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Abstract. The cross-section for the process γ + A → µ+ + µ− +X is studied where the photon energy is

of the order of several hundreds of GeV and where one of the leptons is scattered to large angles. This is

of practical importance for muon shielding calculations at future linear electron colliders. In addition to

the photon pole contribution which was previously considered especially by Y.S.Tsai, we identify another

component due to the muon pole (equivalent photon and equivalent muon approximation). This is discussed

following the usual Bethe-Heitler formula. Then we give practically useful formulae for inclusive lepton

(muon) production along with some numerical examples.

PACS. 13.60.-r Photon and charged lepton interactions with hadrons – 13.60.Hb Total and inclusive

cross-sections (including deep inelastic processes) – 25.20.Lj Photoproduction reactions

1 Introduction

This paper arose out of a practical question. At future Lin-

ear Colliders like TESLA [1] electron and positron beams

of several hundreds of GeV and high beam powers of some

10 MW have to be absorbed after having passed the in-

teraction region. In this process, high energy photons are

produced which in turn give rise to high energy muons. In

order to estimate the muon radiation dose at earth sur-

face above the Linear Collider [2] pair production cross-

sections for large angles are necessary. This is a well known

problem which has been studied many times, most elab-

orately probably by Y.S.Tsai [4]. An exact lowest order

formula is given there, which corresponds to the graphs

http://arxiv.org/abs/hep-ph/9902245v1
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Fig. 1. Feynman graphs describing the process

γ + A → p+ p+ +X

shown in figs.1 a) and b). The information about nuclear

structure is fully contained in the electromagnetic struc-

ture functions W1 and W2. However, this formula is very

complicated and hard to evaluate practically, especially

if one has to integrate over the unobserved lepton with

fourmomentum p+ (e or µ, we are here concerned only

with muons). Therefore practical calculations were done

using the Weizsäcker-Williams (or equivalent photon) ap-

proximation. This corresponds to the kinematical situa-

tion where the square of the momentum of the exchanged

photon, q2 = −Q2, is specially small (q2 ≈ 0). In many

situations, this is the dominant distribution. In our studies

we found another kinematical situation to be important.

It corresponds to the muon pole, where the intermediate

muon is close to its mass-shell (“equivalent muon approx-

imation”). This has been studied before [6] (see also [8])

and we adopt the formulations of these authors.

Starting from the usual formula for the Bethe-Heitler

process (where infinitely heavy point-like nuclei are as-

sumed) we explain in chapter 2 the general features of the

pair production process and its important limiting cases.

Then we discuss the general case, where structure effects

are taken into account (along with the effects due to the

finite mass, or recoil effects). The information needed as

an input is sufficiently well known, specially from electron

scattering. In chapter 3 we provide some illustrative exam-

ples, together with discussions. Our conclusions are given

in chapter 4.

2 Cross-section for γ + A → µ+
+ µ−

+X

2.1 Bethe-Heitler cross-section revisited. Photon and

muon pole contributions

The cross-section for the Bethe-Heitler process is calcu-

lated in many textbooks corresponding to the graphs of

fig.1. Assuming that the nucleus is infinitely heavy and

point-like one obtains the following formula for the differ-

ential cross-section (we use the natural units h̄ = c = 1)

[3]

dσ =
8α3Z2m2

πk3Q4
E+ EdE (1)

{

−
δ2+

(1 + δ2+)
2
−

δ2

(1 + δ2)2
+

k2

2E+E

δ2+ + δ2

(1 + δ2+)(1 + δ2)

+

(

E+

E
+

E

E+

)

δ+δ cos(φ)

(1 + δ2+)(1 + δ2)

}

δ+dδ+ δdδ dφ

where m denotes the muon mass, k = E+ + E is the

photon energy, E+, E the energies of the outgoing muons

and φ is the angle between the planes spanned by the

photon and the outgoing muons. We have δ+ = θ+E+/m,

δ = θE/m, where θ+, θ are the scattering angles of the

outgoing muons, and the momentum transfer is given by

Q2/m2 = δ2++δ2+2δ+δ cos(φ)+m2

(

1 + δ2+
2E+

+
1 + δ2

2E

)2

(2)
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Typical scattering angles are given by θ ∼= m/E, i.e. δ ∼= 1.

