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Abstract22

23

Identifying the scales of variation in forest structures and the underlying processes are fundamental24

for understanding forest dynamics. Here, we studied these scale-dependencies in forest structure in25

naturally dynamic boreal forests on two continents. We identified the spatial scales at which forest26

structures varied, and analyzed how the scales of variation and the underlying drivers differed27

among the regions and at particular scales.28

29

We studied three 2 km × 2 km landscapes in northeastern Finland and two in eastern Canada. We30

estimated canopy cover in contiguous 0.1-ha cells from aerial photographs and used scale-31

derivative analysis to identify characteristic scales of variation in the canopy cover data. We32

analyzed the patterns of variation at these scales using Bayesian scale space analysis.33

34

We identified structural variation at three spatial scales in each landscape. Among landscapes, the35

largest scale of variation showed greatest variability (20.1 – 321.4 ha), related to topography, soil36

variability, and long-term disturbance history. Superimposed on this large-scale variation, forest37

structure varied at similar scales (1.3 – 2.8 ha) in all landscapes. This variation correlated with38

recent disturbances, soil variability, and topographic position. We also detected intense variation at39

the smallest scale analyzed (0.1 ha, grain of our data), partly driven by recent disturbances.40

41

The distinct scales of variation indicated hierarchical structure in the landscapes studied. Except for42

the large-scale variation, these scales were remarkably similar among the landscapes. This suggests43

that boreal forests may display characteristic scales of variation that occur somewhat independent of44

the tree species characteristics or the disturbance regime.45

46
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Manuscript highlights51

· We identified distinct scales of hierarchical variation in boreal forest structure52

· The mid-scale variation occurred at remarkably similar scales among the landscapes53

· Drivers of the structural variation depended on the observation scale54
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Introduction55

56

The spatial variability of forest structure (e.g., tree sizes, distribution of stems and foliage, dead57

wood) is the result of multiple factors such as disturbances, succession, topography, and soil58

properties (Lavoie and others 2007; Gauthier and others 2010; Walker and Johnstone 2014).59

Knowledge of this structural variation is essential for understanding the processes that drive forest60

dynamics, habitat variability, and biodiversity (Niemelä and others 1996; Kuuluvainen and others61

2017), along with nutrient and carbon dynamics (Wickland and Neff 2008; Bradshaw and others62

2009) in forested landscapes.63

64

Forest structure varies hierarchically at multiple spatial scales (Kotliar and Wiens 1990;65

Kuuluvainen and others 1998). However, the scales at which the variation occurs are often only66

described qualitatively (Angelstam and Kuuluvainen 2004; Bouchard and others 2008; Kuuluvainen67

and others 2014). The multiscale variation reflects the influence of drivers that shape forest68

structure at different scales, and their cumulative effects (Elkie and Rempel 2001; Wong and69

Daniels 2016). Some drivers create variation across multiple spatial scales. For example in the70

boreal forest, topography and soil properties may create variation at the landscape scale by71

changing the predisposition of stands to high winds (Ruel and others 1998) and by influencing the72

tree species composition (Sutinen and others 2002), and at the small, within-stand scales, by73

influencing the occurrence of suitable regeneration sites (Kuuluvainen and Kalmari 2003; Grenfell74

and others 2011). Similarly, disturbances such as forest fire may induce variation at the landscape75

scales (De Grandpré and others 2000; Gauthier and others 2010), while insect outbreaks and wind76

disturbances typically create variation at stand scales (Kuuluvainen and others 1998; Pham and77

others 2004). The influence of some other drivers, such as tree-tree competition (Aakala and others78
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2016), or the senescence-related deaths of individual trees (Aakala and others 2009) is limited to79

within-stand scales.80

81

Studies on forest structures and dynamics often focus on a priori-selected scale, or on the effect of a82

specific driver. However, as structural variation occurs at multiple scales and results from multiple83

drivers, a single scale or focus on a specific driver is often insufficient for comprehensive landscape84

analysis (Habeeb and others 2005; Scholes 2017; Estes and others 2018). Furthermore, the patterns85

of structural variation and their linkages to the drivers of variation have a fundamental connection86

with the spatial scale of observation (Wu and Loucks 1995), highlighting that studies on forest87

structural variability would benefit from methods that do not rely on scales selected a priori (Hay88

and others 2002). Instead, the complex nature of forest ecosystems requires an analysis of patterns89

in forest structures and the underlying processes in which the scales of observation are reduced to90

those containing the most salient features (i.e. the characteristic scales of variation; Wu 1999). The91

identification of such scales is the first step towards understanding the multiscale linkages of92

ecological patterns and processes (Scholes 2017).93

94

Here, we studied the scale-dependent variation in boreal forest structure and the factors influencing95

this variation. We hypothesized that in forest landscapes (1) structural variation occurs at specific,96

discernible spatial scales, but (2) these discernible scales of variation differ between regions and97

landscapes, and (3) we can identify different (scale-dependent) drivers of structural variation behind98

these patterns.99

100

We tested these hypotheses in five naturally dynamic boreal forest landscapes in two regions,101

northern Finland and northeastern Quebec, Canada. Using visual interpretation of canopy cover102

variation on recent aerial photographs calibrated against field measurements, we applied scale-103
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derivative analysis (Pasanen and others 2013) and Bayesian scale space multiresolution analysis104

(Holmström and others 2011). These methods aim to recognize characteristic scales of forest105

structural variation, assess the spatial occurrence of structural variation, and identify structurally106

distinct areas in the study landscapes.107

108

Material and Methods109

Study area110

111

We examined forests in two regions: northeastern Finland (67°44' N, 29°33' E) and the North Shore112

region in Quebec, Canada (49°38' N, 67°55' W; Fig. S1). In Finland, we examined two landscapes113

(2 km × 2 km) in Värriö Strict Nature Reserve (Hirvaskangas and Pommituskukkulat), and a third114

landscape in Maltio Strict Nature Reserve (Hongikkovaara). In Quebec, we studied two landscapes,115

Lac Dionne and Pistuacanis.116

117

The studied landscapes are mosaics of forests on mineral soil, waterbodies, and forested and open118

peatlands. Soils in northeastern Finland consist mostly of undifferentiated glacial tills, with gentle119

slopes, and low mountain fells with treeless upper slopes. The elevation ranges between 200 and120

500 meters above sea level (asl). In the North Shore region of Quebec, slopes vary from low to121

moderate. Undifferentiated glacial tills are common on the gentle slopes and depressions, as are122

glaciofluvial sand deposits in floors of larger valleys and rocky outcrops on moderate slopes and123

summits (Robitaille and Saucier 1988). Here, the elevation of the studied region ranges from 300 to124

500 meters asl. Northern Finland has a subcontinental climate, with an annual mean temperature of125

+0.9 °C. The climate in the North Shore region is humid, with an annual mean temperature of126

+0.3 °C (see Supplementary material 1 for details).127

128
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Low tree species diversity is characteristic of both regions. The main tree species in Finnish129

landscapes are Pinus sylvestris (L.), Picea abies (L.) Karst, and Betula pubescens (Ehrh.). Picea130

mariana (Mill.) and Abies balsamea (L.) Mill. dominate in Quebecois landscapes. The tree species131

composition of both regions reflects site productivity and long-term disturbance history132

(Supplementary material 1).133

134

Visual interpretation of canopy cover135

136

To quantify forest structural variation at various spatial scales, we first visually interpreted canopy137

cover from recent aerial photographs in each of the five study landscapes. We used stereopairs of138

false-color aerial photographs with a pixel size of 0.5 m. Photographs for northern Finland were139

obtained from the National Land Survey of Finland, and were taken during summers 2011140

(Hirvaskangas and Pommituskukkulat) and 2010 (Hongikkovaara). Photos for Quebec were141

obtained from the Ministère des Forêts, de la Faune et des Parcs du Québec, and were taken in142

2011. We performed the stereointerpretation with EspaCity software (version 11.0.15306.1; Espa143

Systems Ltd., Espoo, Finland), using a passive 3D monitor.144

145

During the interpretation, we visually estimated canopy cover in 0.1-ha cells. For this, we placed a146

square grid of 64 × 64 cells over each landscape. To reduce bias due to improving interpretation147

skill, we divided the grids into sixteen parts (256 cells each), and the first author interpreted these148

sub-grids in randomized order. For each cell, we recorded total canopy cover and the proportion of149

various tree species. We identified conifers to species level, but did not separate deciduous trees.150

