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Abstract

This study examined the effect of different attributes on regionalization of potential evapotranspiration (ETp) in Urmia Lake
Basin (ULB), Iran, using the region of influence (Rol) framework. Data for the period 1997-2016 from 30 weather stations were
selected for the analysis. To achieve similarity between stations, climate, geographical, and statistical attributes were selected. To
determine the effect of each attribute, the Shannon entropy weighting method was used. The results showed that attribute
weighting had a significant impact on ETp clustering. Among the groups studied, the most significant effect of weighting was
observed in the statistical attributes category. Among all attributes, skewness coefficient (Cs) was the most useful in determining
similarity between stations. Based on the results, ULB can be divided into three homogeneous regions. Proximity of weather
stations did not always indicate similarity between them, but by weighting the stations in addition to weighting the attributes,
more accurate estimates of ETp in the basin were obtained. Overall, the results demonstrate potential for application of the Rol
approach in regionalization of ETp, by assigning a weight to weather stations and to influencing attributes.

1 Introduction

Water scarcity and inefficient water use are the main limiting
factors for agricultural development and food production in
Iran. Precise estimation of evapotranspiration (ET) is needed
to increase water use efficiency. Evapotranspiration is the
most critical parameter for climate and hydrological studies
and one of the main components of the water balance of each
region of Iran. Evapotranspiration utilizes around 60% of
annual solar radiation received at the Earth’s surface (Wang
and Dickinson 2012; Wild et al. 2013). Apart from being
involved in the energy balance, ET is a significant component
of the water cycle and uses about two-thirds of the rain on
Earth (Baumgartrer and Reichel 1975). It also plays a crucial
role in atmospheric processes, as it determines the supply of
water in the atmosphere from oceans and terrestrial areas. It
affects the amount and spatial distribution of global

P4 Marzieh Hasanzadeh Saray
m.hasanzadeh@ag.iut.ac.ir

Department of Water Engineering, College of Agriculture, Isfahan
University of Technology, Isfahan 8415683111, Iran

Water Resources and Environmental Engineering Research Unit,
Faculty of Technology, University of Oulu, Oulu, Finland

temperature and pressure (Shukla and Mintz 1982). This
can affect the incidence of heatwaves (Seneviratne et al.
2006) and rainfall processes (Zveryaev and Allan 2010),
and the performance of agricultural production, especially in
arid and semi-arid regions.

It is widely argued that increasing temperature as a result of
climate change has a direct impact on hydrological parameters
such as ET (McKenney and Rosenberg, 1993). In this regard,
within the period 1960-2005, the minimum and maximum
temperatures at weather stations in Urmia Lake Basin (ULB)
in north-west Iran increased from 0.1 to 0.5 °C and from 0.1 to
0.3 °C, respectively. This increase in temperature is leading to
a decrease in lake level by accelerating the rate of water loss
from Lake Urmia, which is considered to be the leading cause
of desiccation of this lake. It is also leading to an increase in
evapotranspiration and crop water requirements.

In hydrological studies in arid regions, it is vital to have a
good understanding of the spatial variation in ET. Analysis of
homogeneous areas in terms of climate characteristics, espe-
cially ungauged areas or regions with incomplete data, can
improve irrigation scheduling and result in more appropriate
use of water resources. Since the ET is measured as spot
values, but the temperature and ET distribution on the
Earth’s surface are highly variable on a spatial scale, measure-
ment of ET offers acceptable accuracy only in small environ-
ments. It is not suitable for large environments where weather
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stations are less densely distributed. Given this limitation, in
order to identify the spatial pattern of ET in a region, the data
points need to be converted to surface data. Various types of
regionalization and interpolation methods can be used to eval-
uate spatial changes in ET.

If weather data for many stations are studied, a statistical
method for identifying homogeneous climate areas should be
used. In ungauged basins, model parameters should be esti-
mated from other sources of information. An appropriate
method for setting model parameters in basins that lack data
is to use model parameters from a similar hydrological basin
(Merz et al. 2006). Various types of regionalization method
have been introduced for transfer of parameters from a similar
hydrological basin to an ungauged area. These include spatial
proximity, which uses interpolation techniques based on geo-
graphical locations, or spatial distances, including Kriging,
inverse distance weighting (IDW), and spline, which have
been applied previously to determine spatial distributions of
ET (Mardikis et al. 2005; Xu et al. 2006; Zhu et al. 2012;
Kamali et al. 2015; Nam et al. 2015; Lu et al. 2016).

Clustering (hierarchical and non-hierarchical) methods
have also been widely used for this purpose. Da Silva
et al. (2017) used the Ward method to classify reference
ET for the Amazon region, while Ramos et al. (2008)
used K-means and the Ward algorithm for ET clustering
in the Sonora River Basin in Mexico. These are examples
of the geostatistics, interpolation, and clustering methods
used in studies conducted worldwide and in Iran to iden-
tify homogeneous ET regions.