Now we are interested in the case where one of the muons

(say µ−) scatters to large angles and we integrate over the

angles of the other one (θ+, φ), i.e. we have

δ ≫ 1 (3)

In this integration, a large contribution will come from the

region where Q2 is as small as possible. This is the case

for

δ+ ∼= δ and φ ∼= π (4)

i.e. µ+ and µ− scatter to opposite sides with about equal

transverse momentum. In this case eq.(2) leads to

Q2
min

∼= m4(1 + δ2)2
(

k

2E+E

)2

(5)

and one uses the Weizsäcker-Williams approximation as

it is elaborated in [4].

In addition, there is another region of integration which

can become important,

δ ≫ 1 , 0 ≤ δ+ ≤ δ+,max and 0 ≤ φ < 2π (6)

where the choice of δ+,max is discussed below. In this case

the momentum transfer is given by

Q2
mp

∼= m2δ2 = (θE)2 (7)

which is generally much larger thanQ2
min. The paranthesis

in equ.(1) is simplified and one obtains for the differential

cross-section (integrated over the angles of the µ+, u ≡ δ2+,

umax = δ2+,max)

d2σ

dΩdE
=

4Z2

π

α3E+E
3

k3Q4
mp

umax
∫

0

du

(

−u

(1 + u)2
+

k2

2E+E(1 + u)

)

(8)

The integral in equ.(8) diverges logarithmically. Following

[6] (see also [8]) we put δ+,max = θE/m ≫ 1 and we find

d2σ

dΩdE
∼=

[

4Z2α2

θ4E2

]

α

π
ln

(

θ
E

m

)

E2 + (k − E)2

k3
(9)

where E+ = k−E was used. This is in agreement with [8]

(see especially equ.(13)) and with [6] (see eqs.(6)-(8)). The

derivation of equ.(9) actually depends on the assumption

that δ+ ≪ δ. In the next subsection we give a simple

physical meaning to equ.(9) in a more general context.

2.2 Effects of finite nuclear size, nuclear and nucleon

structure

For large scattering angles, δ ≫ 1, the photon and muon

pole contributions are separated in phase space, since δ+ ∼=

δ ≫ 1 for the equivalent photon approximation (EPA) and

δ+ ≤ 1 for the equivalent muon approximation (EMA).

Therefore we can add these two terms incoherently to ob-

tain the full inclusive cross-section

d2σ

dΩdE
=

(

d2σ

dΩdE

)

EPA

+

(

d2σ

dΩdE

)

EMA

(10)

The relative importance of the two terms depends on the

special kinematical values and the Q2-dependence of the

corresponding structure functions.

The photon pole contribution was extensivly discussed

in [4] and we follow this procedure and do not have to go

into details here. There are coherent nuclear scattering,

described by the elastic form-factor of the nucleus and,

for larger values of Q2
min (i.e. larger scattering angles),

incoherent contributions due to the scattering from indi-
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vidual nucleons1. In the equivalent photon approximation,

the effects of nucleon structure are entirely contained in

the function χ, see eqn.(2.19) of [5]

χ =
1

2Mi

∞
∫

M2

i

dM2
f

Q2

max
∫

Q′2

min

dQ2

Q4

[

(Q2 −Q′2
min) ·W2(Q

2,M2
f )

+2Q2
min ·W1(Q

2,M2
f )

]

(11)

The mass of the hadron system in the initial state is de-

noted by Mi, the mass of the produced final state by Mf ,

and

Q′2
min = Q2

min + 2∆
√

Q2
min where ∆ =

M2
f −M2

i

2Mi

.