We estimated canopy cover as the proportion of forest floor covered by the vertical projection of a151

tree crown. Further, we counted the number of standing and fallen dead trees, which we later used152

as a measure of recent disturbances (see below). If a cell was not completely within a forest (e.g.,153
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waterbody, open peatland), we excluded it from further analyses. In Pommituskukkulat, we also154

excluded cells overlapping or bordering a reindeer fence traversing the area.155

156

Calibration of and error in the visual interpretation157

158

To reduce bias in the visual interpretation and to quantify the interpretation error, we field-sampled159

randomly selected grid cells, and reconstructed canopy cover for these cells at the year160

corresponding to the aerial photographs. In Finland, we sampled 16 cells per landscape (as161

described in Aakala and others 2016). In Quebec, logistical constraints limited the sample size to162

nine cells per landscape. In each sampled cell, we mapped all living and dead trees with a minimum163

diameter of 10 cm at 1.3 m height whose crown reached within the cell. We extracted samples for164

tree-ring width measurements from each tree (see Supplementary material 2 for details). For live165

trees, we mapped crown projections by measuring 4 – 8 points along the crown dripline. We166

converted the crown measurements into irregular polygons and used the tree-ring width167

measurements to reconstruct the crown sizes corresponding to the year the aerial photograph for168

that landscape was taken. We used species-specific regression models between tree diameter and169

crown projection area to convert change in tree size to change in crown size (Figs. S2 – S3). We170

used tree-ring widths to cross-date the year of death for the sampled dead trees, and assumed171

circular crowns for trees that died between field sampling and the year the aerial photograph was172

taken. From the reconstructions, we calculated the canopy cover of the sampled cells as the non-173

overlapping sum of individual crown projections.174

175

We calibrated the visual interpretation and quantified the interpretation error using regression176

models between the interpreted and reconstructed canopy covers for Finnish and Quebecois177

landscapes individually (Figure 1; see Supplementary material 3 for details). We tested the178
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influence of additional variables (tree species proportions, distance from cells to aerial photograph179

nadirs) for the calibration model in the Finnish landscapes. According to Akaike information180

criterion for small sample sizes (AICc), the model fit improved when we included the proportion of181

P. abies in the cell as a predictor (Table S1). Hence, we included it in the final calibration model for182

the Finnish landscapes (Fig. S4). We then compiled the calibrated canopy cover values into raster183

maps, and used the interpretation error (i.e. the residuals of the calibration model) in Bayesian184

inference (see below).185

186

Similar to canopy cover, we calibrated the visual interpretation of the number of snags and logs187

(minimum diameter 10 cm at 1.3 m height) in each cell with the equivalent dead wood basal area188

measured in the field (Figs. S5 – S6). Zero snags and logs were interpreted in many grid cells.189

Hence, the dead wood posterior predictive samples could have had negative draws (negative dead190

wood basal area). We tested the influence of the negative samples to the results by replacing all the191

negative draws in the samples with zero. Truncation of the negative values did not affect the192

interpretation of the results (Supplementary material 3).193

194

195

Identification of the scales and spatial patterns of canopy cover variation196

197

Our aims were to identify spatial scales of variation for each landscape, and to assess the spatial198

patterns of this variation at the identified scales. For this, we used Bayesian scale space199

multiresolution analysis (Holmström and others 2011). The use of this approach on a canopy cover200

raster map relies on the idea that the raster consists of a sum of components of various spatial201

scales. Hence, smoothing the raster can reveal features that correspond to a signal at various scales.202

A low smoothing level maintains all but the smallest-scale variation in the signal, and a high level203
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of smoothing evens out the small-scale details and reveals only locally average behavior in the204

signal. To extract the relevant scales of variation and study the features at each particular scale205

separately (as suggested by e.g., O’Neill and others 1986), the scale space multiresolution analysis206

considers the differences of smooths, where a smooth with a higher smoothing level is subtracted207

from a smooth with a lower smoothing level. We henceforth call the product of this subtraction208

(signal at a particular scale) the ‘scale-dependent component’.209

210

The analysis consists of five steps (Fig. 1): 1) calibration of the visual interpretation, 2) scale211

identification, 3) multiresolution decomposition, 4) credibility assessment, 5) feature size estimation212

that are next described in more detail.213

214

In step 1, based on the calibration models described above, we built a Bayesian model for the215

calibrated canopy covers using the interpreted and field-measured canopy cover (see Supplementary216

material 3 for details).217

218

In step 2, the scales of variation are identified. The identification of the spatial scales at which the219

most salient features in the raster maps occur requires that the smoothing levels are determined220

carefully. For this, we used an objective approach based on a concept of ‘scale-derivative’, which221

refers to the derivative of a signal smooth with respect to the logarithm of the smoothing level222

(Pasanen and others 2013). The relevant scales are detected based on the locations of local minima223

of a scale-derivative vector norm. In brief (see Pasanen and others 2013 for full details), consider a224

signal that consists of a sum of two components of different scales. The location of a local225

minimum then represents a scale at which the smaller scale component is smoothed out, revealing226

the larger-scale component not yet affected by smoothing. Hence, the signal including the small-227

scale variation can be recovered as the difference between the original signal and the smooth228
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corresponding to the local minimum. In general, a smoothing level sequence is defined using such229

local minima of the scale-derivative norm, and the variations at different scales (i.e. scale-dependent230

components) are resolved as the differences between the smooths of two consecutive smoothing231

levels. Henceforth, we call these identified local minima as scale breaks (sensu Wu 1999).232

233

In the context of forest structure, a scale break represents a transition between hierarchical levels of234

variation. Within a variation level, the first break represents the grain and the second the extent of235

the particular level. In our analysis, the scale-derivative did not always detect the scale breaks236

automatically. In such cases, we visually searched the norms for weaker signs of scale breaks such237

as saddle points or changes in slope. We verified the existence of the identified scales by comparing238

the scale-derivative norm of the canopy cover (sum of all scale-dependent components) to the scale-239

derivative norm of permuted canopy cover (Fig. S7). Only the small-scale component could be240

identified from the permuted data, confirming the existence of the identified characteristic scales of241

variation.242

243

In step 3, the canopy cover raster map is decomposed into scale-dependent components. Following244

the identification of the characteristic scales of variation, we assessed the spatial patterns of245

variation in canopy cover at the scales in question. We smoothed the canopy cover raster maps246

based on the identified scale breaks, and produced the scale-dependent components as subtractions247

of the smooths. The results were maps that depict canopy cover at a location relative to its248

surroundings, where sizes of the locations and surroundings depend on the smoothing level (i.e.249

with increased smoothing, larger areas are compared to their surroundings). When extracting the250

highest smoothing level component, we subtracted the mean of the original image from the highest251

smooth. We used a Nadaraya-Watson smoother with a Gaussian kernel for the smoothing (e.g.,252
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Wand and Jones 1994). We henceforth refer to these extractions as relative canopy cover maps,253

where each identified scale and landscape have their own map.254

255

In step 4, the credibility of the canopy cover variation patterns is assessed. We used Bayesian256

inference to account for the uncertainty stemming from the calibration models and to distinguish257

credible variation from the visual interpretation error noise in the relative canopy cover maps. We258

developed posterior distributions for canopy cover, based on the error in the regression model259

between interpreted and field-measured canopy cover. We first drew a large sample from this260

posterior predictive distribution, and approximated the posterior distribution of each relative canopy261

cover map by applying the difference of smooths operator to each sampled image (see262

Supplementary material 3 for details). We then identified the credibly positive and negative cells263

from each relative canopy cover map, using simultaneous inference over all cells by applying the264

method of highest point-wise probabilities (HPW; Erästö and Holmström 2005; Holmström and265

others 2011), with a posterior probability threshold of 0.95.266

267

In step 5, the sizes of the features in the relative canopy cover maps are assessed. To produce268

quantifiable and comparable information at the characteristic scales of variation, we assessed the269

sizes of the features detected in each of the relative canopy cover maps as the diameter of the270

representative circle, an approach similar to Pasanen and others (2018). In short (see Supplementary271

material 3 for details), for determining the diameter of a representative circular feature on each272

relative canopy cover map, we used the smoothing level indicated by the maximum in the273

component’s scale-derivative norm and the concept of ‘full width at half maximum’, often used in274

medical imaging to represent the size of a feature without clear boundaries (Epstein 2007). We note275

that the size estimation depended on the locations of the scale breaks, a few of which were manually276
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placed. Hence, we assessed the sensitivity of the size estimation with respect to the scale break277

locations. The size estimates were fairly insensitive to small changes in the scale break locations.278

279

Explanatory variables for canopy cover variation280

281

To assess the role of various factors driving forest structural variation at multiple scales, we282

assessed the relationships between relative canopy cover and recent disturbances, edaphic and283

topographic factors, and long-term disturbance history.284

285

For recent disturbances, we assumed that the dead wood quantity in a cell is indicative of recent286

disturbances in the cell. To analyze the relationship between relative canopy cover variation and287

recent disturbances, we extracted the scale-dependent features of the dead wood basal area, using288

the same smoothing levels as with canopy cover (henceforth relative dead wood basal area; Fig.289

S8). The exact way in which we analyzed the relationship between relative dead wood basal area290

and relative canopy cover depended on the scale analyzed. At the smallest scale, we examined291

whether the relative dead wood basal area in a cell differed for cells with negative and positive292

relative canopy cover. Due to the low number of credible canopy cover cells in Quebecois293

landscapes, we included an additional 50 cells with the lowest and highest relative canopy cover294

from both Quebecois landscapes in the comparison (total 158 positive, 64 negative cells in Finnish,295

and 129 positive, 113 negative cells in Quebecois landscapes). For larger scales, we tested the296

dependency using local correlation analysis, and assessed the credibility of the correlation in each297

landscape (cf. Pasanen and Holmström 2017). In this analysis, we calculated Pearson correlation298

coefficients between the relative dead wood basal area and the relative canopy cover on a moving299

window. We increased window size along with the increasing smoothing level. The credibilities of300
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the correlations were determined by drawing a large sample from the canopy cover and dead wood301

posterior probability distributions, using the HPW method with a credibility level of 0.95.302