There are many widely used methods for estimating hydro-
logical and climate parameters for ungauged stations, but all
are usually associated with errors. The recently presented re-
gion of influence (Rol) method is the latest regionalization
method for solving the problems with conventional methods
and is reported to produce accurate and reliable estimates with
fewer errors (Wiltshire 1986). The Rol approach was first used
as an alternative method for transfer of practical information
from nearby weather stations to estimate flow rate at a target
station (Wiltshire 1986; Acreman and Wiltshire 1987). In this
approach, each station is allowed to have a unique region that
creates an area for an ungauged station, making it superior to
conventional regionalization methods (Burn 1990a). Zrinji
and Burn (1994) confirmed this conclusion for ungauged sta-
tions in Canada. A great variety of Rol-based applications
have since been used in flood estimation (Burn 1990a,
1990b; Zrinji and Burn 1994; Tasker et al. 1996; Castellarin
etal. 2001; Holmes et al. 2002; Merz and Bloschl 2005; Chiu
et al. 2005; Eng et al. 2007; Tsang et al. 2011). Rol-based
applications have also been used in estimation of extreme
rainfall (Gaal et al. 2008a; Gaal and Kysely 2009; Bharath
and Srinivas 2015; Dehghan et al. 2018a; Dehghan et al.
2018b) and in regionalization of low flow (Holmes et al.
2002). The results indicate that the Rol approach is preferable
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to other methods. However, no previous study has estimated
ET using this method.

The first step in regionalization is to identify and collect
information that can be used to calculate the proximity and
similarity between several weather stations in the desired area,
which are defined as attributes. Attributes used previously in
investigation using the Rol approach include predictor and
geographical variables (Chiu et al. 2005), climatological and
geographical characteristics (Gaal et al. 2008b), geological
and physical variables (Samuel et al. 2011), and climate, geo-
graphical, and statistical attributes with their hybrids
(Dehghan et al. 2018b). Merz and Bloschl (2005) and Eng
et al. (2007) obtained their best estimates when they consid-
ered both predictor variables and geographical proximity.
Dehghan et al. (2018b) concluded that statistical attributes,
in combination with climate and geographical characteristics,
gave the best estimates of quantiles in terms of low relative
error, and that skewness can play a useful role in evaluation of
quantiles.

The next step in regionalization is to use a tool to determine
similarity between stations. In the metric space, this similarity
is defined by the distance criterion. Researchers have
employed different distance criteria, but the Euclidean dis-
tance metric has been used in most studies (Burn 1990a,
1990b; Holmes et al. 2002; Eslamian 2010a, 2010b;
Dehghan et al. 2018a, 2018b). By applying appropriate
weights for available attributes in regions without data, ac-
ceptable and reliable results can be obtained for ungauged
stations (Dehghan et al. 2018a).

In previous studies on regionalization, various attri-
butes have been found to affect the goal, depending on
conditions in the target region, indicating that all attri-
butes should not be allocated the same degree of impor-
tance. There are several techniques for determining the
weight of different attributes in multiple-attribute deci-
sion-making (MADM) problems, one of which is the
Shannon entropy method. Shannon (1948) introduced
the concept of information entropy, defined as a measure
of the degree of turbulence within a system, which can
have a significant effect on the identification of practical
elements and their impact. The Shannon entropy concept
has been widely used in hydrology (Singh 2011).

The entropy method has been used recently for a range of
purposes, including determining the significance of rain gauge
stations in spatiotemporal scaling (Wei et al. 2014), field ve-
locity distribution during flood events (Chiu and Tung 2002;
Moramarco et al. 2004; Farina et al. 2014), rainfall-runoff
modeling (Jowitt 1991), averaged rate of infiltration (Singh
2010a), soil moisture (Al-Hamdan and Cruise 2009; Singh
2010b), distribution of piezometric head in groundwater flow
(Barbe et al. 1994), estimation of discharge (Moramarco and
Singh 2001; Chiu et al. 2005), and flow and sediment concen-
trations (Chiu et al. 2000).
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Given the strategic location of Lake Urmia in north-west
Iran and the fact that it is the largest hypersaline lake in the
Middle East, many studies have focused on ULB (Fazel et al.
2017; Dehghan et al. 2018a, 2018b; Haghighi et al. 2018;
Akbari et al. 2019). Various studies around the world have
analyzed the spatial distribution of ET, but these studies have
limitations as they only explain geographical attributes, re-
gardless of their weight in clustering. To extend the analysis,
we assessed the applicability of the Rol approach according to
the degree of importance and participation of each attribute in
regionalization of ETp in ULB. To obtain more accurate re-
sults in regionalization, we developed a framework for appro-
priate weighting in regionalization of ETp. In our novel ap-
proach, weighting is based not only on geographical attri-
butes, but also on climatological and statistical attributes. We
evaluated and compared the performance of the weighted at-
tributes using both clustering and the Rol approach.

