Skip to main content

Advertisement

Log in

The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia

  • Basic Neurosciences, Genetics and Immunology - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Schizophrenia is currently believed to result from variations in multiple genes, each contributing a subtle effect, which combines with each other and with environmental stimuli to impact both early and late brain development. At present, schizophrenia clinical heterogeneity as well as the difficulties in relating cognitive, emotional and behavioral functions to brain substrates hinders the identification of a disease-specific anatomical, physiological, molecular or genetic abnormality. Mitochondria play a pivotal role in many essential processes, such as energy production, intracellular calcium buffering, transmission of neurotransmitters, apoptosis and ROS production, all either leading to cell death or playing a role in synaptic plasticity. These processes have been well established as underlying altered neuronal activity and thereby abnormal neuronal circuitry and plasticity, ultimately affecting behavioral outcomes. The present article reviews evidence supporting a dysfunction of mitochondria in schizophrenia, including mitochondrial hypoplasia, impairments in the oxidative phosphorylation system (OXPHOS) as well as altered mitochondrial-related gene expression. Abnormalities in mitochondrial complex I, which plays a major role in controlling OXPHOS activity, are discussed. Among them are schizophrenia specific as well as disease-state-specific alterations in complex I activity in the peripheral tissue, which can be modulated by DA. In addition, CNS and peripheral abnormalities in the expression of three of complex I subunits, associated with parallel alterations in their transcription factor, specificity protein 1 (Sp1) are reviewed. Finally, this review discusses the question of disease specificity of mitochondrial pathologies and suggests that mitochondria dysfunction could cause or arise from anomalities in processes involved in brain connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albensi BC, Sullivan PG, Thompson MB, Scheff SW, Mattson MP (2000) Cyclosporin ameliorates traumatic brain-injury-induced alterations of hippocampal synaptic plasticity. Exp Neurol 162:385–389

    Article  PubMed  CAS  Google Scholar 

  • Aleman A, Bocker KBE, Hijman R, Kahn RS (2002) Hallucinations in schizophrenia: imbalance between imagery and perception. Schizophr Res 57:315–316

    Article  PubMed  Google Scholar 

  • Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y, Young TA, Bullard J, Yokoe H, Webster MJ, Knable MB, Brockman JA (2005) Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry 58:85–96

    Article  PubMed  CAS  Google Scholar 

  • Amar S, Shamir A, Ovadia O, Blanaru M, Reshef A, Kremer I, Rietschel M, Schulze TG, Maier W, Belmaker RH, Ebstein RP, Agam G, Mishmar D (2007) Mitochondrial DNA HV lineage increases the susceptibility to schizophrenia among Israeli Arabs. Schizophr Res 94:354–358

    Article  PubMed  Google Scholar 

  • Andreasen NC, OwLeary DS, Flaum M, Nopoulos P, Watkins G, Boles Ponto LLB, Hichwa RD (1997) Hypofrontality in schizophrenia: disturbed dysfunctional circuits in neuroleptic-naive patients. Lancet 349:1730–1734

    Article  PubMed  CAS  Google Scholar 

  • Baethge C, Baldessarini RJ, Freudenthal K, Streeruwitz A, Bauer M, Bschor T (2005) Hallucinations in bipolar disorder: characteristics and comparison to unipolar depression and schizophrenia. Bipolar Disord 7:136–145

    Article  PubMed  Google Scholar 

  • Balijepalli S, Boyd MR, Ravindranath V (1999) Inhibition of mitochondrial complex I by haloperidol: the role of thiol oxidation. Neuropsychopharmacol 38:567–577

    CAS  Google Scholar 

  • Bao L, Avshalumov MV, Rice ME (2005) Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion. J Neurosci 25:10029–10040

    Article  PubMed  CAS  Google Scholar 

  • Barnes J, Howard RJ, Senior C, Brammer M, Bullmore ET, Simmons A, Woodruff P, David AS (2000) Cortical activity during rotational and linear transformations. Neuropsychologia 38:1148–1156

    Article  PubMed  CAS  Google Scholar 

  • Belogrudov G, Hatefi Y (1994) Catalytic sector of complex I (NADH:ubiquinone oxidoreductase): subunit stoichiometry and substrate-induced conformation changes. Biochemistry 33:4571–4576

