

Models in [1] are constructed by sampling function values in a ball of a given radius around the
current iterate xk and in all cases construction of the k-th model Mk relies on the knowledge of
the sampling radius. We will now show that, given a mechanism of constructing probabilistically
fully-linear and fully-quadratic models for any sequence of radii (as described in [1]), we can
modify our line search algorithm and ARC algorithm, respectively, and extend the convergence
rate analysis to utilize these models.

Line-search with probabilistically fully-linear models Let us consider Algorithm 3.1
and corresponding random sequence of iterates Xk and step sizes Ak. If a given model Mk is
fully-linear in B(Xk,AkΞk) and ‖Gk‖ ≥ κ∆Ξk, for some positive constant κ∆, then model Mk

is sufficiently accurate, according to Definitions 3.1.
To achieve this, for instance, in nonconvex case, for all ‖∇f(Xk)‖ ≥ ǫ consider Ξk ≤

ǫ
2κg max{Ak ,1} , where κg is the constant in the definition of fully-linear models. Then any fully-

linear model Mk(x) is also sufficiently accurate, simply because ‖∇f(Xk) − Gk‖ ≤ κgAkΞk ≤
min{Ak, 1}

ǫ
2 implies ‖Gk‖ ≥ ǫ

2 ≥ Ξk. Similar bounds can be derived for the convex and strongly
convex cases.

Consider the following example of a method that produces probabilistically sufficiently ac-
curate models, based on the arguments above. Suppose we are estimating gradients of f(x)
by a finite difference scheme using step size AkΞk, with Ξk, sufficiently small, and suppose we
compute the function values using parallel computations. If some of the computations fail to
complete (due to an overloaded processor, say) with some probability and the total probability
of having a computational failure in any of the processors at each iteration is less than 1/2, con-
ditioned on the past, then we obtain probabilistically sufficiently accurate models. Note that,
we do not assume the nature of the computational error, when such error occurs, hence allowing
for the gradient estimate to be, occasionally, completely inaccurate.

Another example can be derived from [1], where it is shown that sparse gradient and Hes-
sian estimates can be obtained by randomly sampling fewer function values than is needed to
construct gradient and/or Hessian by finite differences. Using this sampling strategy, prob-
abilistically fully-linear and fully-quadratic models can be generated at reduced computation
cost. Here again, choosing sampling radius to equal ∆k = AkΞk, with sufficiently small Ξk will
guarantee that the models are also probabilistically sufficiently accurate.

We now address a more practical approach, when estimates Ξk are not chosen to be small
enough a priory, but are dynamically decreased, as another parameter in the algorithm. We
will outline how our theory can be extended in this case. Consider the following modification of
Algorithm 3.1.

Algorithm 5.1 Line-search with probabilistically fully-linear models

Initialization
Chose constants θ ∈ (0, 1), γ ∈ (0, 1), αmax > 0 and κ∆ > 1. Pick initial x0 and
α0 < αmax, ξ0. Repeat for k = 0, 1, . . .

29

1. Compute a model
Compute a model mk, which is probabilistically fully-linear in B(xk, αkξk) and use it to
generate a direction gk.

2. Check model accuracy
If ‖gk‖ ≥ κ∆ξk, then set the step sk = −αkg

k and continue to Step 3.
Otherwise, xk+1 = xk, αk+1 = αk, ξk+1 = ξk/κ∆, return to Step 1.

3. Check sufficient decrease
Check if

f(xk − αkg
k) ≤ f(xk)− αkθ‖g

k‖2. (45)

4. Successful step
If (45) holds, then xk+1 := xk − αkg

k and αk+1 = min{αk/γ, αmax}.

5. Unsuccessful step
Otherwise, xk+1 = xk.
αk+1 = γαk.

In the above algorithm, at each iteration we maintain ξk, which is expected to be an un-
derestimate of the norm of the descent direction, up to a constant, κ∆. The algorithm then
uses δk = αkξk as the radius for constructing fully-linear models. After the model is produced,
condition ‖gk‖ ≥ κ∆ξk is checked. If this condition holds, the algorithm proceeds exactly as the
original version, but if this condition fails, then ξk is reduced by a constant (κ∆ is a practical
choice, but any other constant can be used) and the iteration is declared to be unsuccessful
(hence xk+1 = xk), and the step size αk remains the same.