2 Materials and methods

2.1 Study area

The analysis was based on long-term weather data for Urmia
Lake Basin in north-west Iran, which lies between 35° 41—

38° 30’ N and 44° 13'-47° 53' E, and is 140 km long and 40—
55 km wide. The basin covers a total area of 52,000 km?,

which is approximately 3% of the total area of the entire coun-
try. Around 65% of the catchment area of Lake Urmia consists
of mountainous regions, 24% of plains and foothills, and 10%
is occupied by the lake itself. The basin is surrounded by the
northern part of the Zagros Mountains, the southern slopes of
the Sabalan Mountains, and the northern, western, and south-
ern hills of Mount Sahand. Lake Urmia, with a maximum
depth of 16 m, is classified as a shallow lake, which increases
its vulnerability to evaporation. The annual evaporation rate
from the lake surface is estimated to be between 0.98 and
1.2 m, reflecting the dry climate in ULB. For the present
analysis, daily weather data from 30 stations (see Table 1)
were obtained from the Meteorological Organization and
Water Resources Management Company of Iran. The histori-
cal data covered 20 years, 1997-2016. Figure 1 shows the
spatial distribution of selected stations.

2.2 Determination of potential evapotranspiration

Potential evapotranspiration can be computed from meteoro-
logical data. Numerous studies around the world have found
that the adapted FAO Penman-Monteith (FAO-56 PM) model
(Eq. 1) is the most accurate method for estimating ETp. This
method is widely used and recommended as the standard
method for determining ETp from meteorological data
(Allen et al. 1998).

Table 1 The geographical location of the selected stations in Urmia Lake Basin

Station Station name Longitude  Latitude  Elevation Station Station name Longitude Latitude Elevation

number ©) ©) (m) number ©) ©) (m)

1 Abajaloo Sofly 45.13 37.72 1290 16 Mehmandar 45.60 36.95 1350

2 Azarshahr 45.98 37.75 900 17 Pey Jik 45.27 36.98 1375

3 Barazin 47.10 38.27 1962 18 Pey Qalee 45.03 37.00 1500

4 Camp Ormiye 45.03 37.53 1381 19 Pol Adinan 46.43 36.20 1460

5 Chahriq Olya 44.60 38.08 1600 20 Qasemloo 45.15 37.35 1380

6 Dashkhane 45.68 37.02 1278 21 Sad Shahid 46.00 36.40 1437

Kazemi

7 Golmankhaneh 45.25 37.60 1320 22 Sahand 46.12 37.93 1641
Ab Shirin

8 Golmankhaneh 45.02 37.60 1320 23 Sahlan 46.12 38.18 1330
Ab Shur

9 Hashemabad 44.90 37.28 1570 24 Saqqez* 36.22 46.31 1523
Bibakran

10 Kavlan 45.68 36.40 1520 25 Sarab 47.53 37.93 1682

11 Ligvan 46.43 37.83 2200 26 Tabriz* 46.24 38.12 1361

12 Maghanjiq 46.42 37.33 1500 27 Takab 47.10 36.40 1817

13 Mahabad 45.72 36.75 1352 28 Tazekand 46.03 36.98 1290

Miandoab
14 Maraqe 46.15 37.35 1344 29 Urmia* 45.06 37.66 1328
15 Marz Seroo 44.63 37.72 1640 30 Yalqozaghaj 44.93 38.23 1300

*Reference stations
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Fig. 1 The geographical location

of Urmia Lake Basin and the
selected meteorological stations
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where ETp is the potential crop evapotranspiration
(mm day "), A is the slope of the saturation vapor pressure
function (kPa (°C) "), Rn is the net radiation (MJ m > dayfl),
G is the soil heat flux density (MJ m 2 day ™), v is a psycho-
metric constant (kPa (°C)™"), T'is the mean temperature (°C),
u, is the wind speed at 2 m height (m s, e is the saturation
vapor pressure (kPa), e, is the actual vapor pressure (kPa), and
es—e, is the saturation vapor pressure deficit (kPa). The factor
0.408 = 1/\ (\ = latent heat of vaporization in MJ kg ') con-
verts units from MJ m 2 day ' to mm day . In this study, all
parameters necessary for computing potential evapotranspira-
tion with the FAO-56 PM method were calculated according
to the procedure developed by Allen et al. (1998).

