Skip to main content
Log in

Nonlinear dynamic analysis of a cable-stayed beam with a nonlinear energy sink

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In recent years, nonlinear energy sink (NES) has received widespread attention from scholars as an efficient passive control means. In this paper, the effect of NES on the nonlinear dynamic response of the cable-beam composite structure is investigated. Firstly, a mechanical model of the cable-beam composite structure with a NES under the external excitation of the beam is established. By using Hamilton principle and Galerkin discretization, the ordinary differential equations (ODEs) of the system are derived. Then, the incremental harmonic balance (IHB) method is employed to obtain the frequency response of the system when the beam is subjected to forced excitation. Finally, three working conditions are considered to discuss the effect of NES on the dynamic characteristics of the composite structure. Moreover, the vibration suppression mechanism of NES attached to the cable on the beam members is also investigated. The results demonstrate that when the natural frequencies of beam and each mode of cable are close, NES has good vibration suppression characteristics for both cable and beam. Furthermore, the vibration mitigation effect of NES on beam members has a great relationship with the degree of cable-beam coupling vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang, Z., Sun, C., Zhao, Y., Yi, Z.: Modeling and nonlinear modal characteristics of the cable-stayed beam. Eur. J. Mech. A Solids 47, 58–69 (2014)

    Article  MathSciNet  Google Scholar 

  2. Wang, L., Zhang, X., He, K., Peng, J.: Revisited dynamic modeling and eigenvalue analysis of the cable-stayed beam. Acta Mech. Sin. 36, 950–963 (2020)

    Article  MathSciNet  Google Scholar 

  3. Wei, M.H., Lin, K., Jin, L., Zou, D.J.: Nonlinear dynamics of a cable-stayed beam driven by sub-harmonic and principal parametric resonance. Int. J. Mech. Sci. 110, 78–93 (2016)

    Article  Google Scholar 

  4. Zhao, Y., Wang, Z., Zhang, X., Chen, L.: Effects of temperature variation on vibration of a cable-stayed beam. Int. J. Struct. Stab. Dyn. 17(10), 1750123 (2017)

    Article  MathSciNet  Google Scholar 

  5. Wang, L., Peng, J., Zhang, X., Qiao, W., He, K.: Nonlinear resonant response of the cable-stayed beam with one-to-one internal resonance in veering and crossover regions. Nonlinear Dyn. 103, 115–135 (2021)

    Article  Google Scholar 

  6. Cong, Y., Kang, H., Yan, G., Guo, T.: Modeling, dynamics, and parametric studies of a multi-cable-stayed beam model. Acta Mech. 231, 4947–4970 (2020)

    Article  MathSciNet  Google Scholar 

  7. Wang, Z.: Modelling with Lagrange’s method and experimental analysis in cable-stayed beam. Int. J. Mech. Sci. 176, 105518 (2020)

    Article  Google Scholar 

  8. Fujino, Y., Warnitchai, P., Pacheco, B.M.: An experimental and analytical study of autoparametric resonance in a 3dof model of cable-stayed-beam. Nonlinear Dyn. 4(2), 111–138 (1993)

    Article  Google Scholar 

  9. Fung, R.F., Lu, L.Y., Huang, S.C.: Dynamic modelling and vibration analysis of a flexible cable-stayed beam structure. J. Sound Vib. 254(4), 717–726 (2002)

    Article  Google Scholar 

  10. Gattulli, V., Lepidi, M.: Localization and veering in the dynamics of cable-stayed bridges. Comput. Struct. 85(21–22), 1661–1678 (2007)

    Article  Google Scholar 

  11. Wei, M.H., Xiao, Y.Q., Liu, H.T., Lin, K.: Nonlinear responses of a cable-beam coupled system under parametric and external excitations. Arch. Appl. Mech. 84, 173–185 (2014)

    Article  Google Scholar 

  12. Kang, H.J., Guo, T.D., Zhao, Y.Y., Fu, W.B., Wang, L.H.: Dynamic modeling and in-plane 1: 1: 1 internal resonance analysis of cable-stayed bridge. Eur. J. Mech. A. Solids 62, 94–109 (2017)

    Article  MathSciNet  Google Scholar 

  13. Cong, Y., Kang, H., Guo, T., Su, X.: One-to-one internal resonance of a cable-beam structure subjected to a concentrated load. J. Sound Vib. 529, 116915 (2022)