Let us consider different possible outcomes for each iteration k for which ‖∇f(xk)‖ ≥ ǫ.
From our analysis above, we know that if ξk ≤ ǫ

2κgαmax
and the model mk is fully linear, then

‖gk‖ ≥ ξk, hence the model is also sufficiently accurate and the iteration of Algorithm 5.1
proceeds as in Algorithm 3.1. Since ξk is never increased, then, once it is small enough, the
analysis of Algorithm 5.1 can be reduced to that of Algorithm 3.1. Then what remains is to
estimate the number of iterations that Algorithm 5.1 takes until ξk ≤ ǫ

2κgαmax
or ‖∇f(xk)‖ ≤ ǫ

occurs.
While ξk is not sufficiently small, we can have the following outcomes: 1) ‖gk‖ < κ∆ξk, in

which case ξk is reduced, 2) the model is not fully linear and ‖gk‖ ≥ κ∆ξk, hence the model
may not be sufficiently accurate, but ξk is not reduced and 3) the model is fully-linear and
‖gk‖ ≥ κ∆ξk, hence the model is also sufficiently accurate. Hence with probability at least p,
ξk is reduced or the model is sufficiently accurate. It is possible to extend the definition of our
stochastic processes and their analysis to compute the upper bounds on the expected number
of iterations Algorithm 5.1 takes until ‖∇f(xk)‖ ≤ ǫ occurs. This bound will be increased by
adding a constant times the number of iterations it takes to achieve ξk ≤ ǫ

2κgαmax
, which is

O(log(1/ǫ)). Again, similar analysis can be carried out for the cases of convex and strongly
convex functions.

ARC with probabilistically fully-quadratic models Let us consider Algorithm 4.1.
In this case, in the same vein with line-search, we consider setting ∆k in the Definition 5.1 of
probabilistically fully-quadratic models, to a sufficiently small value or adjusting it in the run
of the algorithm so as to ensure that when the model is fully-quadratic, it is also sufficiently

30

accurate (at least asymptotically). We will make these two approaches to the choice of ∆k

more precise in what follows. To this end, we need a new variant of Lemma 4.3 for the case of
probabilistically fully-quadratic models.

Lemma 5.1 Let Assumptions 3.2 and 4.2 hold. Consider any realization of Algorithm 4.1 where
we generate models that are p-probabilistically fully-quadratic according to Definition 5.1. Then
on each iteration k in which Iqk = 1, we have

(1− κθ)‖∇f(xk + sk)‖ ≤ (2κg + κH)δk max{δk, 1} + (L+ LH + σk)‖s
k‖2. (46)

In particular, if ǫ ∈ (0, 1], max{L,LH} ≥ 1, and

δk ≤
(1− κθ)ǫ

max {2(2κg + κH), L+ LH + σk}
, (47)

then on each iteration k with ‖∇f(xk + sk)‖ ≥ ǫ and in which Iqk = 1, we have ‖sk‖ ≥ δk.

Assume now that δk = ξk
σk
. Then if ǫ ∈ (0, 1], max{L,LH} ≥ 1, and

ξk ≤
(1− κθ)σminǫ

max {2(2κg + κH), L+ LH + σmin}
:= ξǫ, (48)

then on each iteration k with ‖∇f(xk + sk)‖ ≥ ǫ and in which Iqk = 1, we have ‖sk‖ ≥ δk.

Proof. It follows from Definition 5.1 that on each realization of Algorithm 4.1, we have

‖∇f(xk)− gk‖ ≤ κgδ
2
k and ‖H(xk)− bk‖ ≤ κHδk (49)

The proof of (46) now follows identically to the proof of Lemma 4.3 if one uses (49) instead of
(34).

The choice of δk in (47) implies δk ≤ 1 and so ‖sk‖ ≥ δk trivially holds when ‖sk‖ ≥ 1.
When ‖sk‖ < 1, ‖∇f(xk + sk)‖ ≥ ǫ, and δk ≤ 1, (46) implies

(1− κθ)ǫ− (2κg + κH)δk ≤ (L+ LH + σk)‖s
k‖.

Now the condition (47) on δk implies (L + LH + σk)‖s
k‖ ≥ (1 − κθ)ǫ/[2(2κg + κH)]. Applying

again the upper bound on δk provides ‖sk‖ ≥ δk.
Finally, if δk = ξk

σk
, and using σk ≥ σmin for all k due to the algorithm construction, (48)

implies (47). �

The second part of Lemma 5.1 provides that if p-probabilistically fully-quadratic models
are generated with δk chosen sufficiently small so that (47) holds, then the models are also p-
probabilistically sufficiently accurate. Thus Algorithm 4.1 can be run with models sampled in
this way and the analysis carries through as before. For example, as in the case of linesearch,
gk and bk could be generated by (sufficiently accurate) finite-difference schemes using function
values, where computations are done in parallel and where the total probability of computational
failure in any of the processors at each iteration is less than 1/2.