(12)

The expression for Q2
min (see our eq.(5)) is in accord with

the corresponding expression given in App.A of [5]. The

electromagnetic structure functions are denoted by W2

and W1. The elastic contribution is well described by the

usual dipole parametrization (see [4]). In this reference, a

parametrization of the inelastic contribution Mf 6= Mi is

also given (“meson production form-factor”). We suggest

a somewhat different approach, which takes the resonant

character of the structure function for Q2 ≈ 0 into ac-

count. For small enough Q2 (the important region of the

integration in eq.(11)) the structure functions are directly

related to the cross-section for real (transverse) photons

σγp(k) (the scalar part vanishes as Q2 → 0). One has

W2(Q
2,M2

f )
∼=

Q2

4π2α

2Mi

M2
f −M2

i

σγp(Mf ) f(Q
2) (13)

W1(Q
2,M2

f )
∼=

1

4π2α

M2
f −M2

i

2Mi

σγp(Mf ) f(Q
2)

1 There is also a “quasi-elastic” contribution where the Pauli-

suppression effect on the knocked out nucleon is included.

where a form-factor f(Q2) is introduced. The cross-section

σγp for real photons is dominated by nucleon resonances,

most prominently by the ∆-resonance. We take the Q2-

dependence of f(Q2) to be the same as for the elastic

proton form-factor, i.e. we chose a dipole form

f(Q2) =
1

(1 +Q2/Λ2)4
where Λ2 = 0.71GeV2 . (14)

Note, however, that a somewhat stronger fall-off with Q2

was found experimentally [9].

By applying the equivalent photon approximation to the

full Bethe-Heitler expression, one neglects the muon pole

contribution. In many cases this is justified because the

Q2-value involved in the muon pole contribution is usual

much higher compared to the one occuring in the equiva-

lent photon approximation. Form-factor effects emphasiz-

ing the low Q2-values tend to make the muon pole con-

tribution small. On the other hand, in the deep-inelastic

scattering region scaling sets in and the structure func-

tions do not decrease any more with increasing Q2.

The muon pole contribution is described in [6],[8] (equiv-

alent muon approximation). After integration over the un-

observed µ+ (which is scattered to small angles), the scat-

tering process factorizes into an “equivalent muon spec-

trum” and the scattering cross-section of the muon on the

target. This muon can be considered as a “parton” inside

the photon. It is moving in the direction of the photon

with an energy fraction x = E′/k of the photon, where E′

corresponds to the muon energy in the intermediate state.

The inclusive Bethe-Heitler cross-section is now obtained
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as (see eq.(25) of [6])

(

d2σ

dΩdE

)

EMA

=

1
∫

xo

dx Fµ
γ (k, x)

d2σ(µN → µ′X)

dΩdE
(kx)

(15)

This equivalent muon spectrum is given by [6]

Fµ
γ (k, x) =

α

π
ln

(

k

m

)

[

x2 + (1 − x)2
]

(16)

A more refined expression is obtained by replacing

ln

(

k

m

)

by ln

(

θ
xk

m

)

with θ ≫
m

xk
(17)

(see also [6] and [8]). The muon-nucleon inclusive scatter-

ing cross-section is given by

d2σ(µN → µ′X)

dΩdE
=

(

dσ

dΩ

)

Mott

·
(

W2 + 2W1 tan
2(θ/2)

)

(18)

where the Mott cross-section is given by

(

dσ

dΩ

)

Mott

=
α2

4(kx)2
cos2(θ/2)

sin4(θ/2)
(19)

where the muon energy is given by E′ = xk. The kine-

matical limit xo in eq.(16) is given by [6]

xo =
MNE

MNk − 2kE sin2(θ/2)
(20)

in the present notation. Equ.(15) is rewritten as

(

d2σ

dΩdE

)

EMA

=
α2

4k2 sin4(θ/2)
· (21)

[W γ
2 (k,E, θ) cos2(θ/2) + 2W γ

1 (k,E, θ) sin2(θ/2)]

with

W γ
1,2(k,E, θ) =

α

π

1
∫

xo

dx ln

(

θ
xk

m

)

x2 + (1− x)2

x2
W1,2(ν,Q

2)

(22)

where ν = xk−E and Q2 = 4xkE sin2(θ/2) are the usual

variables used in deep inelastic scattering. In order to eval-

uate the integral in eq.(22) we have to know the structure

function on the ray

Q2 = 4(ν + E)E sin2(θ/2) (23)

For an infinitely heavy and point-like target proton we

have W2 = δ(xk −E). The integration eqs.(21),(22) leads

to the same cross-section as it was discussed in section 2.1,

eq.(9) (for Z = 1), if one applies the small angle approx-

imation (θ ≪ 1). Now one sees that eq.(9) factorizes into

the Mott scattering cross-section (with E = E′ = xk) and

the equivalent muon number of eq.(16).