303

To assess the role of site productivity and long-term disturbance history as determinants of relative304

canopy cover, we relied on the predictability of tree species composition as a function of site305

productivity and/or disturbance history (Supplementary material 1). We compared tree species306

composition maps to the credible features of the relative canopy cover maps. We utilized307

independently compiled tree species composition maps for Quebec (Ministère des Forêts, de la308

Faune et des Parcs du Québec), based on the aerial photointerpretation of an experienced309

interpreter. We lacked such independent maps for Finland, and therefore used tree species310

compositions recorded during the visual interpretation of the aerial photographs, calibrated with311

field measurements (Figs S9−S11). To ensure that the correlation between tree species composition312

and canopy cover was not the result of including the proportion of P. abies in the calibration model313

for Finnish landscapes, we also performed the calibration without P. abies as a predictor, and tested314

the dependency with this model. The correlations between tree species composition and canopy315

cover were independent of the used calibration model.316

317

To assess how topography affects relative canopy cover at various spatial scales, we computed318

topographic variables from digital elevation models with a spatial resolution of 20 m (National319

Land Survey Finland, Ministère des Forêts, de la Faune et des Parcs du Québec). Variables tested320

included elevation (mean elevation of each 0.1-ha cell), slope steepness (cell mean), slope aspect321

(cell midpoint aspect), and topographic position (cell mean; Jenness and others 2013). If an area is322

higher than its surroundings, its topographic position index is positive, and vice versa. We defined323

the index on three scales: between individual cells and between groups of 10 and 20 cells. We324

computed Spearman’s rank correlations between the means of the posterior predictive distributions325
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(each relative canopy cover map) and the topographic variables. If this correlation coefficient was >326

0.15, we assessed the uncertainty of the correlation by computing correlations between the327

particular topographic variable and all the 10 000 draws of the posterior predictive distribution, and328

assessed the mean and the 95% credibility intervals for these correlations.329

330

331

Results332

333

Canopy cover and scales of variation334

335

Canopy cover in the 0.1-ha cells ranged from 0 to 59% in the Finnish landscapes, with a posterior336

mean of average over all cells 25% (SD of posterior predictive sample ±8%, 95% prediction337

interval 18 – 33%) (Fig. 2 a1 – c1). Canopy cover ranged from 3 to 70% in the Quebecois338

landscapes, with a posterior mean of average over all cells 35% (SD ±13%, 95% prediction interval339

22 – 48%) (Fig. 2 d1 – e1).340

341

In the scale-derivative analysis, we identified three scales of forest structural variation in each342

landscape, which we henceforth call large-, mid-, and small-scale variation (Fig. 3). The analysis343

automatically identified the scale breaks between mid- and large-scale components. We manually344

placed the scale breaks between the small- and mid-scale components at the location in which the345

slope of the scale-derivative norm became less steep, indicating that the small-scale component346

appeared smoothed out. The permutation test, where we compared the scale-derivative norms for347

the canopy cover to the scale-derivative norm for permuted canopy cover confirmed the existence348

of the identified characteristic scales of variation (Fig. S7).349

350
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Feature sizes at the largest scale identified varied among the landscapes. A typical large-scale351

feature diameter was 2023 m in Hirvaskangas, 696 m in Pommituskukkulat and Hongikkovaara,352

506 m in Lac Dionne and 1518 m in Pistuacanis. These diameters correspond to an area of 321.4 ha353

in Hirvaskangas, 38.1 ha in Pommituskukkulat and Hongikkovaara, 20.1 ha in Lac Dionne and354

181.0 ha in Pistuacanis.355

356

A typical mid-scale feature diameter was 190 m in each landscape except Hongikkovaara and Lac357

Dionne, corresponding to a circle area of 2.8 ha. In Hongikkovaara and Lac Dionne, a typical mid-358

scale feature diameter was 127 m (1.3 ha). The small-scale variation corresponded to the grain size359

in our data (0.1-ha grid cells, diameter 31.62 m) in each landscape.360

361

We used the scales identified in the scale-derivative analysis to produce relative canopy cover maps362

(Fig. 2). In these maps, negative relative canopy cover means low canopy cover in relation to the363

surroundings, while the opposite is true for positive canopy cover. At the large scale, relative364

canopy cover ranged from -10 to 10 percentage points in Finnish landscapes and from -13 to 10 in365

Quebec (Fig. 2 a2 – e2). At the mid scale, relative canopy cover ranged from -13 to 15 percentage366

points in Finnish landscapes and between -24 and 21 in Quebec (Fig. 2 a4 – e4). At the small scale,367

relative canopy cover ranged from -15 to 18 in Finnish landscapes and between -26 and 24 in368

Quebec (Fig. 2 a6 – e6).369

370

The range of canopy cover values was greatest in Pistuacanis (Fig. 2 e1), which is reflected in the371

relative canopy cover map intensities (Fig. 2). This intensity difference, visible in the mid- and372

small-scale components, is also visible as differences in the scale-derivative norms (Fig. 3).373

374
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At the large scale, Hirvaskangas (Fig. 2 a2) and Pistuacanis (Fig. 2 e2) showed two contrasting375

credible canopy cover areas. We observed several smaller areas of credibly high (low) relative376

canopy cover in Pommituskukkulat (Fig. 2 b2), Hongikkovaara (Fig. 2 c2), and Lac Dionne (Fig. 2377

d2). All five landscapes showed a higher number of credibly negative or positive relative canopy378

cover features at the mid scale than at the small scale, and more credible features were observed in379

Finnish than in Quebecois landscapes (Fig. 2 a2 – e7). Pommituskukkulat had the most credible380

patches of all the Finnish landscapes at the mid- and small-scales (Fig. 2 b5, b7). In Quebec,381

Pistuacanis landscape had the most small- and mid-scale scale credible patches (Fig. 2 e5, e7).382

383

Drivers of canopy cover variation384

385

Recent disturbances386

387

At mid-scale, average correlations between relative canopy cover and relative dead wood basal area388

varied from -0.02 to 0.09. However, we observed wide spatial variability in the correlations, from -389

0.78 to 0.83 (Fig. 4). In the Finnish landscapes, these correlations were credible in the eastern and390

northwestern parts of Hirvaskangas (Fig. 4f), in the middle, and southeastern part of391

Pommituskukkulat (Fig. 4g), and in two areas in the middle of Hongikkovaara (Fig. 4h). Several of392

the mid-scale features correlated credibly with relative dead wood basal area in the Quebecois393

landscapes (Fig. 4i – j).394

395

We visually judged which of the credible mid-scale canopy cover patches in Quebec likely resulted396

from a previous spruce budworm (Choristoneura fumiferana (Clem.)) outbreak, based on field397

observations. In P. mariana-dominated Lac Dionne, 10% of the credible negative mid-scale patches398

occurred at openings that were likely caused by the spruce budworm outbreak. In A. balsamea-399
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dominated Pistuacanis, 35% of the negative mid-scale patches were located at these openings. As400

the variable examined was the canopy cover relative to its surroundings, it is also possible that the401

loss of canopy cover due to the outbreak results in credibly positive relative canopy cover in the402

adjacent area. Accordingly, 15% and 30% of the positively deviating patches were next to these403

openings in Lac Dionne and Pistuacanis, respectively.404

405

Small-scale relative canopy cover had a connection with relative dead wood basal area (Fig. 5).406

In both regions, the cells with credibly positive relative canopy cover had a lower posterior407

median relative dead wood basal area (our surrogate measure for recent disturbances) than the408

cells with credibly negative relative canopy cover (Fig. 5). Thus, cells with high canopy cover409

tended to have less dead wood than cells with low canopy cover. However, the relative dead410

wood amounts did not deviate credibly from zero.411

412

We did not detect large-scale correlations that would link the relative dead wood basal area (recent413

disturbances) to relative canopy cover.414

415

Site productivity and disturbance history416

417

At the large scale, most areas with positive relative canopy cover in the Pommituskukkulat418

landscape were in areas with a high proportion of deciduous trees (productive sites with shorter419

time since fire than sites with higher proportion of spruce; Fig. S10-11), whereas the negative420

relative canopy cover areas were mostly located in P. abies-dominated sites (old-growth productive421

sites). The credible large-scale features in Hirvaskangas and Hongikkovaara occurred independent422

of tree species composition. Roughly 70% of the areas with positive relative canopy cover in Lac423

Dionne were dominated by A. balsamea and roughly 60% of the areas with negative relative canopy424
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cover by P. mariana. The credible large-scale features in Pistuacanis landscape occurred425

independent of tree species composition.426

427

The comparison of credible mid-scale canopy cover patches against tree species composition (our428

surrogate for site productivity and long-term disturbance history, see Supplementary material 1 for429

details) showed that sites with credible canopy cover features tended to be located in areas where430

tree species composition changed (Figs. S10-11). This was especially apparent in431