    Article  Google Scholar 

  14. Xu, Y.L., Zhan, S., Ko, J.M., Yu, Z.: Experimental study of vibration mitigation of bridge stay cables. J. Struct. Eng. 125(9), 977–986 (1999)

    Article  Google Scholar 

  15. Krenk, S., Høgsberg, J.: Tuned mass absorbers on damped structures under random load. Probab. Eng. Mech. 23(4), 408–415 (2008)

    Article  Google Scholar 

  16. Cai, C.S., Wu, W.J., Shi, X.M.: Cable vibration mitigation with a hung-on TMD system. Part I: theoretical study. J. Vib. Control 12(7), 801–814 (2006)

    Article  Google Scholar 

  17. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123(3), 324–332 (2001)

    Article  Google Scholar 

  18. Tong, J.H., Peng, J., Zuo, Y., Ma, P.Y., Sun, H.X., Wang, L.H.: Vibration suppression of deep-sea flexible tension legs based on nonlinear energy sink. J. Dyn. Control 21(01), 30–35 (2023)

    Google Scholar 

  19. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–3107 (2020)

    Article  Google Scholar 

  20. Parseh, M., Dardel, M., Ghasemi, M.H.: Performance comparison of nonlinear energy sink and linear tuned mass damper in steady-state dynamics of a linear beam. Nonlinear Dyn. 81, 1981–2002 (2015)

    Article  MathSciNet  Google Scholar 

  21. Yang, T.Z., Yang, X.D., Li, Y., Fang, B.: Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. J. Vib. Control 20(9), 1293–1300 (2014)

    Article  MathSciNet  Google Scholar 

  22. Karličić, D., Cajić, M., Paunović, S., Adhikari, S.: Periodic response of a nonlinear axially moving beam with a nonlinear energy sink and piezoelectric attachment. Int. J. Mech. Sci. 195, 106230 (2021)

    Article  Google Scholar 

  23. Sun, Y.H., Zhang, Y.W., Ding, H., Chen, L.Q.: Nonlinear energy sink for a flywheel system vibration mitigation. J. Sound Vib. 429, 305–324 (2018)

    Article  Google Scholar 

  24. Nasrabadi, M., Sevbitov, A.V., Maleki, V.A., Akbar, N., Javanshir, I.: Passive fluid-induced vibration control of viscoelastic cylinder using nonlinear energy sink. Mar. Struct. 81, 103116 (2022)

    Article  Google Scholar 

  25. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89(1), 1–18 (2017)

    Article  Google Scholar 

  26. Zang, J., Yuan, T.C., Lu, Z.Q., Zhang, Y.W., Ding, H., Chen, L.Q.: A lever-type nonlinear energy sink. J. Sound Vib. 437, 119–134 (2018)

    Article  Google Scholar 

  27. Wang, J., Wierschem, N.E., Spencer, B.F., Jr., Lu, X.: Track nonlinear energy sink for rapid response reduction in building structures. J. Eng. Mech. 141(1), 04014104 (2015)

    Article  Google Scholar 

  28. Zhang, Z., Lu, Z.Q., Ding, H., Chen, L.Q.: An inertial nonlinear energy sink. J. Sound Vib. 450, 199–213 (2019)

    Article  Google Scholar 

  29. Lenci, S., Ruzziconi, L.: Nonlinear phenomena in the single-mode dynamics of a cable-supported beam. Int. J. Bifurc. Chaos 19(03), 923–945 (2009)

    Article  MathSciNet  Google Scholar 

  30. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn. 83(1), 1–22 (2016)

    Article  MathSciNet  Google Scholar 

  31. Zhou, P., Li, H.: Modeling and control performance of a negative stiffness damper for suppressing stay cable vibrations. Struct. Control. Health Monit. 23(4), 764–782 (2016)

    Article  MathSciNet  Google Scholar 

  32. Pellicano, F., Vestroni, F.: Nonlinear dynamics and bifurcations of an axially moving beam. J. Vib. Acoust. 122(1), 21–30 (2000)

    Article  Google Scholar 

  33. Su, X., Kang, H., Guo, T., Cong, Y.: Internal resonance and energy transfer of a cable-stayed beam with a tuned mass damper. Nonlinear Dyn. 110(1), 131–152 (2022)