2.3 Selection of attributes

The information used to calculate the similarity between dif-
ferent weather stations in the study area was divided into dif-
ferent attributes. The types of attributes used in the regionali-
zation method play a key role in the success of further region-
alization steps. A wide range of statistical, climatological, and
geographical information was used in this study to effectively
transfer data from the basin stations to reference stations. The
geographical proximity of stations is considered to be a suit-
able indicator for similarity values of evapotranspiration.
However, simple geo-proximity between the two points can-
not be interpreted as similarity of stations. As the value of the
attributes increases, the probability of creating dependent var-
iables also increases. To increase the precision, climatological

@ Springer

T T

46°0'0"E 47°0'0"E

and statistical attributes were also considered in this study.
Among the geographical attributes, longitude (x), latitude
(v), and height above sea level (k) were selected. The set of
climatological site attributes consisted of average daily wind
speed (WS), average daily relative humidity (RH), and aver-
age daily temperature (7). Coefficient of variation (Cy/), coef-
ficient of skewness (Cs), and the ratio of Cy to Cg were se-
lected as the statistical attributes.

2.4 Weighting approach

Weighting coefficients represented the relative importance of
the attributes for each of the selected stations. Since all stations
in the Rol of the reference station are not in equal proximity, a
weighting function was needed to reflect the relative impor-
tance of each station for estimation of ETp at the reference
station. The Shannon entropy was used to calculate the weight
of'the different geographical, climate, and statistical attributes.

2.4.1 Shannon entropy

Entropy refers to a small amount of disturbance of the ther-
modynamic system, and was used by Shannon (1948) to de-
scribe uncertainty in information sources. In information the-
ory, entropy is specified as the amount of irregularity in a
system. Therefore, measured entropy can be used to estimate
the heterogeneity of the attributes required in ETp estimation.
The more dispersion in the amount of entropy in an attribute,
the more critical it will be. The process of calculating the
Shannon entropy can be expressed in a series of steps
(Shannon 1948):

SE1: Normalize the decision matrix:
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Xij

Z;nzlxij 7

fi= (j=1,....om, i=1,...,n) (2)

SE2: Compute entropy:

Ej = kY fylnfy (3)
1
“= T @

where x;; is the rating of station 7 concerning attribute /, f; is the
normalized x;;, m is the number of attributes, # is the number
of stations, E; is the amount of dispersion or entropy in attri-
bute /, and £ is the entropy constant.

SE3: Determine uncertainty:
dl' = I_El' (5)

where d; represents the uncertainty or degree of deviation of
the data for attribute i.

SE4: Determine the significance of attribute i:

W = o
T di

where VT/j denotes the attribute j weight vector.

2.5 Distance metric

In metric space, the similarity is defined by the distance criteri-
on. If the attributes of the catchment area are the same, the
measurement distance is zero. As the difference in attributes
increases, the measurement distance will increase. Several
methods have been proposed for determining the distance met-
ric to express similarity, including Manhattan, Canberra, and
Minkowski. In the Rol procedure, Euclidean distance is most
widely used in regionalization methods. Euclidean distance is
the straight line between two stations and is defined as:

. . /
Dy = (i W, =5)") 7

where D;; is the weighted Euclidean distance between stations i
and j, W, refers to the weight values of the mth attribute for the
reference station that satisfy W,, >0 and Y7, W; = 1, X' and
X/ are the value of the mth attribute at stations 7 and j, and M
is the number of attributes. The distance metric matrix D is
symmetrical (D;; = Dj;) with zero values on its main diagonal
(D;;=0). Since the selected attributes may have different units,
it is necessary to convert the initial data before computing D;;.

The most straightforward alternative is to standardize variables.
In Eq. (7), X,, and Y, are the standardized values of attributes
for the reference stations.

2.6 Definition of threshold

After selecting the appropriate attributes and calculating the
distance metric matrix, the first step in the Rol approach was
to select a threshold value or cutoff point for the reference
stations. In determining the threshold of the metric distance
of the ith station, only the stations with metric distance below
the threshold value will fall within the Rol of the reference
station i:

Rol = {] . D;jf@,‘} (8)

where Rol is a set of stations i in the region of influence and 6;
is the threshold value for station i (Burn 1990b).

Burn (1990b) presented a general framework for determin-
ing the threshold distance 6; considering the weight of the
attributes 7); in three different options (#1-—#3).

2.6.1 Option #1

In option #1, the Rol for the reference stations contains a
limited number of stations, and all selected stations are
assigned a weight within the range 0-1, expressed as follows:

0, =0, if NSi>NST, (9)

and

NST-NSi

NST (10)

0; =0+ (GU_QL)( )lf NSi < NST

where 6y and 6y are the lower and upper threshold values for
station 7 (25th and 75th percentile of Euclidean distance), re-
spectively, NST is the number of stations that can be nearby in

Rol;, and NSi is the number of stations in the Rol of the
reference station. The weighting function for option #1 is:

Dll n
w=1-(w)

where 7;; is the weight of station j in the Rol;, TP is the 85th
percentile of the Euclidean distance for option #1, and n =2.5.

