Skip to main content
Log in

Novel serological tools for detection of Thottapalayam virus, a Soricomorpha-borne hantavirus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

We developed serological tools for the detection of hantavirus-specific antibodies and hantavirus antigens in shrews. The work was focussed to generate Thottapalayam virus (TPMV)-specific monoclonal antibodies (mAbs) and anti-shrew immunoglobulin G (IgG) antibodies. The mAbs against TPMV nucleocapsid (N) protein were produced after immunization of BALB/c mice with recombinant TPMV N proteins expressed in Escherichia coli, baculovirus and Saccharomyces cerevisiae-mediated expression systems. In total, six TPMV N-protein-specific mAbs were generated that showed a characteristic fluorescent pattern in indirect immunofluorescence assay (IFA) using TPMV-infected Vero cells. Out of the six mAbs tested, five showed no cross-reaction to rodent-associated hantaviruses (Hantaan, Seoul, Puumala, Tula, Dobrava-Belgrade and Sin Nombre viruses) in IFA and enzyme-linked immunosorbent assay (ELISA), although one mAb reacted to Sin Nombre virus in IFA. None of the mAbs cross-reacted with an amino-terminal segment of the shrew-borne Asama virus N protein. Anti-shrew-IgG sera were prepared after immunization of rabbits and BALB/c-mice with protein-G-purified shrew IgG. TPMV-N-protein-specific sera were raised by immunisation of Asian house shrews (Suncus murinus) with purified yeast-expressed TPMV N protein. Using these tools, an indirect ELISA was developed to detect TPMV-N-protein-specific antibodies in the sera of shrews. Using an established serological assay, high TPMV N protein specific antibody titres were measured in the sera of TPMV-N-protein-immunized and experimentally TPMV-infected shrews, whereas no cross-reactivity to other hantavirus N proteins was found. Therefore, the generated mAbs and the established ELISA system represent useful serological tools to detect TPMV, TPMV-related virus antigens or hantavirus-specific antibodies in hantavirus-infected shrews.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arai S, Song JW, Sumibcay L, Bennett SN, Nerurkar VR, Parmenter C, Cook JA, Yates TL, Yanagihara R (2007) Hantavirus in northern short-tailed shrew, United States. Emerg Infect Dis 13:1420–1423

    Article  PubMed  CAS  Google Scholar 

  2. Arai S, Bennett SN, Sumibcay L, Cook JA, Song JW, Hope A, Parmenter C, Nerurkar VR, Yates TL, Yanagihara R (2008) Phylogenetically distinct hantaviruses in the masked shrew (Sorex cinereus) and dusky shrew (Sorex monticolus) in the United States. Am J Trop Med Hyg 78:348–351

    PubMed  CAS  Google Scholar 

  3. Arikawa J, Schmaljohn AL, Dalrymple JM, Schmaljohn CS (1989) Characterization of Hantaan virus envelope glycoprotein antigenic determinants defined by monoclonal antibodies. J Gen Virol 70(Pt 3):615–624

    Article  PubMed  CAS  Google Scholar 

  4. Biltueva LS, Rogatcheva MB, Perelman PL, Borodin PM, Oda SI, Koyasu K, Harada M, Zima J, Graphodatsky AS (2001) Chromosomal phylogeny of certain shrews of the genera Crocidura and Suncus (Insectivora). J Zoological Syst Evol Res 39:69–76

    Article  Google Scholar 

  5. Carey DE, Reuben R, Panicker KN, Shope RE, Myers RM (1971) Thottapalayam virus: a presumptive arbovirus isolated from a shrew in India. Indian J Med Res 59:1758–1760

    PubMed  CAS  Google Scholar 

  6. Chu YK, Rossi C, Leduc JW, Lee HW, Schmaljohn CS, Dalrymple JM (1994) Serological relationships among viruses in the Hantavirus genus, family Bunyaviridae. Virology 198:196–204

    Article  PubMed  CAS  Google Scholar 

  7. Dantas JR Jr, Okuno Y, Asada H, Tamura M, Takahashi M, Tanishita O, Takahashi Y, Kurata T, Yamanishi K (1986) Characterization of glycoproteins of viruses causing hemorrhagic fever with renal syndrome (HFRS) using monoclonal antibodies. Virology 151:379–384