    Article  Google Scholar 

  34. Hui, Y., Law, S.S., Zhu, W., Yang, Q.: Extended IHB method for dynamic analysis of structures with geometrical and material nonlinearities. Eng. Struct. 205, 110084 (2020)

    Article  Google Scholar 

  35. Sze, K.Y., Chen, S.H., Huang, J.L.: The incremental harmonic balance method for nonlinear vibration of axially moving beams. J. Sound Vib. 281(3–5), 611–626 (2005)

    Article  Google Scholar 

  36. Wu, Z., Zhang, Y., Yao, G., Yang, Z.: Nonlinear primary and super-harmonic resonances of functionally graded carbon nanotube reinforced composite beams. Int. J. Mech. Sci. 153, 321–340 (2019)

    Article  Google Scholar 

  37. Wang, Y., Zhang, L., Zhou, J.: Incremental harmonic balance method for periodic forced oscillation of a dielectric elastomer balloon. Appl. Math. Mech. 41(3), 459–470 (2020)

    Article  MathSciNet  Google Scholar 

  38. Hui, Y., Kang, H.J., Law, S.S., Chen, Z.Q.: Analysis on two types of internal resonance of a suspended bridge structure with inclined main cables based on its sectional model. Eur. J. Mech. A. Solids 72, 135–147 (2018)

    Article  MathSciNet  Google Scholar 

  39. Liang, D., Kang, J., Zhao, W.Z., Liu, J.: Coupled vibration of cable-stayed bridges considering cables’ interaction. J. Vib. Shock 39(7), 8 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the National Natural Science Foundation of China (11972151 and 11872176).

Funding

National Natural Science Foundation of China (11972151, 11872176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houjun Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A

Appendix: A

The coefficients in Eqs. (11)–(15) are given as:

$$ d_{1} = \int_{0}^{1} {\phi _{1}^{2} (x)} {\text{d}}x;h_{{\text{m}}} = \int_{0}^{1} {\varphi _{{\text{m}}}^{2} (x)} {\text{d}}x,\;\left( {m = 1,2,3} \right); $$
$$ k_{101} = \mu_{{\text{b}}} ; $$
$$k_{{102}} = \int_{0}^{1} {\phi _{1} (x)\phi _{1}^{{(4)}} (x)} dx/\beta _{{\text{b}}}^{4} d_{1} + \kappa _{{\text{c}}} \sin \theta \phi _{1} (x_{1} )\sin \theta \gamma _{{\text{c}}} \phi _{1} (x_{1} )/d_{1} - \kappa _{{\text{c}}} \sin \theta \phi _{1} (x_{1} )\cos \theta \phi _{1} (x_{1} )\int_{0}^{1} {y_{{\text{c}}}^{\prime } (x)} dx/d_{1};$$
$$ k_{103} = - {{\kappa_{{\text{c}}} \sin \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}} \varphi^{\prime}_{1} {(}x{\text{)d}}x} \mathord{\left/ {\vphantom {{\kappa_{{\text{c}}} \sin \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}} \varphi^{\prime}_{1} {(}x{\text{)d}}x} {d_{1} }}} \right. \kern-0pt} {d_{1} }}; $$
$$ k_{104} = - {{\kappa_{{\text{c}}} \sin \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}} \varphi^{\prime}_{2} {(}x{\text{)d}}x} \mathord{\left/ {\vphantom {{\kappa_{{\text{c}}} \sin \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}} \varphi^{\prime}_{2} {(}x{\text{)d}}x} {d_{1} }}} \right. \kern-0pt} {d_{1} }}; $$
$$ k_{105} = - {{\kappa_{{\text{c}}} \sin \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}} \varphi^{\prime}_{3} {(}x{\text{)d}}x} \mathord{\left/ {\vphantom {{\kappa_{{\text{c}}} \sin \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}} \varphi^{\prime}_{3} {(}x{\text{)d}}x} {d_{1} }}} \right. \kern-0pt} {d_{1} }}; $$
$$ k_{106} = - {{\kappa_{{\text{c}}} \sin \theta \phi_{1} {(}x_{1} {)}\cos^{2} \theta \phi_{1}^{2} {(}x_{1} {)}} \mathord{\left/ {\vphantom {{\kappa_{{\text{c}}} \sin \theta \phi_{1} {(}x_{1} {)}\cos^{2} \theta \phi_{1}^{2} {(}x_{1} {)}} {d_{1} }}} \right. \kern-0pt} {d_{1} }}; $$
$$ k_{107} = - {{\kappa_{{\text{c}}} \sin \theta \phi_{1} (x_{1} )\int_{0}^{1} {\varphi_{1}^{\prime 2} (x)} dx} \mathord{\left/ {\vphantom {{\kappa_{{\text{c}}} \sin \theta \phi_{1} (x_{1} )\int_{0}^{1} {\varphi_{1}^{\prime 2} (x)} dx} {d_{1} }}} \right. \kern-0pt} {d_{1} }}; $$
$$ k_{108} = - {{\kappa_{{\text{c}}} \sin \theta \phi_{1} (x_{1} )\int_{0}^{1} {\varphi_{2}^{\prime 2} (x)} dx} \mathord{\left/ {\vphantom {{\kappa_{{\text{c}}} \sin \theta \phi_{1} (x_{1} )\int_{0}^{1} {\varphi_{2}^{\prime 2} (x)} dx} {d_{1} }}} \right. \kern-0pt} {d_{1} }}; $$
$$ k_{109} = - {{\kappa_{{\text{c}}} \sin \theta \phi_{1} (x_{1} )\int_{0}^{1} {\varphi_{3}^{\prime 2} (x)} dx} \mathord{\left/ {\vphantom {{\kappa_{{\text{c}}} \sin \theta \phi_{1} (x_{1} )\int_{0}^{1} {\varphi_{3}^{\prime 2} (x)} dx} {2d_{1} }}} \right. \kern-0pt} {2d_{1} }}; $$
$$ k_{110} = - {{\kappa_{{\text{c}}} \sin \theta \phi_{1} (x_{1} )\cos \theta \phi_{1} (x_{1} )\int_{0}^{1} {\varphi_{1}^{\prime } (x)} dx} \mathord{\left/ {\vphantom {{\kappa_{{\text{c}}} \sin \theta \phi_{1} (x_{1} )\cos \theta \phi_{1} (x_{1} )\int_{0}^{1} {\varphi_{1}^{\prime } (x)} dx} {d_{1} }}} \right. \kern-0pt} {d_{1} }}; $$
$$ k_{111} = - {{\kappa_{{\text{c}}} \sin \theta \phi_{1} {(}x_{1} {)}\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\kappa_{{\text{c}}} \sin \theta \phi_{1} {(}x_{1} {)}\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} {d_{1} }}} \right. \kern-0pt} {d_{1} }}; $$
$$ k_{112} = - {{\kappa_{{\text{c}}} \sin \theta \phi_{1} {(}x_{1} {)}\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\kappa_{{\text{c}}} \sin \theta \phi_{1} {(}x_{1} {)}\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} {d_{1} }}} \right. \kern-0pt} {d_{1} }}; $$
$$ k_{113} = - {{\eta_{{\text{b}}} \int_{0}^{1} {\phi^{{\prime}{2}}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {\phi_{1} {(}x{)}\phi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\eta_{{\text{b}}} \int_{0}^{1} {\phi^{{\prime}{2}}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {\phi_{1} {(}x{)}\phi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} {2\beta_{{\text{b}}}^{4} d_{1} }}} \right. \kern-0pt} {2\beta_{{\text{b}}}^{4} d_{1} }}; $$
$$ k_{114} = {{\int_{0}^{1} {f_{{\text{b}}} \phi_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\int_{0}^{1} {f_{{\text{b}}} \phi_{1} {(}x{)}} {\text{d}}x} {d_{1} }}} \right. \kern-0pt} {d_{1} }}; $$
$$ k_{201} = {{\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{1} {(}x{)}} {\text{d}}x} {h_{1} }}} \right. \kern-0pt} {h_{1} }}; $$
$$ k_{202} = \mu_{{\text{c}}} ; $$
$$ k_{203} = {{\mu_{{\text{c}}} \cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\mu_{{\text{c}}} \cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{1} {(}x{)}} {\text{d}}x} {h_{1} }}} \right. \kern-0pt} {h_{1} }}; $$