Pommituskukkulat (roughly 70% of credible mid-scale patches), Hongikkovaara (80%), and Lac432

Dionne (70%). Particularly the large mid-scale patches with credibly positive relative canopy cover433

in Pommituskukkulat were located in areas with a high proportion of deciduous trees (productive434

sites with shorter time since fire). Here, roughly 60% of the negative relative canopy cover areas435

were on P. abies-dominated productive old-growth sites. In Hongikkovaara approximately 60% of436

the negative patches were on P. abies-dominated productive old-growth sites. In Lac Dionne,437

roughly 80% of the areas with positive relative canopy cover were on A. balsamea-dominated sites438

(productive sites), whereas approximately 60% of the negative relative canopy covers were on P.439

mariana-dominated areas (poor sites; Figs. S10-11). In Pistuacanis, the mid-scale relative canopy440

cover was independent of tree species composition.441

442

Topography443

444

At the large scale, elevation correlated negatively with relative canopy cover in Hirvaskangas445

(posterior mean of Spearman’s rho (r) -0.89, 95% highest density interval (HDI) -0.90 – -0.87;446

Table 1), Hongikkovaara (posterior mean of r = -0.34, 95% HDI -0.38 – -0.30), and Pistuacanis447

(posterior mean of r = -0.54, 95% HDI -0.56 – -0.51). In Pommituskukkulat (posterior mean of r448
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0.21, 95% HDI 0.14 – 0.23) and Lac Dionne (posterior mean of r 0.18, 95% HDI 0.08 – 0.20),449

elevation correlated positively with relative canopy cover.450

451

Slope steepness in Hirvaskangas (posterior mean of r -0.29, 95% HDI -0.31 – -0.26) and452

Pommituskukkulat (posterior mean of r = 0.20, 95% HDI 0.17 – 0.21) and topographic position in453

Lac Dionne (posterior mean of r = 0.20, 95% HDI 0.16 – 0.23) correlated with large-scale relative454

canopy cover. Other large-scale correlations with topographic variables were negligible (Table 1).455

456

The topographic position index at the mid-scale correlated with relative canopy cover only in Lac457

Dionne (posterior mean of r = 0.19, 95% HDI 0.16 – 0.25). Otherwise, mid-and small-scale relative458

canopy cover varied independent of topographic variables (Table 1).459

460

Discussion461

462

Forest structural variation occurred at discernible spatial scales, supporting our first hypothesis.463

Using the scale-derivative analysis (Pasanen and others 2013), we identified three scales of464

structural variation in each landscape. These superimposed scales of variation demonstrated the465

distinctly hierarchical structure in the landscapes, i.e. that small-scale variation occurred within the466

larger-scale variation levels (Kotliar and Wiens 1990; Elkie and Rempel 2001; Hay and others467

2002), which is a characteristic feature of ecological systems (O’Neill and others 1986).468

469

In identifying the scales of variation, we manually placed the scale breaks between the small- and470

mid-scale, based on the changes in the slope of the scale-derivative norm. In the implemented471

permutation test, only the small-scale component was identified, confirming the existence of the472

discerned characteristic scales of variation (Fig. S7). This indicates that the identified scales of473
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variation did not result from a random process. Hence, despite the potential subjectivity involved in474

placing the scale breaks between the small- and mid-scales, the existence of all the multiresolution475

components was objectively verified. Further, the identification of scale breaks and multiple scales476

of variation is consistent with the idea of characteristic scales of variation in naturally dynamic477

boreal forest landscapes (natural scale steps; Scholes 2017).478

479

The results only partially supported our second hypothesis concerning the differences of the scales480

of structural variation. The largest identified variation occurred at scales ranging from 20.1 to 321.4481

ha, and differed most between the landscapes. In contrast, the second scale of variation (mid scale)482

was remarkably similar in all five landscapes, ranging from 1.3 to 2.8 ha. Qualitatively, the large-483

(Angelstam and Kuuluvainen 2004; Bouchard and others 2008) and mid-scales (D’Aoust and others484

2004; Kuuluvainen and others 2014) of variation have been recognized from boreal forests in both485

northern Europe and Quebec. Yet, objective quantification of these scales of variation has mostly486

been lacking.487

488

Traditionally in landscape ecology, landscape variability is assumed to occur as clearly delineating489

patches (Kotliar and Wiens 1990). Our results imply that in addition to abrupt changes, gradual490

structural variability is also typical in naturally dynamic boreal forests. In the Bayesian scale space491

multiresolution analysis, the variation components are extracted by subtracting successive492

smoothing levels (Holmström and others 2011). As smoothing suppresses patch edges, features493

with clear edges also appear as smooth in the mid-scale component. However, if the contrast in the494

patch edge is strong, the mid-scale patch edges are expected to show as positive and negative bands495

at the patch edges, visible in the small-scale component. In our results, such banded features were496

not present. Furthermore, the smoothness of the corresponding patch was visible in the canopy497
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cover maps (Fig. 2 a1 – e1). Hence, our results indicate that structural variability occurs as gradual498

(but detectable) variability within the forest matrix.499

500

The smallest scale of variation that we identified equaled the grain of our data, and had high501

variation intensity. This suggests that intense structural variability in these naturally dynamic boreal502

forests typically occurs at within-stand scales (< 0.1 ha). Our choice for the grain of the data (i.e.,503

the interpretation gird) was based on practical reasons for combining fieldwork and the504

photointerpretation, but also limited our analysis to scales larger than 0.1-ha. However, this scale is505

similar to the plot size in many (if not most) field-based studies on forest dynamics (Kuuluvainen506

and Aakala 2011). Hence, the significance of the small-scale variation in the boreal (e.g., Hamel507

and others 2004; Grenfell and others 2011), as well as the temperate zone (e.g., Runkle and Yetter508

1987) has clearly been demonstrated. This applies also to both of our study regions (Pham and509

others 2004; Aakala and others 2016). The low number of credible small-scale relative canopy510

cover cells in the Quebecois landscapes is the result of their relatively high interpretation error,511

which is probably related to abundant regeneration following the previous spruce budworm512

outbreak, which occurred from the 1970s to the mid-1980s (Bouchard and Pothier 2010). In the513

field measurements, only trees over 10 cm at 1.3 m height were recorded. This distinction was514

difficult to make in the aerial photointerpretation, leading to high interpretation error.515

516

Supporting our third hypothesis, we were able to identify the scale-dependent processes creating517

structural variation in the studied landscapes. The identification of different processes at particular518

scales also meant that these processes are underlying the patterns at that particular scale (Elkie and519

Rempel 2001), but also that some of the processes we examined produced patterns at multiple520

scales. At the largest scale identified, of the topographic variables, elevation had the strongest521

relationship with structural variation, although the mechanisms differed among the landscapes. In522
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Hirvaskangas, Hongikkovaara, and Pistuacanis landscapes, the relative canopy cover correlated523

negatively with elevation. This suggests a productivity limitation with increasing elevation, as524

described earlier in the North Shore region (Boucher and others 2006) and in northeastern Finland525

(Roiko-Jokela 1980). In both regions, the differences in elevation were modest (100-150 m). Hence,526

temperature differences are unlikely to explain these findings. Instead, we consider changes in soil527

nutrient and moisture regimes with topography a more plausible explanation (Seibert and others528

2007).529

530

In contrast, elevation and relative canopy cover correlated positively in the Lac Dionne landscape,531

suggesting increased productivity with increasing elevation. In boreal forests such a relationship has532

been related to high soil water table levels at low-lying sites (Simard and others 2007), which can533

cause structural variation even at landscape scales (Kljun and others 2006). In the Lac Dionne534

landscape, hydric conditions likely locally limit the productivity in low-lying areas, where sparse535

low productivity P. mariana-stands typically dominate (De Grandpré and others 2000).536

537

Elevation and relative canopy cover also correlated positively in Pommituskukkulat. Here, higher538

elevation areas were dominated by deciduous trees and had high canopy cover, whereas P. abies539

stands at low elevations had low canopy cover. The areas with a higher deciduous component540

experienced a fire in 1831 (Aakala 2018), and are separated from the areas with higher dominance541

of P. abies by an open peatland running through the landscape. The peatland probably acted as a542

fire break, creating variability within the landscape. Hence, the positive correlation between543

elevation and relative canopy cover in Pommituskukkulat probably reflects the landscape544

disturbance history more than an elevational effect per se (Niklasson and Granström 2000).545

546
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At the mid scale, we detected both negative and positive correlations between relative canopy cover547

and relative dead wood basal area. The counter-intuitive positive relationship can be explained by548

variation in soil properties. In the more productive sites, more trees equates to more dead trees,549

while in less productive sites less trees equates to less dead trees (De Grandpré and others 2000;550

Kuuluvainen and others 2017).551

552

The negative relationship between relative canopy cover and relative dead wood basal area553

demonstrated the role of recent disturbances in shaping forest structure, as tree mortality at these554

scales caused reduced canopy cover relative to its surroundings. The areas we suspect were related555

to the previous spruce budworm outbreak and windthrow areas (high numbers of similarly oriented556

logs) in the Hirvaskangas and Lac Dionne landscapes were visible as negative correlations, and557

showed that disturbances were responsible for creating variability at these mid scales. The larger558

number of openings likely caused by the spruce budworm outbreak in A. balsamea-dominated559