    Article  PubMed  CAS  Google Scholar 

  8. Dzagurova T, Tkachenko E, Slonova R, Ivanov L, Ivanidze E, Markeshin S, Dekonenko A, Niklasson B, Lundkvist A (1995) Antigenic relationships of hantavirus strains analysed by monoclonal antibodies. Arch Virol 140:1763–1773

    Article  PubMed  CAS  Google Scholar 

  9. Elgh F, Wadell G, Juto P (1995) Comparison of the kinetics of Puumala virus specific IgM and IgG antibody responses in nephropathia epidemica as measured by a recombinant antigen-based enzyme-linked immunosorbent assay and an immunofluorescence test. J Med Virol 45:146–150

    Article  PubMed  CAS  Google Scholar 

  10. Franko MC, Gibbs CJ Jr, Lee PW, Gajdusek DC (1983) Monoclonal antibodies specific for Hantaan virus. P Natl Acad Sci USA 80:4149–4153

    Article  CAS  Google Scholar 

  11. Jonsson CB, Schmaljohn CS (2001) Replication of hantaviruses. Curr Top Microbiol Immunol 256:15–32

    Article  PubMed  CAS  Google Scholar 

  12. Kang HJ, Arai S, Hope AG, Song JW, Cook JA, Yanagihara R (2009) Genetic diversity and phylogeography of Seewis virus in the Eurasian common shrew in Finland and Hungary. Virol J 6:208

    Article  PubMed  Google Scholar 

  13. Kang HJ, Arai S, Hope AG, Cook JA, Yanagihara R (2010) Novel hantavirus in the flat-skulled shrew (Sorex roboratus). Vector Borne Zoonotic Dis 10:593–597

    Article  PubMed  Google Scholar 

  14. Kang HJ, Bennett SN, Hope AG, Cook JA, Yanagihara R (2011) Shared ancestry between a newfound mole-borne hantavirus and hantaviruses harbored by cricetid rodents. J Virol 85(15):7496–7503

    Article  PubMed  CAS  Google Scholar 

  15. Klempa B, Fichet-Calvet E, Lecompte E, Auste B, Aniskin V, Meisel H, Denys C, Koivogui L, ter Meulen J, Kruger DH (2006) Hantavirus in African wood mouse, Guinea. Emerg Infect Dis 12:838–840

    Article  PubMed  Google Scholar 

  16. Klempa B, Fichet-Calvet E, Lecompte E, Auste B, Aniskin V, Meisel H, Barriere P, Koivogui L, ter Meulen J, Kruger DH (2007) Novel hantavirus sequences in Shrew, Guinea. Emerg Infect Dis 13:520–522

    Article  PubMed  CAS  Google Scholar 

  17. Koch J, Liang MF, Queitsch I, Kraus AA, Bautz EKF (2003) Human recombinant neutralizing antibodies against Hantaan virus G2 protein. Virology 308:64–73

    Article  PubMed  CAS  Google Scholar 

  18. Kucinskaite-Kodze I, Petraityte-Burneikiene R, Zvirbliene A, Hjelle B, Medina RA, Gedvilaite A, Razanskiene A, Schmidt-Chanasit J, Mertens M, Padula P, Sasnauskas K, Ulrich RG (2011) Characterization of monoclonal antibodies against hantavirus nucleocapsid protein and their use for immunohistochemistry on rodent and human samples. Arch Virol 156:443–456

    Article  PubMed  CAS  Google Scholar 

  19. Liang M, Guttieri M, Lundkvist A, Schmaljohn C (1997) Baculovirus expression of a human G2-specific, neutralizing IgG monoclonal antibody to Puumala virus. Virology 235:252–260

    Article  PubMed  CAS  Google Scholar 

  20. Liang M, Mahler M, Koch J, Ji Y, Li D, Schmaljohn C, Bautz EK (2003) Generation of an HFRS patient-derived neutralizing recombinant antibody to Hantaan virus G1 protein and definition of the neutralizing domain. J Med Virol 69:99–107

    Article  PubMed  CAS  Google Scholar 

  21. Lundkvist A, Fatouros A, Niklasson B (1991) Antigenic variation of European haemorrhagic fever with renal syndrome virus strains characterized using bank vole monoclonal antibodies. J Gen Virol 72(Pt 9):2097–2103