(11)

2.6.2 Option #2

In option #2, a large number of stations are in the Rol of
the reference station, and lower weights are allocated to
stations with less similarity. In this case, the threshold
value is considered:

0; =0y (12)
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The weighting function for option #2 is defined as:

ny=1 1if Dy<0L (13)
and
Dy—6.\" .

In option #2, in addition to 6; and 0, as a weighting func-
tion, there are two other parameters (TN and 7). TN is calcu-
lated using TPP as:

TN = max [max ({ '}Dij») TPP| (15)
J

In this case, 01, 0y, and TPP are considered the 25th, 75th,
and 85th percentiles of Euclidean distance and n=0.1 (Burn
1990b).

2.6.3 Option #3

Option #3 is almost the same as option #2, except that all
stations in the Rol of reference stations have an appropriate
value of the weighting function:

6; = max (Dy) (16)
)

The weighting function for option #3 is the same as for
option #2.

2.7 Clustering method

One of the agglomerative clustering methods used in this
study was the Ward method. The Ward algorithm acts to min-
imize the internal variance of the whole cluster, by aiming to
find spherical and dense clusters. It is defined thus:

W= () (17)
Yy
k _ 1 1,
fo= N s (18)

where W represents the total within-group sum of squares, & is
the number of clusters, m is the number of attributes, NV, is the
number of an attribute in stations of each cluster, f{; is the
normalized value of a jth attribute in the ith station belonging
to cluster £, and f° ]fj denotes the mean value of a jth attribute
for cluster £.

2.8 Regional homogeneity

The identification of homogeneous regions leads to more ac-
curate data transfer. Homogeneous areas include stations that

@ Springer

are in the same group. The stations within a group have similar
characteristics and, in the formation and integration of a
group, all stations with similar characteristics are involved.
In this regard, Hosking and Wallis (1993) evaluated several
quantifications and developed the heterogeneity (H) and dis-
cordancy (D;) measures.

The heterogeneity test is recommended to identify homo-
geneous regions created by regionalization. If H < 1, an area is
considered similar; for 1 < H <2, a region is considered rela-
tively heterogeneous; and for // > 2, a region is deemed to be
heterogeneous (Hosking and Wallis 1993). The heterogeneity
test contains H;, H,, and Hj statistics, which are dependent on
the L-moment distribution of linear variation coefficient
(LCy), linear skewness coefficient (LCg), and linear kurtosis
coefficient (LCy). Husking and Wallis found that H, and H;
could not differentiate between homogeneous and heteroge-
neous regions and concluded that H; based on LCy; had the
highest potential for differentiation. Therefore, H; is recom-
mended as a primary index for heterogeneity and is more
appropriate for this test. It is calculated as:

=Y (19)
oy
where V is the weighted variance of LCy for the studied re-
gion, piyis the mean of V, and oy is the standard deviation of V.
The test of discordancy specifies uncoordinated stations
compared with the entire group in terms of the L-moment
ratios. The amount of critical value for D; (Hosking and
Wallis 1997) is shown in Table 2. Stations with D; higher than
a threshold are discordant, and removing or moving discor-
dant stations will make all regions homogeneous in the study
area. The discordancy statistic is calculated as:

1 T

Di=3N (u=u) A7 (u—u) (20)

A= (N-1) S, @) (@ea) 1)

Table 2 Critical values

for the discordancy Number of the station Critical

statistic (D;) in the region value (D;)
5 1.333
6 1.648
7 1.917
8 2.14
9 2.329
10 2491
11 2.632
12 2.757
13 2.869
14 2971
>15 3
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where D; is the discordancy measure for station 7, N is the
number of stations in the region, #; is a vector containing
LCy, LCs, and LCk for the station, u is the regional average
for u;, and A is the matrix of covariance of the sample.

In regional frequency analysis, the appropriate regional
distribution is considered the best fit for the stations in a ho-
mogeneous region. Therefore, the scoring method can be used
to select the best regional distribution. The most commonly
used goodness-of-fit methods in previous studies are the chi-
square test, Kolmogorov-Smirnov test, and calculation of re-
sidual squares. The best-fit distribution can be obtained for
homogeneous regions using the values of Z”*' defined by
Hosking and Wallis (1997):

(7_4Dist_7_§ + B4)

04

ZDiSl‘ — (22)

where 7% is an average L-kurtosis value of the region, 7' is a
theoretical L-kurtosis value computed from the simulation for
a fitted distribution, and B4 and o, are the bias and standard
deviation, respectively, of L-kurtosis values obtained from
simulated data. The fitting result of the distribution is consid-
ered satisfactory if |2 < 1.64. When more than one distri-
bution qualifies for the goodness-of-fit measure, the preferred
distribution is that with the lowest value (closest to zero).