Note however, that the bound that dictates the choice of a suitably small δk depends on
problem constants that may not be known a priori. Thus it would be better – and computation-
ally more efficient – to adjust δk during the run of Algorithm 4.1. A modification of Algorithm
4.1 that allows this is given next, and can be viewed as the analogue for ARC of the line-search
Algorithm 5.1.

31

Algorithm 5.2 ARC with probabilistically fully-quadratic models

Initialization
Choose parameters σmin > 0, γ ∈ (0, 1), θ ∈ (0, 1), 0 < κθ < 1 and κ∆ > 1. Pick a starting
point x0, a starting value σ0 > σmin and ξ0 > 0. Repeat for k = 0, 1, . . .,

1. Compute a model

Compute a model which is probabilistically fully-quadratic in B
(

xk, ξk
σk

)

, and hence gen-

erate approximate gradient gk and Hessian bk.

2. Compute the trial step sk

Compute the trial step sk to satisfy (29) and (30).

3. Check model accuracy
If ‖sk‖ ≥ κ∆δk := ξk/σk, then go to Step 4.
Otherwise, set xk+1 = xk, σk+1 = σk, ξk+1 = ξk/κ∆, and return to Step 1.

4. Check sufficient decrease
Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

f(xk)−mk(xk + sk)
.

5. Update the iterate
Set

xk+1 =

{

xk + sk if ρk ≥ θ [k successful]
xk otherwise [k unsuccessful]

6. Update the regularization parameter σk
Set

σk+1 =

{

max{γσk, σmin} if ρk ≥ θ
1
γσk otherwise.

Algorithm 5.2 updates ξk in order to obtain an underestimate δk := ξk/σk on the length of
the step sk. It constructs probabilistically fully-quadratic models in B(xk, ξk/σk) and checks
whether ‖sk‖ ≥ κ∆δk. If that is the case, then the iteration of the above algorithm proceeds as
(Algorithm 4.1) before; note that then, if the model is fully quadratic then it is also sufficiently
accurate. Otherwise, if the step is too short, then ξk is decreased by κ∆, x

k and σk remain
unchanged and a new model is generated (within the smaller ball).

Let us consider the behavior of Algorithm 5.2 while ‖∇f(xk + sk)‖ ≥ ǫ. It follows from
the last part of Lemma 5.1 that since ξǫ is independent of k and ξk is never increased in the
algorithm, if κ∆ξj ≤ ξǫ for some j, then ξk will remain below this threshold for all subsequent
iterations k ≥ j; from this j onwards, whenever the model is fully quadratic, then ‖sk‖ ≥ κ∆δk
and the model is also sufficiently accurate. Thus from iteration j onwards, Algorithm 5.2 reduces
to Algorithm 4.1 and the complexity analysis is the same as before. It remains to estimate the
size of j, namely, the number of iterations Algorithm 5.2 takes until ξk ≤ ξǫ or ‖∇f(xk+sk)‖ < ǫ.

Similarly to the linesearch analysis of possible outcomes above, we can argue that while ξk
is not sufficiently small, at least with probability p, ξk is reduced or the model is sufficiently
accurate. Thus, extending our earlier ARC analysis (and definitions of stochastic processes, etc)

32

to account for the ξk updates as well, we would find that the complexity bound for Algorithm
5.2 is essentially that of Algorithm 4.1 plus a O(log(1/ǫ)) term (coming from log(ξ0/ξǫ) log κ∆)
that accounts for the number of iterations to drive ξk below ξǫ.

6 Conclusions

We have proposed a general algorithmic framework with random models and a methodology for
analyzing its complexity that relies on bounding the hitting time of a nondecreasing stochastic
process that measures progress towards optimality. Our framework accounts for linesearch and
cubic regularization methods, for example, and we particularize our results to obtain precise
complexity bounds in the case of nonconvex and convex functions. Despite allowing our mod-
els to be arbitrarily inaccurate sometimes, the bounds we obtained match their deterministic
counterparts in the order of the accuracy ǫ. The effect of model inaccuracy is reflected by the
constant multiple of the bound, which is a function of the probability that the model is suf-
ficiently accurate. We have also briefly discussed ways to obtain probabilistically sufficiently
accurate models as required by our framework.

The results in the paper assume that the objective f is deterministic. Obtaining global
rates of convergence results for similar algorithmic frameworks when f is stochastic is a topic of
future research. Also, further exploring ways to efficiently generate probabilistically sufficiently
accurate models may increase the applicability of our results to a diverse set of problems.

Acknowledgements We would like to thank Alexander Stolyar for helpful discussions on
stochastic processes. We also would like to thank Zaikun Zhang, who was instrumental in
helping us significantly simplify the analysis of the stochastic process in Section 2.