    Article  PubMed  CAS  Google Scholar 

  22. Lundkvist A, Niklasson B (1992) Bank vole monoclonal antibodies against Puumala virus envelope glycoproteins: identification of epitopes involved in neutralization. Arch Virol 126:93–105

    Article  PubMed  CAS  Google Scholar 

  23. Lundkvist A, Horling J, Athlin L, Rosen A, Niklasson B (1993) Neutralizing human monoclonal antibodies against Puumala virus, causative agent of nephropathia epidemica: a novel method using antigen-coated magnetic beads for specific B cell isolation. J Gen Virol 74(Pt 7):1303–1310

    Article  PubMed  CAS  Google Scholar 

  24. Lundkvist A, Vapalahti O, Plyusnin A, Sjolander KB, Niklasson B, Vaheri A (1996) Characterization of Tula virus antigenic determinants defined by monoclonal antibodies raised against baculovirus-expressed nucleocapsid protein. Virus Res 45:29–44

    Article  PubMed  CAS  Google Scholar 

  25. Lundkvist A, Meisel H, Koletzki D, Lankinen H, Cifire F, Geldmacher A, Sibold C, Gott P, Vaheri A, Kruger DH, Ulrich R (2002) Mapping of B-cell epitopes in the nucleocapsid protein of Puumala hantavirus. Viral Immunol 15:177–192

    Article  PubMed  CAS  Google Scholar 

  26. Mazzarotto GA, Raboni SM, Stella V, Carstensen S, de Noronha L, Levis S, Zanluca C, Zanetti CR, Bordignon J, Duarte dos Santos CN (2009) Production and characterization of monoclonal antibodies against the recombinant nucleoprotein of Araucaria hantavirus. J Virol Methods 162:96–100

    Article  PubMed  CAS  Google Scholar 

  27. Mertens M, Hofmann J, Petraityte-Burneikiene R, Ziller M, Sasnauskas K, Friedrich R, Niederstrasser O, Kruger DH, Groschup MH, Petri E, Werdermann S, Ulrich RG (2011) Seroprevalence study in forestry workers of a non-endemic region in eastern Germany reveals infections by Tula and Dobrava-Belgrade hantaviruses. Med Microbiol Immunol 200:263–268

    Article  PubMed  Google Scholar 

  28. Mertens M, Kindler E, Emmerich P, Esser J, Wagner-Wiening C, Wolfel R, Petraityte-Burneikiene R, Schmidt-Chanasit J, Zvirbliene A, Groschup MH, Dobler G, Pfeffer M, Heckel G, Ulrich RG, Essbauer SS (2011) Phylogenetic analysis of Puumala virus subtype Bavaria, characterization and diagnostic use of its recombinant nucleocapsid protein. Virus Genes

  29. Motokawa M, Suzuki H, Harada M, Lin L-K, Koyasu K, S-I Oda (2000) Phylogenetic relationships among East Asian species of Crocidura (Mammalia, Insectivora) inferred from mitochondrial cytochrome b gene sequences. Zoological Sci (Tokyo) 17:497–504

    CAS  Google Scholar 

  30. Okumura M, Yoshimatsu K, Kumperasart S, Nakamura I, Ogino M, Taruishi M, Sungdee A, Pattamadilok S, Ibrahim IN, Erlina S, Agui T, Yanagihara R, Arikawa J (2007) Development of serological assays for Thottapalayam virus, an insectivore-borne Hantavirus. Clin Vaccine Immunol 14:173–181

    Article  PubMed  CAS  Google Scholar 

  31. Plyusnin A, Morzunov SP (2001) Virus evolution and genetic diversity of hantaviruses and their rodent hosts. Curr Top Microbiol Immunol 256:47–75

    Article  PubMed  CAS  Google Scholar 

  32. Ramsden C, Holmes EC, Charleston MA (2009) Hantavirus evolution in relation to its rodent and insectivore hosts: no evidence for codivergence. Mol Biol Evol 26:143–153

    Article  PubMed  CAS  Google Scholar 

  33. Razanskiene A, Schmidt J, Geldmacher A, Ritzi A, Niedrig M, Lundkvist A, Kruger DH, Meisel H, Sasnauskas K, Ulrich R (2004) High yields of stable and highly pure nucleocapsid proteins of different hantaviruses can be generated in the yeast Saccharomyces cerevisiae. J Biotechnol 111:319–333