3 Results and discussion
3.1 Weighting method for the defined attributes

The weight value of each attribute determines the impact that
attribute will have on the desired category in determining ho-
mogeneous regions, in the present case in ULB. Analysis of
the influence of climate, statistical, and geographical parame-
ters on ETp was performed using the Shannon entropy meth-
od, and the weight of each parameter was obtained. The
weights assigned to attributes in each of the categories are
summarized in Table 3. Among the attributes, by far the
highest weight was given to attributes belonging to the statis-
tical group. These made up almost 73.98% of the total weight,
and thus had a high degree of importance in regionalization of
the basin. The climate attributes were the second most impor-
tant, with 20.55% of the total weight, and finally the geo-
graphical attributes, with 5.48%.

Differences between the weights defined for each attribute
within groups were observed. The range of weight changes
(between the highest and lowest assigned weights) was the
greatest in the statistical attribute group, indicating differences
in the degree of importance of attributes in this group. The
skewness of potential evapotranspiration (Cs) had the highest
weight (41.6%) and was thus identified as the most influential
attribute. The next most important attributes were Cy/Cg and
WS, with 23.98% and 12.83% of the total weight, respective-
ly; i.e., they also contributed strongly to regionalization.

According to the weighting results, attributes latitude and
longitude (x and y), belonging to the geographical group, had
the least impact, i.e., had the lowest weight (0.06%). The
remaining attributes had equal influence in the reference
ETp regionalization of ULB.

3.2 Weighting impact on clustering

The Ward clustering method was used to identify homoge-
neous regions in ULB. The hierarchical clustering algorithm
in the Ward method was used to minimize the internal vari-
ance between categories. As the number of stations in each
cluster decreases with increasing similarity, precise estimation
of the similarity and the optimal number of clusters is re-
quired. Validation of clusters to find the optimal number of
clusters was performed using the R software. The model took
into account the most frequent number of clusters among 30
indicators shown in Fig. 2.

The results showed that there was no change in the number
of clusters by attribute weighting, and three main clusters were
created in each case for the study area. Silhouette coefficient
results were used as a cluster validation index to choose the
best set of clusters. The average silhouette width (ASW) is
within the range — 1 to + 1, and the method with the highest
ASW is optimal. In the present case, the values of this coeffi-
cient for the non-weighted and weighted clusters were 0.36
and 0.41, respectively. This indicates that attribute weighting
was able to cluster the stations in ULB better than no
weighting. The ASW value decreased in both cases with an
increasing number of clusters, and the best clustering results
were obtained at k= 3.

It was found that increasing or decreasing the number of
attributes studied did not necessarily lead to a rise in the
number of clusters. In other words, increasing or decreas-
ing the attributes for regionalization cannot increase or

Table 3 The weight assigned to

each attribute in each of the Criterion ~ Geographic Climatic Statistic
categories.
X y h WS RH T Cv CS Cv/ CS
W; 0.00057 ~ 0.00059  0.0537  0.1283  0.0359  0.0411  0.0838 04160  0.2398
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decrease the number of homogeneous regions in that area
(Dehghan et al. 2018b).

Similarity values, obtained from Euclidean distance, affect-
ed the number of the stations in each group in clustering.
Figure 3 illustrates the spatial pattern of the three homoge-
neous regions of ETp identified in ULB. Figure 3a shows
the clustering of ETp without applying the weight, while
Fig. 3b illustrates the clustering on applying weights to three
categories of attributes. On comparing (a) and (b), it can be
seen that clustering of the basin changed after the weighting of
attributes, and that some stations were located in a different
region in ULB. Thus, it can be concluded that geographical
proximity is not a guarantee of similarity between stations,
which is in agreement with Da Silva et al. (2017).

3.3 Regionalization with the Rol approach

The threshold values for the three reference stations (Saqgez,
Tabriz, and Urmia) were determined according to the similarity
distance metric. After determining the final weight of the pa-
rameters, the weighted Euclidean distance from the reference
station was calculated for all stations. Considering that an in-
crease in the metric distance between stations indicates a de-
crease in similarity between stations, using weighted attributes
can have a positive effect on determining the metric distance
between stations to enhance their similarity. The results showed
that each of the three reference stations had a different threshold
value than other stations, which is quite logical.

Figure 4 shows the position of the stations located in the
Rol of the reference stations against the weight of each station.
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Fig. 3 Changes in the spatial distribution of ETp with the Ward clustering method in ULB. a Non-weighting. b By applying weight to attributes
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Rol method

As can be seen, the highest weights were assigned to stations
with different distances, and some stations with different
weights were near to each other. Therefore, stations closer to
the reference station did not have higher weights than more
distant stations.