$$ k_{204} = - {{\left( {\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x + \lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x} \right)} \mathord{\left/ {\vphantom {{\left( {\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x + \lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x} \right)} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{205} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{206} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{207} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\phi_{1} {(}x_{1} {)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\phi_{1} {(}x_{1} {)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }} + {{\sin \theta \gamma_{{\text{c}}} \lambda_{{\text{c}}} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\sin \theta \gamma_{{\text{c}}} \lambda_{{\text{c}}} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{208} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{1} {(}x{)}} {\text{d}}x} {2\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{1} }} - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{209} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{2} {(}x{)}} {\text{d}}x} {2\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{210} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{3} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{3} {(}x{)}} {\text{d}}x} {2\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{211} = - {{\lambda_{{\text{c}}} \cos^{2} \theta \phi_{1}^{2} {(}x_{1} {)}\int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos^{2} \theta \phi_{1}^{2} {(}x_{1} {)}\int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} {2\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{212} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{213} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ \begin{gathered} k_{214} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}\\\quad\quad - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}y^{\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}y^{\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }} \hfill \\ \quad \quad + {{\sin \theta \gamma_{{\text{c}}} \lambda_{{\text{c}}} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\sin \theta \gamma_{{\text{c}}} \lambda_{{\text{c}}} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; \hfill \\ \end{gathered} $$
$$ k_{215} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{216} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$k_{{217}} = - {{\lambda _{{\text{c}}} \int_{0}^{1} {\varphi _{1} (x)\varphi _{1}^{\prime } (x)} dx\int_{0}^{1} {\varphi _{1}^{{\prime 2}} (x)} dx} \mathord{\left/ {\vphantom {{\lambda _{{\text{c}}} \int_{0}^{1} {\varphi _{1} (x)\varphi _{1}^{\prime } (x)} dx\int_{0}^{1} {\varphi _{1}^{{\prime 2}} (x)} dx} {2\beta _{{\text{c}}}^{2} h_{1} }}} \right. \kern-\nulldelimiterspace} {2\beta _{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{218} = - {{\lambda_{{\text{c}}} \cos^{2} \theta \int_{0}^{1} {\phi_{1}^{2} {(}x_{1} {)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos^{2} \theta \int_{0}^{1} {\phi_{1}^{2} {(}x_{1} {)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} {2\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{219} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{220} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$ k_{{221}} = - {{\lambda _{{\text{c}}} \int_{0}^{1} {\varphi _{1} (x)\varphi _{1}^{\prime } (x)} dx\int_{0}^{1} {\varphi _{2}^{{\prime 2}} (x)} dx} \mathord{\left/ {\vphantom {{\lambda _{{\text{c}}} \int_{0}^{1} {\varphi _{1} (x)\varphi _{1}^{\prime } (x)} dx\int_{0}^{1} {\varphi _{2}^{{\prime 2}} (x)} dx} {2\beta _{{\text{c}}}^{2} h_{1} }}} \right. \kern-\nulldelimiterspace} {2\beta _{{\text{c}}}^{2} h_{1} }};$$
$$ k_{222} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{1} {(}x{)}\varphi^{\prime\prime}_{1} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{1} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{1} }}; $$
$$k_{{223}} = - {{\lambda _{{\text{c}}} \int_{0}^{1} {\varphi _{1} (x)\varphi _{1}^{\prime } (x)} dx\int_{0}^{1} {\varphi _{3}^{{\prime 2}} (x)} dx} \mathord{\left/ {\vphantom {{\lambda _{{\text{c}}} \int_{0}^{1} {\varphi _{1} (x)\varphi _{1}^{\prime } (x)} dx\int_{0}^{1} {\varphi _{3}^{{\prime 2}} (x)} dx} {2\beta _{{\text{c}}}^{2} h_{1} }}} \right. \kern-\nulldelimiterspace} {2\beta _{{\text{c}}}^{2} h_{1} }};$$