    Article  PubMed  CAS  Google Scholar 

  34. Ruo SL, Sanchez A, Elliott LH, Brammer LS, McCormick JB, Fisher-Hoch SP (1991) Monoclonal antibodies to three strains of hantaviruses: Hantaan, R22, and Puumala. Arch Virol 119:1–11

    Article  PubMed  CAS  Google Scholar 

  35. Salonen EM, Parren PW, Graus YF, Lundkvist A, Fisicaro P, Vapalahti O, Kallio-Kokko H, Vaheri A, Burton DR (1998) Human recombinant Puumala virus antibodies: cross-reaction with other hantaviruses and use in diagnostics. J Gen Virol 79(Pt 4):659–665

    PubMed  CAS  Google Scholar 

  36. Schmidt-Chanasit J, Essbauer S, Petraityte R, Yoshimatsu K, Tackmann K, Conraths FJ, Sasnauskas K, Arikawa J, Thomas A, Pfeffer M, Scharninghausen JJ, Splettstoesser W, Wenk M, Heckel G, Ulrich RG (2010) Extensive host sharing of central European Tula virus. J Virol 84:459–474

    Article  PubMed  CAS  Google Scholar 

  37. Schlegel M, Radosa L, Rosenfeld UM, Schmidt S, Triebenbacher C, Löhr PW, Fuchs D, Heroldová M, Jánová E, Stanko M, Mošanský L, Fričová J, Pejčoch M, Suchomel J, Purchart L, Groschup MH, Krüger DH, Klempa B, Ulrich RG (2012) Broad geographical distribution and high genetic diversity of shrew-borne Seewis hantavirus in Central Europe. Virus Genes [Epub ahead of print]

  38. Song JW, Baek LJ, Schmaljohn CS, Yanagihara R (2007) Thottapalayam virus, a prototype shrewborne hantavirus. Emerg Infect Dis 13:980–985

    Article  PubMed  CAS  Google Scholar 

  39. Song JW, Gu SH, Bennett SN, Arai S, Puorger M, Hilbe M, Yanagihara R (2007) Seewis virus, a genetically distinct hantavirus in the Eurasian common shrew (Sorex araneus). Virol J 4:114

    Article  PubMed  Google Scholar 

  40. Song JW, Kang HJ, Gu SH, Moon SS, Bennett SN, Song KJ, Baek LJ, Kim HC, O’Guinn ML, Chong ST, Klein TA, Yanagihara R (2009) Characterization of Imjin virus, a newly isolated hantavirus from the Ussuri white-toothed shrew (Crocidura lasiura). J Virol 83:6184–6191

    Article  PubMed  CAS  Google Scholar 

  41. Sugiyama K, Morikawa S, Matsuura Y, Tkachenko EA, Morita C, Komatsu T, Akao Y, Kitamura T (1987) Four serotypes of haemorrhagic fever with renal syndrome viruses identified by polyclonal and monoclonal antibodies. J Gen Virol 68(Pt 4):979–987

    Article  PubMed  Google Scholar 

  42. Tischler ND, Rosemblatt M, Valenzuela PD (2008) Characterization of cross-reactive and serotype-specific epitopes on the nucleocapsid proteins of hantaviruses. Virus Res 135:1–9

    Article  PubMed  CAS  Google Scholar 

  43. Yadav PD, Vincent MJ, Nichol ST (2007) Thottapalayam virus is genetically distant to the rodent-borne hantaviruses, consistent with its isolation from the Asian house shrew (Suncus murinus). Virol J 4:80

    Article  PubMed  Google Scholar 

  44. Yamada T, Hjelle B, Lanzi R, Morris C, Anderson B, Jenison S (1995) Antibody responses to Four Corners hantavirus infections in the deer mouse (Peromyscus maniculatus): identification of an immunodominant region of the viral nucleocapsid protein. J Virol 69:1939–1943

    PubMed  CAS  Google Scholar 

  45. Yamanishi K, Dantas JR Jr, Takahashi M, Yamanouchi T, Domae K, Takahashi Y, Tanishita O (1984) Antigenic differences between two viruses, isolated in Japan and Korea, that cause hemorrhagic fever with renal syndrome. J Virol 52:231–237