As can be seen in Fig. 4, the stations with high weight in the
Rol were located at a distance of less than 150 km from Tabriz
station, about 200 km away from Saqqez station and 100 km or
less from Urmia station. In general, within a distance of approx-
imately 0 to 200 km from the reference station, weights of 0.66 to
0.99, 0.75 t0 0.99, and 0.51 to 0.97 were allocated to the stations
in the Rol of Saqqez, Tabriz, and Urmia stations, respectively.
Thus, distance from, or proximity to, the reference station was
not the most critical factor affecting the allocated weight. Closer
stations to the reference station were mostly assigned higher
weights, but some stations at greater distance from the reference
station also had high weights. These results of the Rol approach
are in agreement with previous findings (Eslamian 2010a,
2010b). Estimation of hydrological parameters in ungauged sta-
tions or station with incomplete data requires more accurate and
reliable methods, such as the Rol approach. To our knowledge,
this is the first study ever to estimate ETp with the Rol approach,
although it has been used in flood frequency analysis (Burn

1990a, 1990b), flood regionalization (Eng et al. 2007), and pre-
cipitation frequency analysis (Gaal et al. 2008a, 2008b; Gaal and
Kysely 2009; Dehghan et al. 2018a, 2018b).

3.4 Allocation of homogeneous regions

The homogeneity index was evaluated using the Monte Carlo
simulation with 1000 replications for each of the areas. After
calculating L-moments of LCy; LCg, and LCx at each station,
the discordancy (D;) and heterogeneity (H) statistics were cal-
culated for stations located in each area.

Stations with a high amount of D; were removed from the
set of stations to determine the homogeneous regions accord-
ing to the D, amount based on Table 2. The values of the H-
statistic for homogeneous areas are shown in Table 4. Based
on these values, in both cases (before and after weighting) no
station was deleted in the first and second clusters, but one and
three stations were detected in the third cluster before and after
weighting, respectively, and were excluded from the calcula-
tions. As can be seen in Table 4, in the Rol approach, one and
two stations were removed from Rol2 and Rol3, respectively,
of' both Urmia and Saqqez stations. One station from Rol1 and
two stations from Rol3 of Tabriz station were removed.
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Table 4  Values of the H-statistic of the heterogeneity test in the
clustering and Rol method.

Regions Number of ~ Removed stations H,;
Station with D; test value
Clustering No weighting
Method  Cluster] 6 No 138

Cluster2 4 No 0.66
Cluster3 19 1 1.48
By applying weight
Clusterl 6 No 1.27
Cluster2 4 No 0.20
Cluster3 17 3 1.22

Rol Method ~ Urmia
Roll 10 No 0.88
Rol2 24 1 1.18
Rol3 30 2 1.41
Tabriz
Roll 10 1 0.81
Rol2 22 No 0.68
Rol3 30 2 1.05
Saqqez
Roll 9 No 0.86
Rol2 24 1 1.26
Rol3 30 2 1.45

After removing discordant stations, a heterogeneity test
was conducted for the remaining stations in each region.
According to the results of the clustering method in both cases
(non-weighted and weighted based on the H; measure), clus-
ter 1 and cluster 2 can be considered homogeneous regions.
However, in cluster 3, H; exceeded the critical value of 1
representing a relatively heterogeneous region. The values of
H, in clusters with attribute weighting were less than those in
non-weighting, which indicates that the homogeneity of clus-
ters was increased by attribute weighting.

In the Rol approach, any increase in the threshold value
leads to an increase in the number of stations in the Rol of the
reference station. Therefore, the number of stations was the
highest in RoI3, with the highest threshold values. The lowest
number of stations (9-10 stations) in the Rol of the three
reference stations was observed in option #1. In options #2
and #3, 22-24 and 30 stations, respectively, were considered
in the Rol of the reference stations. Thus, increasing the
threshold, and thereby the number of stations in the Rol of
the reference station, led to an increase in heterogeneity in the
region. For the Urmia and Saqqez reference stations, the best
homogeneity was observed in the area with the option #1
threshold. For Tabriz station, the homogeneity was greater
with the option #2 threshold than with the option #1 threshold.

After analyzing the homogeneity of the study regions, the
best-fitted distribution of these regions was determined. For
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this purpose, the Z”*' value for each area, including general-
ized logistic (GLOG), generalized extreme-value (GEV), gen-
eralized normal (LOGN), Pearson type III (P-III), and gener-
alized Pareto (GPA), were computed (Table 5). To avoid mul-
tiple distribution functions in the estimates obtained in hydro-
logical studies, a type of distribution function should be used
for all study regions. Here, GEV, GLOG, and LOGN were
determined as best-fitted distributions by the Rol approach,
and GEV and GLOG by clustering in ULB. Hence, the distri-
bution function GEV was identified as the best distribution
and can be considered the selected function in all regions with
both of these methods.