In principle, these structure functions are well known

from deep inelasic lepton scattering [11],[10]. For a rough

estimate of the order of magnitude of the effect we use a

simplified approach: for the rather low values of Q2 ≥

1GeV2 and Mf ≥ 2.6GeV an approximate scaling be-

haviour sets in [11]. We have

νW2(ν,Q
2) = F2(xq) (24)

where xq = Q2/(2νMN) and F2 is independent of Q2. We

also have

2MN W1(ν,Q
2) = F1(xq) (25)

and the Callan-Gross relation

F2(xq) = 2xq F1(xq). (26)

3 Numerical Results and Discussion

For small scattering angles,the Bethe-Heitler cross-section

is dominated by coherent nuclear scattering. With increas-

ing angles, the effect of the form-factor of the nucleus will
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set in and the cross-section will decrease rather rapidly.

The nuclear form-factor is characterized by a rather soft

scale Λ2
nucleus = h̄c/R = 0.005GeV2 for R=3 fm. The

corresponding scale for a nucleon is Λ2
N = 0.71GeV2. For

large angles, the incoherent scattering from the nucleons

will take over. Apart from Pauli-blocking effects, the nu-

cleus is just an assembly of Z protons and N neutrons at

rest (we can neglect Fermi motion). This is all very well

and extensively described in [4] and we can concentrate

on the incoherent contributions from the nucleons.

The elastic nucleon contribution is well described within

the equivalent photon approximation [4]. We take the usual

dipole form-factors. We have also checked the muon pole

contribution for the elastic case. Since the momentum

transfer Q2
min (see eq.(5)) is much smaller than Q2

mp (see

eq.(7)) the strong decrease of the dipole form-factor with

Q2 renders the muon pole contribution negligible in this

case.

Table 1. Numerically calculated integrals of eqs.(27).

M1 [GeV] M2 [GeV] Mf [GeV] W̃2 [GeV−2] W̃1

1.11 1.35 1.24 2.66 0.30

1.35 1.62 1.49 1.24 0.62

1.62 2.05 1.82 1.00 1.67

2.05 2.55 2.31 0.65 3.56

2.55 3.25 2.81 0.62 10.09

Inelastic contributions for small Q2 are dominated by

nucleon resonances. We use eqs.(11) and (13) to calculate

the inelastic contribution. We take the cross-section σγp

for real photons from experimental data [10]. This cross-

section is dominated by nucleon resonances (mainly the

∆) in the GeV region, followed by a structureless con-

tinuum. For the integration over M the cross-section σγp

is regarded as a sequence of 5 resonances at the center

of mass energies Mf as listed in tab.1. The first 2 are

the real resonances. The relative widths of all the regions

are kept approximately the same. The following integrals

corresponding to equ.(13) were numerically calculated for

each region:

W̃2 =
1

4π2α

M2
∫

M1

2M dM
1

M2 −M2
i

σγp(M) (27)

W̃1 =
1

4π2α

1

(2Mi)2

M2
∫

M1

2M dM (M2 −M2
i ) σγp(M)

Mf =

M2
∫

M1

dM M σγp(M)

/ M2
∫

M1

dM σγp(M)

They are listed in tab.1. A parametrization of the contri-

bution of the ∆-resonance to W2 is given by Chanfray et

al. [7], our results are in qualitative agreement. At large

angles the resulting cross-section behaves very similarly

to the elastic cross-section (shown in fig.2, dashed lines)

as expected from the Q2-dependencies of the form factors.

It should be noted here that proton and neutron behave

similarly as it is indicated by comparing the γp with the

γd cross-section [10].