Pistuacanis than in P. mariana-dominated Lac Dionne is explained by the high susceptibility of A.560

balsamea to spruce budworm (Hennigar and others 2008). Spatial variation in boreal forest561

structures at these patch-scales has previously been linked with disturbances (D’Aoust and others562

2004; Kuuluvainen and others 2014).563

564

In addition to disturbances, the credible variation at the mid-scale was related to changes in tree565

species composition, and to topography in the Lac Dionne landscape. Many of these patches were566

located in areas where tree species composition changed. This probably reflects changes in edaphic567

conditions or in time since the last stand-replacing disturbance, as these both affect the tree species568

composition and tree density (De Grandpré and others 2000; Kuuluvainen and others 2017). The569

relationship between the topographic position and the mid-scale relative canopy cover in Lac570

Dionne is likely a result of the same process as observed at the large-scale, i.e. low topographic571
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positions associated with paludification and consequent low relative canopy cover (Lavoie and572

others 2007; Simard and others 2007).573

574

We identified tree species composition, long-term disturbance history and recent disturbances as the575

most important drivers of mid-scale forest structural variation in both regions. However, these576

factors are related to soil characteristics, which influence the tree species composition (Rowe 1972;577

Sutinen and others 2002), and the occurrence of fires (Wallenius and others 2004; Mansuy and578

others 2010) in both regions. Tree mortality from the spruce budworm outbreaks that we identified579

as a cause for some of the mid-scale patches in the Quebecois landscapes is to a large extent580

influenced by the tree species composition, and concentrates especially on the A. balsamea-581

dominated stands (D’Aoust and others 2004; Hennigar and others 2008). Hence, although not582

directly measured here, it seems likely that the variability in soil characteristics creates patch-scale583

forest structural variation, corresponding to what we observed in this study.584

585

At the small scale (0.1 ha, the grain of our data), we discovered a relationship between forest586

structural variation and recent disturbances. Earlier studies have attributed this type of ‘stand-scale’587

variation to tree mortality (Kuuluvainen and others 1998; Aakala and others 2007), which creates588

structural variation especially in patches smaller than 100 m² (Pham and others 2004). However,589

this small-scale variability also results from a number of other processes, including the occurrence590

of regeneration microsites (Grenfell and others 2011), edaphic differences (Hamel and others 2004),591

and tree interactions (Aakala and others 2016).592

593

Similar to the grain of our data that excluded the within-stand variability from our analyses, it is594

evident that some relevant large-scale variability occurred at scales beyond the extent of the study.595

Most obviously, stand-replacing fires in Quebec cause variability at larger scales than we assessed596
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(De Grandpré and others 2000), and for example, the Lac Dionne landscape is completely within a597

forest fire area dated to 1810 (Bouchard and others 2008). From a methodological perspective,598

although we argue that avoiding the selection of study scales a priori is a useful approach, the599

spatial extent and grain still obviously impose limitations on the scales that can be identified and600

analyzed (Estes and others 2018). Here, the practical limitations related to the calibration data601

limited the extent, but future work could benefit from the increasing availability of data that is less602

dependent on well-distributed field plots, such as light detection and ranging (LiDAR) data.603

However, especially in Finnish landscapes the extent is at the same time limited by the generally604

small size of the reserves in which natural forest dynamics can be studied.605

606

Earlier studies have attempted to describe landscape variability over multiple scales using, for607

instance, scale space theory with blob-feature detection in the hierarchy theory context (Hay and608

others 2002; Hay 2014), or scalograms that visualize how landscape metrics respond to changing609

grain and extent (Zhang and Li 2013). The advantage of our approach is that the scale-derivative610

analysis identifies the characteristic scales of variation uniformly over the entire landscape and611

extracts the hierarchical components in a mathematically well-defined manner (Pasanen and others612

2013), using a custom-built metric (cf. Zhang and Li 2013). Thus, it can be widely applied to613

explore multiscale variability in any raster-form data. The scale space analysis with Bayesian614

inference (Holmström and others 2011) allows identifying structures at the characteristic scales of615

variation so that the error associated with the production of the raster data is incorporated in the616

feature detection. Hence, the credibility of the variability can be assessed whenever the associated617

error can be quantified.618

619

That the scale-derivative analysis did not automatically identify all the scale breaks suggests620

difficulties in the feature extraction due to which information close to a scale break may have been621
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displaced to wrong hierarchical level. It is obvious that the scale breaks may not always produce a622

local minimum in the norm, and instead weaker signs, such as saddle points or slope changes,623

should also be inspected as possible scale breaks. The ability of the scale-derivative analysis to624

separate scale-dependent components automatically depends on the size difference of the features625

within the components. The smaller the difference, the more difficult the extraction. Large feature626

size variation within a component and a large intensity difference between successive scale-627

dependent components can also hamper feature extraction (Pasanen and others 2013). The628

difficulties in scale break identification represent a typical situation where vague scale level629

boundaries prove hard to detect (Scholes 2017). We also note that while placing the scale break630

points manually we introduced subjectivity in the scale identification process. However, small631

changes in the scale break locations did not cause notable changes in the size estimates and hence632

our analyses appear robust to this subjectivity.633

634

The presence of the scale-dependent components, and the occurrence of credible canopy cover635

features in each extracted scale-dependent component supported the notion of hierarchically636

structured landscapes, i.e. that there were characteristic scales of variation that contain the most637

salient structural features (the near-decomposability in the hierarchy theory; O’Neill and others638

1986). Further, we identified different factors underlying the structural variation at particular scales639

that is similarly expected from hierarchically structured landscapes (Wu and Loucks 1995; Wu640

1999). Related to these processes, the hierarchy theory suggests that at large scales variability641

would be driven by processes changing slowly in time (e.g., topography), whereas at small scales642

the driving processes occur abruptly (e.g., disturbances) (O’Neill and others 1986; Wu 1999). The643

occurrence of small-scale disturbances and stand-replacing fires indicates that abrupt processes644

influence forest structure at local scales, as well as at scales beyond the extent of our study. In645

contrast, the influence of slowly changing processes was limited to large scales.646
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647

Conclusions648

649

Our analyses showed that hierarchical structural variation can be discerned from naturally dynamic650

boreal forest landscapes without relying on the delineation of distinct patches or on a priori selected651

scales. Further, these scale-dependent variations are linked to a number of different processes that652

partly crossed spatial scales (i.e. same processes created structural variation at multiple scales).653

Except for the largest scale variation that was related to landscape-specific topography and the654

large-scale fires typical in the North American boreal forests, the detected similarity in spatial655

scales of variation among landscapes suggests that boreal forests may display characteristic scales656

of variation that are somewhat independent of the dominant tree species or disturbance regime of a657

landscape.658
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Table807

808

Table 1. Spearman’s rank correlation coefficients between the relative canopy covers at the809

detected scales (SS = small-scale, MS = mid-scale, LS = large-scale) and the topographic variables810

for the 0.1-ha cells.811

Hirvaskangas
Pommitus-

kukkulat
Hongikkovaara Lac Dionne Pistuacanis

SS MS LS SS MS LS SS MS LS SS MS LS SS MS LS

Elevation 0.00 -0.10 -0.89 0.01 0.06 0.21 0.01 -0.01 -0.34 0.00 -0.01 0.18 0.00 -0.06 -0.54

Slope

steepness
-0.01 -0.07 -0.29 0.01 0.09 0.20 0.02 0.04 -0.07 0.01 -0.02 -0.09 0.01 -0.02 0.12

Slope

aspect
0.01 0.12 -0.07 0.00 0.02 -0.11 -0.01 -0.03 0.03 0.00 -0.02 -0.04 0.01 0.02 -0.04

TPI 0.01 0.01 -0.05 0.01 0.07 0.09 0.03 0.09 -0.08 -0.01 0.19 0.20 0.01 -0.01 0.11

812

813



Scales of variation in boreal forests

Figures814

815

Figure 1. The analysis workflow. The rectangles represent input and output data, the hexagons are816

analyses, and the rounded rectangles transitional stage data.817
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818

Figure 2. Canopy cover maps of the study landscapes, canopy cover in the 0.1-ha cells (a1 – e1).819

The large-scale relative canopy cover maps (a2 – e2) and their credibilities (a3 – e3), the mid-scale820

relative canopy cover maps (a4 – e4) and their credibilities (a5 – e5), and the small-scale relative821
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canopy cover maps (a6 – e6) and their credibilities (a7 – e7). Dark gray areas are nonforest cells,822

i.e. lakes, streams, open peatlands, and a reindeer fence and its surroundings in the823