$$ k_{224} = {{k_{{\text{n}}} \varphi_{1} (l_{1} )} \mathord{\left/ {\vphantom {{k_{{\text{n}}} \varphi_{1} (l_{1} )} {h_{1} }}} \right. \kern-0pt} {h_{1} }}; $$
$$ k_{225} = {{c_{{\text{n}}} \varphi_{1} (l_{1} )} \mathord{\left/ {\vphantom {{c_{{\text{n}}} \varphi_{1} (l_{1} )} {h_{1} }}} \right. \kern-0pt} {h_{1} }}; $$
$$ k_{301} = {{\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{2} {(}x{)}} {\text{d}}x} {h_{2} }}} \right. \kern-0pt} {h_{2} }}; $$
$$ k_{302} = \mu_{{\text{c}}} ; $$
$$ k_{303} = {{\mu_{{\text{c}}} \cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\mu_{{\text{c}}} \cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{2} {(}x{)}} {\text{d}}x} {h_{2} }}} \right. \kern-0pt} {h_{2} }}; $$
$$ k_{304} = - {{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{c} \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{305} = - {{\left( {\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x + \lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} \right)} \mathord{\left/ {\vphantom {{\left( {\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x + \lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} \right)} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{306} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{307} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\phi_{1} {(}x_{1} {)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\phi_{1} {(}x_{1} {)}} {\text{d}}x} {\beta_{c}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{c}^{2} h_{2} }} + {{\sin \theta \gamma_{{\text{c}}} \lambda_{{\text{c}}} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\sin \theta \gamma_{{\text{c}}} \lambda_{{\text{c}}} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{308} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{1} {(}x{)}} {\text{d}}x} {2\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{309} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{2} {(}x{)}} {\text{d}}x} {2\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{2} }} - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{310} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{3} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{3} {(}x{)}} {\text{d}}x} {2\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{311} = - {{\lambda_{{\text{c}}} \cos^{2} \theta \phi_{1}^{2} {(}x_{1} {)}\int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos^{2} \theta \phi_{1}^{2} {(}x_{1} {)}\int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} {2\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{312} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{313} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{314} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ \begin{gathered} k_{315} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }} \\\quad\quad - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}y^{\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}y^{\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }} \hfill \\ \quad \quad + {{\sin \theta \gamma_{{\text{c}}} \lambda_{{\text{c}}} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\sin \theta \gamma_{{\text{c}}} \lambda_{{\text{c}}} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; \hfill \\ \end{gathered} $$
$$ k_{316} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{{317}} = - {{\lambda _{{\text{c}}} \int_{0}^{1} {\varphi _{2} (x)\varphi ^{\prime\prime}_{2} (x)} dx\int_{0}^{1} {\varphi _{2}^{{\prime 2}} (x)} dx} \mathord{\left/ {\vphantom {{\lambda _{{\text{c}}} \int_{0}^{1} {\varphi _{2} (x)\varphi ^{\prime\prime}_{2} (x)} dx\int_{0}^{1} {\varphi _{2}^{{\prime 2}} (x)} dx} {2\beta _{{\text{c}}}^{2} h_{2} }}} \right. \kern-\nulldelimiterspace} {2\beta _{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{318} = - {{\lambda_{{\text{c}}} \cos^{2} \theta \int_{0}^{1} {\phi_{1}^{2} {(}x_{1} {)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos^{2} \theta \int_{0}^{1} {\phi_{1}^{2} {(}x_{1} {)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x} {2\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{319} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{320} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{{323}} = - {{\lambda _{{\text{c}}} \int_{0}^{1} {\varphi _{2} (x)\varphi ^{\prime\prime}_{2} (x)} dx\int_{0}^{1} {\varphi _{3}^{{\prime 2}} (x)} dx} \mathord{\left/ {\vphantom {{\lambda _{{\text{c}}} \int_{0}^{1} {\varphi _{2} (x)\varphi ^{\prime\prime}_{2} (x)} dx\int_{0}^{1} {\varphi _{3}^{{\prime 2}} (x)} dx} {2\beta _{{\text{c}}}^{2} h_{2} }}} \right. \kern-\nulldelimiterspace} {2\beta _{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{322} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} {(}x_{1} {)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi_{2} {(}x{)}\varphi^{\prime\prime}_{2} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{2} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{{323}} = - {{\lambda _{{\text{c}}} \int_{0}^{1} {\varphi _{2} (x)\varphi ^{\prime\prime}_{2} (x)} dx\int_{0}^{1} {\varphi _{3}^{{\prime 2}} (x)} dx} \mathord{\left/ {\vphantom {{\lambda _{{\text{c}}} \int_{0}^{1} {\varphi _{2} (x)\varphi ^{\prime\prime}_{2} (x)} dx\int_{0}^{1} {\varphi _{3}^{{\prime 2}} (x)} dx} {2\beta _{{\text{c}}}^{2} h_{2} }}} \right. \kern-\nulldelimiterspace} {2\beta _{{\text{c}}}^{2} h_{2} }}; $$
$$ k_{324} = {{k_{{\text{n}}} \varphi_{2} (l_{1} )} \mathord{\left/ {\vphantom {{k_{{\text{n}}} \varphi_{2} (l_{1} )} {h_{2} }}} \right. \kern-0pt} {h_{2} }}; $$
$$ k_{325} = {{c_{{\text{n}}} \varphi_{2} (l_{1} )} \mathord{\left/ {\vphantom {{c_{{\text{n}}} \varphi_{2} (l_{1} )} {h_{2} }}} \right. \kern-0pt} {h_{2} }}; $$
$$ k_{401} = {{\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{3} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{3} {(}x{)}} {\text{d}}x} {h_{3} }}} \right. \kern-0pt} {h_{3} }}; $$
$$ k_{402} = \mu_{{\text{c}}} ; $$
$$ k_{403} = {{\mu_{{\text{c}}} \cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{3} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\mu_{{\text{c}}} \cos \theta \phi_{1} {(}x_{1} {)}\int_{0}^{1} {x\varphi_{3} {(}x{)}} {\text{d}}x} {h_{3} }}} \right. \kern-0pt} {h_{3} }}; $$
$$ k_{404} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{1} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{405} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{406} = - {{\left( {\int_{0}^{1} {\varphi_{3} {(}x{)}\varphi^{\prime\prime}_{3} {(}x{)}} {\text{d}}x + \lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} \right)} \mathord{\left/ {\vphantom {{\left( {\int_{0}^{1} {\varphi_{3} {(}x{)}\varphi^{\prime\prime}_{3} {(}x{)}} {\text{d}}x + \lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} \right)} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{407} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\phi_{1} {(}x_{1} {)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\phi_{1} {(}x_{1} {)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }} + {{\sin \theta \gamma_{{\text{c}}} \lambda_{{\text{c}}} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\sin \theta \gamma_{{\text{c}}} \lambda_{{\text{c}}} \phi_{1} {(}x_{1} {)}\int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{408} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{1} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{1} {(}x{)}} {\text{d}}x} {2\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{409} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{2} {(}x{)}} {\text{d}}x} {2\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{410} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{3} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}y^{\prime\prime}_{{\text{c}}} {(}x{)}} {\text{d}}x\int_{0}^{1} {\varphi^{{\prime}{2}}_{3} {(}x{)}} {\text{d}}x} {2\beta_{c}^{2} h_{3} }}} \right. \kern-0pt} {2\beta_{c}^{2} h_{3} }} - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}\varphi^{\prime\prime}_{3} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}\varphi^{\prime\prime}_{3} {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{3} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{411} = - {{\lambda_{{\text{c}}} \cos^{2} \theta \phi_{1}^{2} (x_{1} )\int_{0}^{1} {\varphi_{3} (x)y_{{\text{c}}}^{\prime \prime } (x)} dx} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos^{2} \theta \phi_{1}^{2} (x_{1} )\int_{0}^{1} {\varphi_{3} (x)y_{{\text{c}}}^{\prime \prime } (x)} dx} {2\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$k_{412} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx\int_{0}^{1} {y^{\prime}_{{\text{c}}} (x)\varphi^{\prime}_{1} (x)} dx} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx\int_{0}^{1} {y^{\prime}_{{\text{c}}} (x)\varphi^{\prime}_{1} (x)} dx} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }};$$