We concentrate now on the muon pole contribution. Due

to the quark-parton structure of the nucleon, the form
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Fig. 2. Bethe Heitler cross-sections on a proton at a photon energy of 200 GeV and a muon energy of 120 GeV as a function

of the polar angle θ. Solid line - deep inelastic (dis), dashed lines - elastic (el) and inelastic (inel). For further explanations see

text.

factor does not decrease any more for high Q2 values. This

is the reason why the muon pole contribution is important.

For (roughly)Q2 > 1GeV2 andMf > 2.6GeV scaling sets

in [11]. Following [12] we put

F2(xq) = ρ ln(1/xq) with ρ = 0.16 (28)

This is a very rough approximation which has the merit

that it leads to an analytical expression. For our present

purposes this seems sufficient. Using eqs.(21)-(26) and (28)

we get for the deep inelastic (dis) cross-section

(

d2σ

dΩdE

)

dis

=
α3

4πk2 sin4(θ/2)
· ρ ·

1
∫

xo

dx ln

(

θ
xk

m

)

· (29)

·
x2 + (1− x)2

x2
· ln

2MN(xk − E)

xkEθ2
·

(

1

xk − E
+

xk − E

xkE

)

At the expense of using more computer time, more so-

phisticated expressions for the structure function F2(xq)

can be inserted. The structure functions of the neutron

are also known [13],[14]. A simple approximation is given
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in [15] F2,neutron = (1 − xq)F2,proton, valid for xq < 0.75.

For xq > 0.75 is F2,neutron
∼= F2,proton (see fig.8 of [13]).

Since F2,proton is always larger than F2,neutron, one would

only overestimate the cross section, when treating all nu-

cleons as protons. In the following we restrict ourselves to

the Bethe-Heitler process on a proton. As a typical case

we take k = 200GeV. The energy of the outgoing muon

is, following Tsai [4], taken to be 120 GeV. For smaller

angles,we can also compare our calculations to Tsai. We

give 3 contributions

The elastic production. Here the photon pole contribu-

tion dominates over the muon pole contribution. For

the latter the momentum transfer is considerably larger

and form-factor effects render it negligible (this was

checked, but we do not need to show it here). Fig.2

showes our elastic cross-section in good agreement to

Tsai’s values [4] (small circles).

The inelastic contribution. (”meson production form fac-

tor”). We calculated the cross-sections of each of the

5 bins listed in tab.1 and found the contributions from

W1 negligible compared to W2. The sum is shown in

fig.2. The ∆-resonance (1st bin) is the dominant con-

tribution with some 50% at small and more than 80%

at large angles. This is expected, since the strength W̃2

is largest and Mf is lowest. The contributions of the

other bins decrease with increasing Mf .

The deep inelastic contribution. For small angles, Q2 be-

comes less than Q2
0 = 1GeV2 and our simple para-

metrizations ofW1,2 break down. This is approximately

the case for θ < θmin = Q0/E (independent of k).

Therefore we start our calculation at θmin as it is

shown in fig.2 (solid line). For these small angles, the

other contributions are already dominant. Furthermore,

the condition Mf > 2.6GeV has to be fulfilled, when

scaling is applicable. This means that the lower limit

x0 in eq.(20) is shifted to a somewhat larger value

x′

o =
1/2(M2

f,min −M2
N) +MNE

MNk − 2Ek sin2(θ/2)
(30)

In general, this is a small (less than 10%) effect, since

the muon energy region where E is not much larger

than the nucleon mass MN is already excluded by ap-

plying θmin.

As it can be seen in fig.2 the deep inelastic contribution

is very important for large muon scattering angles.

4 Conclusions

In conclusion we have presented a new practical approach

to the Bethe Heitler process for large scattering angles

at high energies. Of course, in an exact evaluation of the

Bethe Heitler expression, as it is given in [4] (equ.(2.3)) the

muon pole contribution is included. However this expres-

sion is to cumbersome and time consuming for practical

purposes. We have shown how to include the “deep inelas-

tic contribution” and show that it is important for relevant

numerical examples. This extends the results of Tsai [4].

Among other things, such contributions are important for

muon shielding problems at future linear colliders.
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