Pommituskukkulat landscape.824

825

Figure 3. The scale-derivative norms as a function of the smoothing parameter logarithm. The826

colored lines show individual components. The points represent the component scale breaks and the827

squares depict the components’ local maxima. N.B. the ten-raised smoothing parameter values and828

the different y-axis scale in the Pistuacanis landscape.829

830

Figure 4. Local Pearson correlations at the mid scale between relative canopy cover and relative831

dead wood basal area (posterior mean values, a – e), and their credibilities (f – j). Dark gray cells832

are non-forested.833
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834

Figure 5. The posterior distributions of the relative dead wood basal area medians in the small-scale835

cells with credible relative canopy cover. The distributions consist of 158 positive and 64 negative836

cells in the Finnish landscapes and 129 negative and 113 positive cells in the Quebecois landscapes.837

838

Figure 6. Large-scale relative canopy cover in relation to elevation in the studied landscapes,839

illustrated with a lowess regression. Pommituskukkulat (b) landscape has areas that clearly deviate840

from the main pattern. Here, the dark gray dots represent a birch-dominated area, and the black dots841

represent a hilltop spruce-dominated area. The light gray dots form the main pattern.842
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Supplementary material 1. Study area characteristics, succession, and 7 

disturbance history 8 

 9 

We studied unmanaged boreal forests in two regions: northeastern Finland and the North Shore 10 

region in Quebec, Canada (Fig. S1). The mean annual temperature in the study region of 11 

northeastern Finland is -0.9 °C. The mean temperatures for the coldest (January) and warmest (July) 12 

months are -12.7 °C and +13.1 °C, respectively. The average annual precipitation sum is 570 mm. 13 

The mean annual temperature in the North Shore region is +0.3 °C. The mean temperatures for the 14 

coldest (January) and warmest (July) months are -17.5 °C and +14.2 °C, respectively. Average 15 

annual precipitation is 1100 mm (All climate data are averages from years 1970–2000; Fick and 16 

Hijmans 2017).  17 

 18 

Of the individual landscapes, Hirvaskangas is mostly comprised of pure Pinus sylvestris (L.) stands 19 

(proportion of P. sylvestris >75 %). Picea abies (L.) Karst. and Betula pubescens (Ehrh.) dominate 20 

the Pommituskukkulat landscape. In Hongikkovaara, pure P. sylvestris stands and mixed P. 21 

sylvestris/P. abies stands prevail. Picea mariana (Mill.) dominates the Lac Dionne landscape and 22 

Abies balsamea (L.) Mill. the Pistuacanis landscape. Tree species composition reflects site 23 

productivity and long-term disturbance history in both study regions. In Finland, P. sylvestris 24 



usually dominates low-productivity xeric sites (sensu Cajander 1949), independent of successional 25 

state. More productive mesic sites usually follow a successional change from Betula spp. 26 

dominance early in the succession to P. abies dominance in the late-successional state (Sirén 1955). 27 

In long-term fire absence, P. abies increases its share in the initially P. sylvestris-dominated sub-28 

xeric sites. In Quebec, P. mariana often forms nearly pure stands, while A. balsamea may occur as 29 

a co-dominant in the more productive sites, or may form monospecific stands (De Grandpré and 30 

others 2000). In A. balsamea-dominated stands, Picea glauca (Moench) Voss often occurs as a co-31 

dominant species.  32 

 33 

Disturbance regimes differ greatly between the studied regions. Similar to northern European boreal 34 

forests in general, forest fires were common in the Finnish study region prior to the 20th century, 35 

especially surface fires in the xeric P. sylvestris-dominated forests (Kuuluvainen and Aakala 2011). 36 

In 1831, most of Hirvaskangas and roughly 30% of the nearby Pommituskukkulat landscape 37 

burned. This is visible as a "cohort" age structure in the P. sylvestris -dominated areas, and as a high 38 

proportion of post-fire B. pubescens in the mesic parts of the landscape (Aakala, accepted 39 

manuscript). The last larger fire in Hongikkovaara occurred in 1777, visible in the age structure, 40 

which is similar to Hirvaskangas. In the absence of fire, stand dynamics are driven by small-scale 41 

mortality of individual trees or small tree groups (i.e. gap dynamics), punctuated infrequently by 42 

storms that may fell trees over larger areas. Additionally, reindeer herding influences Finnish 43 

landscapes, and light selection felling connected with reindeer herding has occurred in 44 

Hirvaskangas and Pommituskukkulat.  45 

 46 

In the Quebec study region, forests experience periodic spruce budworm Choristoneura fumiferana 47 

(Clem.) outbreaks, to which A. balsamea is especially vulnerable (Bouchard and others 2005). 48 

There is an ongoing outbreak in the North Shore region that began ca. 2006 (Bognounou and others 49 



2017). The previous severe outbreak occurred from the 1970s to the mid-1980s (Bouchard and 50 

Pothier 2010). Between outbreaks, gap dynamics drive the old-growth stands (Pham and others 51 

2004). Based on fire maps by Bouchard and others (2008) for the last 200 years, the Lac Dionne 52 

landscape burnt in 1810. The Pistuacanis landscape appears to have avoided fires during the last 53 

200 years. 54 

 55 

 56 

Figure S1. Study area locations. 57 

 58 
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Supplementary material 2. Field sampling and tree crown size reconstruction 85 

 86 

Field sampling 87 

 88 

We placed a square grid of 64 × 64 cells over each of the five studied landscapes with specific 89 

criteria: (in order of importance) 1) the entire grid was within an unmanaged forest, 2) the area was 90 

accessible by boat or by foot, and 3) the area contained as much forest as possible, given the 91 

landscape mosaics. To reduce any systematic bias from the visual interpretation, and to quantify the 92 

random error associated with the interpretation, needed to produce the canopy cover posterior 93 

distribution, we reconstructed canopy cover for a random sample of the grid cells at the year the 94 

aerial photograph was taken. For this, we first divided each grid into quadrants. From each 95 

quadrant, we randomly selected cells for field sampling. With the division we ensured that cells 96 

were selected from different parts of the landscape, as interpretation error might differ in different 97 

parts of the aerial photographs (Wu and Strahler 1994). Except for the two pilot-phase cells sampled 98 

in Pommituskukkulat, we only accepted cells located at a minimum distance of 100 m from 99 

previously sampled cells. 100 

 101 

We located the cells in the field using a consumer-grade GPS (for approximate location) and terrain 102 

features visible in the aerial photographs (for accurate location). In each sampled cell, we mapped 103 

all trees with a minimum diameter of 10 cm at 1.3-m height, whose crown reached within the cell. 104 

We mapped trees using a FieldMap measuring system (IFER ltd., Czech Republic) that utilizes an 105 

electronic compass and laser rangefinder (see Aakala and others 2016 for details on the 106 

measurements). Dead trees were mapped similarly. Some dead trees had their stem base outside, but 107 

close to, the cell border. In such cases, we estimated whether the crown reached within the cell 108 

while the tree was alive based on the crowns of nearby live trees of the same species and similar 109 



size. For each tree, we recorded diameter at 1.3-m height, species, and tree height. We determined 110 

the crown shape of each tree by measuring 4–8 points along the crown perimeter. The exact number 111 

of points depended on the irregularity of the crown. We converted these measurements into 112 

polygons, describing the crown of each tree. 113 

 114 

Tree crown size reconstruction 115 

 116 

Field sampling and the year the aerial photographs were taken were separated by one to two years. 117 

We therefore reconstructed the crowns of each tree to correspond to the photography year. For this, 118 

we extracted an increment core (from live and standing dead trees) or a partial stem disk (from logs) 119 

in the field. Samples were usually extracted between a height of 1 and 1.3 m, but for decayed logs 120 

the sample occasionally needed to be taken higher up the stem. We glued the increment core 121 

samples to wooden core mounts and sanded them to fine grit (600 for conifers, 1000 for deciduous). 122 

Partial stem disks were sanded, or if fragile, first treated in a solution of white glue (as in Krusic 123 

and Hornbeck 1989, but in normal air pressure), dried, and sanded. We measured tree-ring widths 124 

using the Windendro software (Regents Instruments Ltd.). We visually cross-dated dead trees 125 

against a master chronology built from live tree measurements from the same sites, and verified the 126 

cross-dating quality, using COFFECHA software (Holmes 1983).  127 

 128 

Using the tree-ring widths, we reconstructed the size difference between the field-measured tree, 129 

and the same tree during the year when the aerial photograph was taken. For this, we back-130 

calculated individual tree sizes by first taking the field-measured tree size as a starting point. We 131 

then subtracted bark thickness (using species-specific bark thickness equations; Ilvessalo (1965) for 132 

all deciduous trees and conifers in Finland, and Li and Weiskittel (2011) for conifers in Quebec), 133 

and twice the width of the last ring (for diameter), to calculate diameter under bark of the previous 134 



year. We then added bark thickness for the new diameter, and added it to this new diameter. This 135 

way we computed tree sizes (over bark) for each tree for each year. If a tree had died during the 136 

reconstruction period, it was ‘resurrected’ at its cross-dated year of death. For downed dead trees 137 

the sampling height was sometimes higher than the 1.3-m height. In this case, we relied on the pipe-138 

model assumption that the area of each ring at the sampling height was equal to the area of the same 139 

ring at a height of 1.3 m, and converted that area to ring width at a height of 1.3 m (beginning from 140 

the field-measured DBH, minus the bark). 141 

 142 

 Using species-specific linear regression models between tree diameter and crown area (Figs. S2–143 