Root mean square error (RMSE) was used to estimate the
error between simulated values and observations. In the clus-
tering method, regions with weighted attributes had lower
RMSE in comparison with non-weighted, and the highest es-
timated error occurred in the group with the highest number of
clusters (Table 5). Based on the results obtained using the Rol
approach, option #1 for the threshold showed the best perfor-
mance (in terms of RMSE). Better results in terms of RMSE
were obtained with the Rol method than with clustering.
Unlike in the clustering method, in the Rol approach, the error
values in the groups are not wide-ranging about each other and
vary within a relatively low range.

4 Conclusions

In this study, regionalization of potential ETp with an integrat-
ed spatial pattern based on clustering and on the Rol approach
was applied to ULB. Due to the importance of selecting attri-
butes in regionalization, nine attributes in three groups (statis-
tical, climate, geographical) affecting ETp were studied and
weighted using the Shannon entropy method. The results
showed that different attributes were allocated different
weights, reflecting differences in their degree of importance.
The most significant impact of weighting was found to be
assigned to statistical attributes, among which skewness coef-
ficient was identified as the most critical attribute. Thus, it can
be concluded that outliers should be given special attention, as
they increase the skewness coefficient.

The clustering analysis revealed differences in the clusters
formed on taking into account the attributes of the study area
compared with considering the conditions regardless of the
attributes. Urmia Lake Basin was divided into three homoge-
neous regions based on cluster analysis of the study region and
homogeneity tests. The optimal number of clusters was iden-
tified based on the most frequent number of clusters among 30
indicators. Average silhouette coefficient (ASW) results indi-
cated a better performance in Ward clustering of the model
with weighted attributes, in comparison with the non-
weighted model. Performing a heterogeneity test and remov-
ing discordant stations increased the value of H;, and the
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Table 5  Values of the Z°'" statistic of the goodness-of-fit test for considered probability distribution functions.
Regions ZPt Optimal RMSE %
Frequency
GLOG GEV LOGN P-III GPA Distribution
Clustering Method No weighting
Clusterl 2.70 0.61 1.25 1.22 -3.02 GEV 3.12
Cluster2 2.95 1.14 1.74 1.68 -1.93 GEV 2.61
Cluster3 0.79 -1.90 -1.41 -1.50 -7.00 GLOG 436
By applying weight
Clusterl 1.56 -0.04 0.21 0.13 -3.12 GEV 2.54
Cluster2 -0.12 -0.94 -0.98 -1.18 -2.67 GLOG 2.5
Cluster3 4.07 0.62 1.67 1.62 -5.37 GEV 3.66
Rol Method Urmia
Roll -0.03 -2.11 -1.64 -1.66 -5.95 GLOG 0.86
Rol2 291 -0.12 0.55 0.51 -5.73 GEV 0.95
Rol3 3.85 0.30 1.25 1.23 -6.07 GEV 2.17
Tabriz
Roll 1.57 -0.67 -0.05 -0.07 -4.67 LOGN 0.97
Rol2 0.25 -2.14 -1.60 -1.64 -6.55 GLOG 1.06
Rol3 3.15 -0.30 0.62 0.60 -6.49 GEV 1.91
Saqqez
Roll 0.04 -2.14 -1.58 -1.60 -6.07 GLOG 1.03
Rol2 297 -0.14 0.60 0.57 -5.82 GEV 1.23
Rol3 3.03 -0.43 0.48 0.45 -6.64 GEV 3.17

amount of H; in weighted attributes was better than in the non-
weighted option. It can be said that attribute weighting im-
proved homogeneity compared with when no weight was
assigned to attributes of ULB.

The highest RMSE values were observed in groups with
high H-statistics. Option #1 of the threshold gave the best
performance (in terms of RMSE). It can be concluded that
weighting of attributes in regionalization has a significant im-
pact in obtaining accurate and reliable quantiles. One of the
most important reasons for the superior performance of the
Rol approach compared with clustering was the weighting
of the stations, which had a significant effect in lowering the
error in the estimates. Weighting the stations also reduced the
role of nearby stations with low similarity to the target station.
Due to coordination of the target station with other stations,
the Rol method provides more accurate estimates than other
regionalization methods and is a highly flexible method for
transmitting information from nearby stations to target
stations.

In general, the results show that the Rol is a powerful
approach that rationally involves a large number of stations
in the proximity of reference station, with the weight assigned
to each station reflecting the lack of similarity between them.
In other regionalization methods, the stations have equal
weight and their relative role in the regionalization is not de-
termined, which is one of the strengths of the Rol approach.
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