$$ k_{413} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} {(}x{)}\varphi_{3}^{\prime \prime } {(}x{)}} {\text{d}}x\int_{0}^{1} {y^{\prime}_{{\text{c}}} {(}x{)}\varphi^{\prime}_{2} {(}x{)}} {\text{d}}x} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{414} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )\varphi^{\prime}_{1} (x)} dx\int_{0}^{1} {\varphi_{3} (x)y_{{\text{c}}}^{\prime \prime } (x)} dx} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )\varphi^{\prime}_{1} (x)} dx\int_{0}^{1} {\varphi_{3} (x)y_{{\text{c}}}^{\prime \prime } (x)} dx} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{415} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )\varphi^{\prime}_{2} (x)} dx\int_{0}^{1} {\varphi_{3} (x)y_{{\text{c}}}^{\prime \prime } (x)} dx} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )\varphi^{\prime}_{2} (x)} dx\int_{0}^{1} {\varphi_{3} (x)y_{{\text{c}}}^{\prime \prime } (x)} dx} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ \begin{gathered} k_{416} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )\varphi^{\prime}_{3} (x)} dx\int_{0}^{1} {\varphi_{3} (x)y_{{\text{c}}}^{\prime \prime } (x)} dx} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )\varphi^{\prime}_{3} (x)} dx\int_{0}^{1} {\varphi_{3} (x)y_{{\text{c}}}^{\prime \prime } (x)} dx} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}\;\\\quad\quad - \;{{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )y^{\prime}_{{\text{c}}} (x)} dx\int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )y^{\prime}_{{\text{c}}} (x)} dx\int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }} \hfill \\ \quad \quad + {{\sin \theta \gamma_{{\text{c}}} \lambda_{{\text{c}}} \phi_{1} (x_{1} )\int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx} \mathord{\left/ {\vphantom {{\sin \theta \gamma_{{\text{c}}} \lambda_{{\text{c}}} \phi_{1} (x_{1} )\int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}; \hfill \\ \end{gathered} $$
$$ k_{{417}} = - \lambda _{{\text{c}}} \int\limits_{0}^{1} {\varphi _{3} (x)\varphi _{3}^{\prime } (x)dx} \int\limits_{0}^{1} {\varphi _{3}^{{\prime 2}} (x)dx/2\beta _{{\text{c}}}^{2} h_{3} ;} $$
$$ k_{418} = - {{\lambda_{{\text{c}}} \cos^{2} \theta \int_{0}^{1} {\phi_{1}^{2} (x_{1} )} dx\int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos^{2} \theta \int_{0}^{1} {\phi_{1}^{2} (x_{1} )} dx\int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx} {2\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{419} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )\varphi^{\prime}_{3} (x)} dx\int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )\varphi^{\prime}_{3} (x)} dx\int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{420} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )\varphi^{\prime}_{2} (x)} dx\int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )\varphi^{\prime}_{2} (x)} dx\int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{421} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx\int_{0}^{1} {\varphi_{2}^{\prime 2} (x)} dx} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx\int_{0}^{1} {\varphi_{2}^{\prime 2} (x)} dx} {2\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{422} = - {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )\varphi_{1}^{\prime } (x)} dx\int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \cos \theta \int_{0}^{1} {\phi_{1} (x_{1} )\varphi_{1}^{\prime } (x)} dx\int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx} {\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{423} = - {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx\int_{0}^{1} {\varphi_{1}^{\prime 2} (x)} dx} \mathord{\left/ {\vphantom {{\lambda_{{\text{c}}} \int_{0}^{1} {\varphi_{3} (x)\varphi_{3}^{\prime \prime } (x)} dx\int_{0}^{1} {\varphi_{1}^{\prime 2} (x)} dx} {2\beta_{{\text{c}}}^{2} h_{3} }}} \right. \kern-0pt} {2\beta_{{\text{c}}}^{2} h_{3} }}; $$
$$ k_{424} = {{k_{n} \varphi_{3} (l_{1} )} \mathord{\left/ {\vphantom {{k_{n} \varphi_{3} (l_{1} )} {h_{3} }}} \right. \kern-0pt} {h_{3} }}; $$
$$ k_{425} = {{c_{{\text{n}}} \varphi_{3} (l_{1} )} \mathord{\left/ {\vphantom {{c_{{\text{n}}} \varphi_{3} (l_{1} )} {h_{3} }}} \right. \kern-0pt} {h_{3} }}; $$
$$ k_{501} = {{k_{{\text{n}}} } \mathord{\left/ {\vphantom {{k_{{\text{n}}} } {m_{{\text{n}}} }}} \right. \kern-0pt} {m_{{\text{n}}} }}; $$
$$ k_{502} \; = {{c_{{\text{n}}} } \mathord{\left/ {\vphantom {{c_{{\text{n}}} } {m_{{\text{n}}} }}} \right. \kern-0pt} {m_{{\text{n}}} }}. $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Kang, H., Cong, Y. et al. Nonlinear dynamic analysis of a cable-stayed beam with a nonlinear energy sink. Acta Mech 235, 1921–1944 (2024). https://doi.org/10.1007/s00707-023-03818-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03818-6

Navigation