    PubMed  CAS  Google Scholar 

  46. Yashina LN, Abramov SA, Gutorov VV, Dupal TA, Krivopalov AV, Panov VV, Danchinova GA, Vinogradov VV, Luchnikova EM, Hay J, Kang HJ, Yanagihara R (2010) Seewis virus: phylogeography of a shrew-borne hantavirus in Siberia, Russia. Vector Borne Zoonotic Dis 10:585–591

    Article  PubMed  Google Scholar 

  47. Yoshimatsu K, Arikawa J, Kariwa H (1993) Application of a recombinant baculovirus expressing hantavirus nucleocapsid protein as a diagnostic antigen in IFA test: cross reactivities among 3 serotypes of hantavirus which causes hemorrhagic fever with renal syndrome (HFRS). J Vet Med Sci 55:1047–1050

    Article  PubMed  CAS  Google Scholar 

  48. Yoshimatsu K, Arikawa J, Yoshida R, Li H, Yoo YC, Kariwa H, Hashimoto N, Kakinuma M, Nobunaga T, Azuma I (1995) Production of recombinant hantavirus nucleocapsid protein expressed in silkworm larvae and its use as a diagnostic antigen in detecting antibodies in serum from infected rats. Lab Anim Sci 45:641–646

    PubMed  CAS  Google Scholar 

  49. Yoshimatsu K, Arikawa J, Tamura M, Yoshida R, Lundkvist A, Niklasson B, Kariwa H, Azuma I (1996) Characterization of the nucleocapsid protein of Hantaan virus strain 76–118 using monoclonal antibodies. J Gen Virol 77(Pt 4):695–704

    Article  PubMed  CAS  Google Scholar 

  50. Yu S, Liang M, Fan B, Xu H, Li C, Zhang Q, Li D, Tang B, Li S, Dai Y, Wang M, Zheng M, Yan B, Zhu Q, Li N (2006) Maternally derived recombinant human anti-hantavirus monoclonal antibodies are transferred to mouse offspring during lactation and neutralize virus in vitro. J Virol 80:4183–4186

    Article  PubMed  CAS  Google Scholar 

  51. Zoller LG, Yang S, Gott P, Bautz EK, Darai G (1993) A novel mu-capture enzyme-linked immunosorbent assay based on recombinant proteins for sensitive and specific diagnosis of hemorrhagic fever with renal syndrome. J Clin Microbiol 31:1194–1199

    PubMed  CAS  Google Scholar 

  52. Zvirbliene A, Samonskyte L, Gedvilaite A, Voronkova T, Ulrich R, Sasnauskas K (2006) Generation of monoclonal antibodies of desired specificity using chimeric polyomavirus-derived virus-like particles. J Immunol Methods 311:57–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge the support of Kathrin Heidemanns, Peter Giere and Swetlana Siniza and the critical reading of Daniel Balkema. The mAbs 2C6, 7A5, 5E11, 5C5, 7G2, 4H3, and 4C3, 2E12, 5A3, 1C12 were kindly provided by Aurelija Zvirbliene (Vilnius) and Åke Lundkvist (Stockholm). This study was supported in part by the Program of Founding Research Centers for Emerging and Reemerging Infectious Diseases, Ministry of Education, Culture, Sports, Science and Technology, Japan. This work was also supported in part by a grant from the Global COE program (Establishment of International Collaboration Centers for Zoonosis Control) and by Grants-in-Aid for Research on Emerging and Re-emerging Infectious Diseases from the Ministry of Health, Labour and Welfare. In addition, the study was partially funded by EU grant FP7-261504 EDENext and is catalogued by the EDENext Steering Committee as EDENext018 (http://www.edenext.eu). The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission.

Ethical statement

Shrews, laboratory mice and rabbits were handled according to the Laboratory Animal Control Guidelines of the Hokkaido University Animal Research Committee in Japan and EU Council Directive 86/609/EEC for the protection of animals used for experiments in Germany.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiro Arikawa or Bernd Köllner.

Additional information

M. Schlegel, E. Tegshduuren, J. Arikawa and B. Köllner contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlegel, M., Tegshduuren, E., Yoshimatsu, K. et al. Novel serological tools for detection of Thottapalayam virus, a Soricomorpha-borne hantavirus. Arch Virol 157, 2179–2187 (2012). https://doi.org/10.1007/s00705-012-1405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1405-9

Keywords

Navigation