S3), we then converted the change in tree size to change in crown size. The crown polygons of each 144 

tree were then shrunk using "negative buffering" (rgeos package v.0.3-22 in R; Bivand and Rundel 145 

2017), so that polygon shape was assumed to have stayed the same. We assumed circular crowns 146 

for trees that died between the field sampling and the year the aerial photo was taken. We calculated 147 

the canopy cover for the sampled cells as the sum of non-overlapping areas of crowns within the 148 

cell. 149 

 150 

 151 

Figure S2. Crown area – tree diameter (DBH, diameter at 1.3-m height) models for northern 152 

Finnish Scots pine (A), Norway spruce (B), and pubescent birch (C).  153 



 154 

Figure S3. Crown area – tree diameter models (DBH, diameter at 1.3 m height) for eastern 155 

Canadian black spruce (A), and balsam fir (B). For paper birch, models for pubescent birch were 156 

used.  157 

 158 
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Supplementary material 3. Calibration models for visual interpretations, feature 178 

size approximation, and formation of explanatory variables for canopy cover 179 

variation 180 

 181 

Calibration model formation 182 

 183 

We calibrated the visual interpretation of canopy cover, and quantified the interpretation error using 184 

different regression models between interpreted and reconstructed canopy cover for Finnish and 185 

Quebecois landscapes. The calibration model for the Finnish landscapes had more degrees of 186 

freedom than the calibration model for the Quebecois landscapes (n = 48, 18, respectively). Hence, 187 

we could test the influence of additional variables (tree species proportions, distance from cells to 188 

aerial photograph nadirs) for the calibration model for the Finnish landscapes. According to Akaike 189 

information criterion for small sample sizes (AICc), the inclusion of the proportion of P. abies in 190 

the cell as a predictor most improved the calibration model (Table S1).  191 

 192 

Table S1. Tested calibration models for the Finnish landscapes. Used predictors were: I_CC = 193 

interpreted canopy cover for the cell, P_abies = interpreted proportion of P. abies in the cell, 194 

P_sylvestris = interpreted proportion of P. sylvestris in the cell, B_spp = interpreted proportion of 195 

birch species in the cell, D_nadir = average distance from the cell to stereophoto nadirs. 196 

Predictors R2 Sigma AICc 

I_CC 0.68 4.41 283 

I_CC + P_abies 0.78 3.66 265 

I_CC + P_sylvestris 0.74 3.93 275 

I_CC + B_spp. 0.68 4.43 285 

I_CC + D_nadir 0.68 4.43 283 



Hence, we included it in the final calibration model for the Finnish landscapes (Fig. S4a). We 197 

assessed the model fit and spread with a residual plot, and observed random calibration model 198 

residual pattern (Fig. S4b).  199 

  200 

 201 

Figure S4. The relationship between the interpreted and measured canopy cover and the measured 202 

and interpreted canopy cover distributions (a), and the canopy cover calibration model residuals in 203 

relation to calibrated canopy cover (b). See Table S2 for the posterior means and 95 % highest 204 

posterior density credible intervals for the regression coefficients and error variances. 205 

 206 

Similarly, using different models for different regions, we calibrated the visual interpretation of the 207 

summed number of snags and logs in each cell with the equivalent dead wood basal area measured 208 

in the field, and compiled the calibration to raster maps (Figs. S5–S6). Dead wood was classified 209 

into decay classes in the field measurements (see Aakala 2010 for the decay classes). As decay 210 

progresses, the dead stems become less discernible from the forest floor. Hence we tested the 211 



cumulative basal area of trees in progressively advanced decay classes as the dependent variable. 212 

We observed the best fit for the model when the stems in all but the most advanced decay stages 213 

were included. We furthermore assessed the interpretation error sensitivity of the dead wood 214 

calibration model in relation to canopy cover. The dead wood calibration model residuals varied 215 

randomly in relation to the interpreted canopy cover (Fig. S5b). 216 

 217 

 218 

Figure S5. The relationship between the measured dead wood basal area and the interpreted 219 

number of snags and logs in the cell, and the fitted calibration models (black line for Finnish and 220 

red for Quebecois landscapes) (a), and the dead wood calibration model residuals in relation to 221 

interpreted canopy cover (b). See Table S3 for the posterior means and 95 % highest posterior 222 

density credible intervals for the regression coefficients and error variances. 223 

 224 



 225 

Figure S6. The calibrated dead wood basal areas in the studied landscapes. 226 

 227 

The following notation is used in the Bayesian calibration models: 228 

𝑦𝑖
𝑗
 : canopy cover or the quantity of dead wood reconstructed from field measurements at plot 𝑖 in  229 

country 𝑗 = 1,2, where 1: Finland and 2: Canada. 230 

𝑥𝑖
𝑗
: corresponding visually interpreted canopy cover or dead wood quantity 231 

𝑟𝑖: relative canopy cover of P.abies in Finnish plots. 232 

The sample sizes in Finnish and Canadian sites are, 𝑛1 = 48, 𝑛2 = 18, respectively. 233 

 234 

In vector form: 235 

 𝑌𝑗 = [𝑦1
𝑗
, … , 𝑦𝑛𝑗

𝑗
]

𝑇 

, 236 

 𝑋𝑗 = [𝑥1
𝑗
, … , 𝑥𝑛𝑗

𝑗
]

𝑇 

, 237 

 𝑅 = [𝑟1, … , 𝑟𝑛1
]

𝑇 
. 238 

Lets denote by 𝐽𝑗 a 𝑛𝑗 × 1 column vector of ones. 239 

  240 

The linear regression model is then: 241 

𝑌 = 𝑋𝛽 + 𝜖, 242 

where 𝜖~𝑁(0, 𝜎2𝐼) and in the case of Finnish canopy cover 243 



 𝑌 = 𝑌1 , 𝑋 = [𝐽1, 𝑋1, 𝑅], 𝛽 = [𝛽0, 𝛽1, 𝛽2]𝑇, and , 𝐼 = 𝑛1 × 𝑛1 identity matrix, 244 

and for Canadian canopy cover and for the dead wood models for both countries 245 

𝑌 = 𝑌2 , 𝑋 = [𝐽2, 𝑋2], 𝛽 = [𝛽0, 𝛽1]𝑇, and , 𝐼 = 𝑛2 × 𝑛2 identity matrix. 246 

 247 

We use an uninformative prior for the unknown parameters 𝛽 and 𝜎2, 248 

𝑝(𝛽, 𝜎2|𝑋) ∝ 𝜎−2. 249 

 250 

In this model the marginal posterior distribution of the regression coefficients is a multivariate t-251 

distribution with 𝜈 degrees of freedom, where 𝜈 = 𝑛 − 3 for canopy cover in Finland and 𝜈 = 𝑛 −252 

2 for other cases (see e.g., Gelman and others 2004): 253 

 254 

𝛽|𝑌, 𝑋 ~ 𝑡𝜈(𝛽̂, 𝑠2𝑉𝛽), 255 

where  256 

𝛽̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑌, 257 

 258 

𝑉𝛽 = (𝑋𝑇𝑋)−1, 259 

and 260 

𝑠2 =
1

𝜈
(𝑌 − 𝑋𝛽̂)

𝑇
(𝑌 − 𝑋𝛽̂) . 261 

The marginal posterior distribution for the noise variance is 262 

𝜎2|𝑌, 𝑋~𝐼𝑛𝑣 − 𝜒2(𝜈, 𝑠2). 263 

 264 



Last, we extracted the posterior means and 95% highest posterior density credible intervals for the 265 

regression coefficients and error variance for the canopy cover and dead wood calibration models 266 

(Tables S2–S3, respectively). 267 

 268 

Table S2. The posterior means and 95% highest posterior density credible intervals for the 269 

regression coefficients and error variance for the canopy cover calibration model. 270 

  Posterior mean Credible interval 

Finland 𝛽0 5.20 [0.63, 9.75] 

 𝛽1 0.84 [0.70, 0.99] 

 𝛽2 -7.59 [-10.88, -4.27] 

 𝜎2 14.00 [8.60, 20.15] 

Canada 𝛽0 2.74 [-6.46, 11.89] 

 𝛽1 0.81 [0.54, 1.09] 

 𝜎2 43.09 [17.59, 77.37] 

 271 

Table S3. The posterior means and 95% highest posterior density credible intervals for the 272 

regression coefficients and error variance for the dead wood calibration model. 273 

  Posterior mean Credible interval 

Finland 𝛽0 0.17 [0.10, 0.24] 

 𝛽1 0.20 [0.15, 0.25] 

 𝜎2 0.036 [0.022, 0.051] 

Canada 𝛽0 0.92 [0.46, 1.38] 

 𝛽1 0.17 [0.06, 0.29] 

 𝜎2 0.40 [0.16, 0.72] 