References

[1] A. Bandeira, K. Scheinberg, and L. Vicente, Convergence of trust-region methods
based on probabilistic models, SIAM Journal on Optimization, 24 (2014), pp. 1238–1264.

[2] E. G. Birgin, J. L. Gardenghi, S. A. S. J. M. Martinez, and P. L. Toint, Worst-
case evaluation complexity for unconstrained nonlinear optimization using high-order regu-
larized models, Tech. Rep. naXys-05-2015, Department of Mathematics, University of Na-
mur, 2015.

[3] R. Byrd, J. Nocedal, and F. Oztoprak, An inexact successive quadratic approximation
method for convex l-1 regularized optimization, tech. rep., 2013.

[4] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, Sample size selection in optimization
methods for machine learning, Math. Program., 134 (2012), pp. 127–155.

[5] C. Cartis, N. Gould, and P. L. Toint, Optimal Newton-type methods for nonconvex
smooth optimization problems, Tech. Rep. Optimization Online, 2011.

[6] , On the oracle complexity of first-order and derivative-free algorithms for smooth non-
convex minimization, SIAM Journal on Optimization, 22 (2012), pp. 66–86.

33

[7] C. Cartis, N. I. M. Gould, and P. L. Toint, Adaptive cubic regularisation methods for
unconstrained optimization. Part I: motivation, convergence and numerical results, Math.
Program., 127 (2011), pp. 245–295.

[8] , Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-
case function- and derivative-evaluation complexity, Math. Program., 130 (2011), pp. 295–
319.

[9] R. Chen, Stochastic Derivative-Free Optimization of Noisy Functions, PhD thesis, Depart-
ment of Industrial and Systems Engineering, Lehigh University, Bethlehem, USA, 2015.

[10] R. Chen, M. Menickelly, and K. Scheinberg, Stochastic optimization using a trust-
region method and random models, tech. rep., ISE Dept., Lehigh University.

[11] O. Devolder, F. Glineur, and Y. Nesterov, First-order methods of smooth convex
optimization with inexact oracle, Math. Program., 146 (2014), pp. 37–75.

[12] S. Ghadimi and G. Lan, Stochastic first- and zeroth-order methods for nonconvex stochas-
tic programming, SIAM Journal on Optimization, 23 (2013), pp. 2341–2368.

[13] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang, Direct search based on
probabilistic descent, Tech. Rep. 14-11, Dept. Mathematics, Univ. Coimbra, 2014.

[14] J. D. Lee, Y. Sun, and M. A. Saunders, Proximal newton-type methods for convex
optimization, in NIPS, 2012.

[15] Y. Nesterov, Introductory Lectures on Convex Optimization, Kluwer Academic Publish-
ers, Dordrecht, The Netherlands, 2004.

[16] Y. Nesterov, Random gradient-free minimization of convex functions, Tech. Rep. 2011/1,
CORE, 2011.

[17] Y. Nesterov and B. T. Polyak, Cubic regularization of newton method and its global
performance, Math. Program., 108 (2006), pp. 177–205.

[18] R. Pasupathy, P. W. Glynn, S. Ghosh, and F. Hahemi, How much to sample in
simulation-based stochastic recursions?, (2014). Under Review.

[19] H. Robbins and S. Monro, A stochastic approximation method, Annals of Mathematical
Statistics, 22 (1951), pp. 400–407.

[20] M. W. Schmidt, N. L. Roux, and F. Bach, Convergence rates of inexact proximal-
gradient methods for convex optimization, in NIPS, 2011, pp. 1458–1466.

[21] , Minimizing finite sums with the stochastic average gradient, CoRR, abs/1309.2388
(2013).

[22] A. Shiryaev, Probability, Graduate Texts on Mathematics, Springer-Verlag, New York,
1995.

[23] J. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation, IEEE Transactions on Automatic Control, 37 (1992), pp. 332–341.

34

	1 Introduction
	2 A general optimization scheme with random models
	2.1 A general optimization scheme
	2.2 Generic probabilistic models
	2.3 Elements of global convergence rate analysis
	2.4 Analysis of the stochastic processes
	2.5 Bounding the number of steps for which kC
	2.6 Bounding the expected number of steps for which k>C
	2.7 Final bound on the expected stopping time

	3 The line-search algorithm
	3.1 The nonconvex case, steepest descent
	3.2 The nonconvex case, general descent
	3.3 The convex case
	3.4 The strongly convex case

	4 Probabilistic second-order models and cubic regularization methods
	4.1 A cubic regularization algorithm with random models
	4.2 Global convergence rate analysis, nonconvex case

	5 Random models
	5.1 Stochastic gradients and batch sampling
	5.2 Models based on random sampling of function values

	6 Conclusions