 274 

Consideration of calibration success 275 

 276 

To reduce bias due to improving interpretation skill and accuracy, we interpreted the aerial 277 

photographs in randomized order. Still, the calibrated canopy cover maps showed traces of the sub-278 

grids used in the interpretation. In certain landscapes, especially Hirvaskangas, the relative canopy 279 

cover maps also still held these traces. While our inability to remove the interpretation bias 280 

definitely weakens our data, the low canopy cover interpretation error (calibration model sigma 3.7 281 

for Finland, 6.1 for Quebec) indicated that the data were of adequate quality and suitable for the 282 

performed analyses. 283 

 284 

We noted that the proportion of P. abies was negatively related to mid- and large-scale relative 285 

canopy cover especially in Pommituskukkulat landscape. Because the proportion of P. abies was 286 

also used in the calibration model, we tested whether the relation could be detected if the 287 

interpretation were calibrated without the proportion of P. abies. The negative relative canopy cover 288 

still occurred at areas with high proportion of P. abies, and was hence independent of the used 289 

calibration model. 290 

 291 

Posterior predictive distribution for the calibration models 292 

 293 

We used Bayesian inference as follows, to distinguish credible variation in relative canopy cover 294 

from noise due to the error in the visual interpretation. Let us denote the matrix of explanatory 295 

variables in the whole vectorized 64 × 64 grid of a given area by 𝑋̃, where = [𝐽, 𝑋̃1, 𝑅̃] for canopy 296 

cover in Finland and 𝑋̃ = [𝐽, 𝑋̃2] for dead wood and canopy cover in Canada, where 𝐽 is a 4096 297 

column vector of ones. The calibrated canopy cover or dead wood corresponding to 𝑋̃ is then 𝑋̃𝛽. 298 

However, as the regression coefficients are in fact random variables, also the calibrated variable is a 299 



random variable and has the posterior distribution 𝑝(𝑋̃𝛽|𝑌, 𝑋, 𝑋̃) with mean 𝑋̃𝛽̂. However, the 300 

variation in such a posterior reflects only the uncertainty in the regression coefficients and neglects 301 

the variation in the calibrated values caused by the deviations from the regression plane. Therefore, 302 

we model the calibrated variable as 303 

 304 

𝑌̃ = 𝑋̃𝛽 + 𝜖, 305 

 306 

where 𝜖~𝑁(0, 𝜎2𝐼), where 𝐼 is the 4096 × 4096 identity matrix. The distribution of 𝑌̃|𝑌, 𝑋, 𝑋̃ is 307 

referred to as the posterior predictive distribution and it is given by:  308 

 309 

 𝑌̃|𝑌, 𝑋, 𝑋̃~𝑡𝜈 (𝑋̃𝛽̂, 𝑠2(𝐼 + 𝑋̃𝑉𝛽𝑋̃𝑇)). 310 

 311 

(see e.g., Gelman and others 2004 for details). Only a few cells in the Quebecois landscapes 312 

credibly deviated from their surroundings, while the Finnish landscapes held a greater number of 313 

credible cells. There are two reasons for this. First, the fewer field measurements in Quebecois 314 

landscapes led to smaller degrees of freedom in the posterior distribution. Secondly, the estimated 315 

standard deviation was somewhat larger in Quebec.  316 

 317 

Zero snags and logs were interpreted in many grid cells. Hence, the dead wood posterior predictive 318 

samples could have had plenty of negative draws (negative dead wood basal area). We quantified 319 

the amount of the cells with such negative draws. We noted that app. 7 % of the 0.1-ha cells in 320 

Quebecois landscapes and app. 20 % in the Finnish landscapes had negative draws in the dead 321 

wood posterior predictive samples. In Quebec, these cells (cells which had negative draws in the 322 

posterior predictive samples), the majority had less than 5 % negative draws of the total 10 000 323 



samples drawn. Here, we assumed that the small quantity of negative samples did not affect the 324 

interpretation of the results. In Finland, app. 60 % of the cells had less than 5 % negative draws in 325 

the 10 000 samples, and the rest 40 % had roughly 20 % negative draws in the samples. We tested 326 

the influence of the negative samples to the results by replacing all the draws in the samples with 327 

zero. Truncation of the negative values did not affect the conclusions drawn from the analyses. 328 

 329 

Estimating feature size of the extracted components 330 

 331 

We evaluated the multimodality of the scale-derivative norms by drawing them for each extracted 332 

component and expected one peak in the norm. The unimodality of the scale-derivative norms 333 

confirmed a successful extraction (Fig. 3). To extract the spatial scales at which the most salient 334 

forest structural features occur, some scale breaks needed to be manually placed. Hence, we verified 335 

the existence of all identified and extracted scales by comparing the scale-derivative norm of the 336 

canopy cover (sum of all scale-dependent components) to the scale-derivative norm of the permuted 337 

canopy cover (Fig. S7). Only the small-scale component could be identified from the permuted 338 

data, confirming the existence of the identified characteristic scales of variation. 339 

 340 



 341 

Figure S7. The comparison of the scale-derivative norms and the corresponding permuted norms. 342 

In the top row (a-e) the solid black line indicates scale-derivative norm for calibrated canopy cover 343 

(sum of all scale-dependent components (small-, mid- and large-scale), and the dashed black lines 344 

represent 10 instances of the scale-derivative norms for permuted calibrated canopy cover. In the 345 

bottom row (f-j) the solid red line indicates the scale-derivative norm for the sum of small- and mid-346 

scale components, and the dashed red lines represent 10 instances of the scale-derivative norms for 347 

permuted sum of corresponding components. 348 

 349 

To approximate the spatial scales of variation, we assessed patch sizes in the relative canopy cover 350 

maps as the diameter of a representative circle. A representative diameter of a circular patch in the 351 

extracted component can be estimated using the effective range of a smoother with a smoothing 352 

level indicated by the location of the peak in the component’s scale-derivative norm (Pasanen and 353 

others 2018). The range spans from the signal’s minimum value to a new minimum, or from a 354 



maximum to a new maximum, hence covering both positive and negative intensities. However, here 355 

a feature is considered to be a patch with a similar relative canopy cover (i.e. either positive or 356 

negative intensity). The diameter of a feature is therefore given as the diameter of a circle where the 357 

smooth of an impulse response has dropped below half of its maximum value. The approach 358 

corresponds to the concept of full width at half maximum, which is often used e.g. in medical 359 

imaging to represent the size of a feature that has no clear boundaries (Epstein 2007).  360 

 361 

The formation of explanatory variables for canopy cover variation 362 

 363 

To analyze the relationship between variation in relative canopy cover and dead wood quantity, we 364 

extracted scale-dependent features of the dead wood basal area, using the same smoothing levels as 365 

with canopy cover (Fig. S8). 366 

 367 

To assess the influence of stand age and soil productivity, we used existing understanding of how 368 

tree species compositions reflect site productivity and past disturbances for both study regions, 369 

based on the fairly predictable variability in species composition with site type and with stand 370 

successional development. In Quebec, poorer sites are dominated by P. mariana, whereas the 371 

proportion of A. balsamea increases at more productive mesic sites (De Grandpré and others 2000). 372 

In Finland, P. sylvestris dominates xeric sites, while the more productive mesic sites usually follow 373 

a successional change from Betula spp. dominance early in the succession to P. abies dominance in 374 

the late-successional state (Sirén 1955). On sub-xeric sites of average productivity, the absence of 375 

fire leads to an increasing share of P. abies over the long term.  376 

 377 

For Quebecois landscapes, we utilized tree species composition maps created by the Ministère des 378 

Forêts, de la Faune et des Parcs du Québec, based on aerial photointerpretation of experienced 379 



interpreters. We classified the study areas into polygons of either pure P. mariana, A. balsamea, or 380 

deciduous dominance or their mixtures. We lacked such independent tree species composition maps 381 

for Finnish landscapes. Hence we obtained tree species compositions from visual interpretation of 382 

the aerial photographs, and field measurements. Similar to total canopy cover and dead wood, we 383 

used linear regression models to calibrate the visual interpretations of P. sylvestris, P. abies, and the 384 

deciduous tree canopy cover proportions with field measurements (Fig. S9). We converted the cells 385 

into polygons, classified them as pure stands or mixtures (pure stand if individual species had 386 

canopy cover proportion > 75%), and smoothed the polygons (Fig. S10). For comparison we further 387 

simplified the polygons according to the dominant species (Fig. S11). We visually compared the 388 

credible relative canopy cover and tree species compositions of the study landscapes.  389 



 390 

 391 

Figure S8. Relative dead wood basal areas in the study landscapes at multiple spatial scales. 392 

 393 

 394 

Figure S9. The relationship between the interpreted and measured tree species canopy cover 395 

proportions in the Finnish landscapes. 396 



 397 

Figure S10. Tree species compositions and credible relative canopy covers in the study landscapes. 398 

P. sy. = Pinus sylvestris, P. ab. = Picea abies, P. ma = Picea mariana, A. ba. = Abies balsamea, 399 

decid. = deciduous species. 400 



 401 

Figure S11. Tree species proportions of the total canopy cover in cells with credible positive (+) or 402 

negative (-) relative canopy cover. P. sylvestris and P. abies are present in Hirvaskangas, 403 

Pommituskukkulat and Hongikkovaara, P. mariana and A. balsamea in Lac Dionne and Pistuacanis. 404 

 405 
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