    Article  PubMed  CAS  Google Scholar 

  • Belogrudov GI, Hatefi Y (1996) Intersubunit interactions in the bovine mitochondrial complex I as revealed by ligand blotting. Biochem Biophys Res Commun 227:135–139

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D (2002) Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem 83:1241–1251

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Karry R (2007) Sp1 expression is disrupted in schizophrenia; a possible mechanism for the abnormal expression of mitochondrial complex I genes, NDUFV1 and NDUFV2. PLoS One 2:e817

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Karry R (2008) Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 3:e3676

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Zuk R, Glinka Y (1995) Dopamine neurotoxicity: inhibition of mitochondrial respiration. J Neurochem 64:718–723

    PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Zuk R, Gazawi H, Reshef A, Sheinkman A, Klein E (1999) Increased mitochondrial complex I activity in platelets of schizophrenic patients. Int J Neuropsychopharmacol 2:245–253

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Zuk R, Gazawi H, Ljubuncic P (2004) Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders. Biochem Pharmacol 67:1965–1974

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Bonne O, Chisin R, Klein E, Lester H, Aharon-Peretz J, Yona I, Freedman N (2007) Cerebral glucose utilization and platelet mitochondrial complex I activity in schizophrenia: a FDG-PET study. Prog Neuropsychopharmacol Biol Psychiatry 31:807–813

    Article  PubMed  CAS  Google Scholar 

  • Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137

    Article  PubMed  CAS  Google Scholar 

  • Bertolino A, Frye M, Callicott JH, Mattay VS, Rakow R, Shelton-Repella J, Post R, Weinberger DR (2003) Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry 53:906–913

    Article  PubMed  Google Scholar 

  • Black JE, Zelazny AM, Greenough WT (1991) Capillary and mitochondrial support of neural plasticity in adult rat visual cortex. Exp Neurol 111:204–209

    Article  PubMed  CAS  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BA, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94:2569–2574

    Article  PubMed  CAS  Google Scholar 

  • Brenner-Lavie H, Klein E, Zuk R, Gazawi H, Ljubuncic P, Ben-Shachar D (2008) Dopamine modulates mitochondrial function in viable SH-SY5Y cells possibly via its interaction with complex I: relevance to dopamine pathology in schizophrenia. Biochim Biophys Acta 1777:173–185

    Article  PubMed  CAS  Google Scholar 

  • Brenner-Lavie H, Klein E, Ben-Shachar D (2009) Mitochondrial complex I as a novel target for intraneuronal DA: modulation of respiration in intact cells. Biochem Pharmacol 78:85–95

    Article  PubMed  CAS  Google Scholar 

  • Brodin L, Bakeeva L, Shupliakov O (1999) Presynaptic mitochondria and the temporal pattern of neurotransmitter release. Philos Trans R Soc Lond B Biol Sci 354:365–372

    Article  PubMed  CAS  Google Scholar 

  • Buchsbaum MS (1990) The frontal lobes, basal ganglia and temporal lobes as sites for schizophrenia. Schizophr Bull 16:377–387

    PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Hazlett EA (1998) Positron emission tomography studies of abnormal glucose metabolism in schizophrenia. Schizophr Bull 24:343–346

    PubMed  CAS  Google Scholar 

  • Burkhardt C, Kelly JP, Lim YH, Filley CM, Parker WD (1993) Neuroleptic medications inhibit complex I of the electron transport chain. Ann Neurol 33:512–517

    Article  PubMed  CAS  Google Scholar 

  • Burnett BB, Gardner A, Boles RG (2005) Mitochondrial inheritance in depression, dysmotility and migraine? J Affect Disord 88:109–116

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Gubellini P, Picconi B, Centonze D, Pisani A, Bonsi P, Greengard P, Hipskind RA, Borrelli E, Bernardi G (2001) Inhibition of mitochondrial complex II induces a long-term potentiation of NMDA-mediated synaptic excitation in the striatum requiring endogenous dopamine. J Neurosci 20:5110–5120

    Google Scholar 

  • Cannon M, Jones PB, Murray RM (2002) Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry 159:1080–1092

    Article  PubMed  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacol 1:179–186

    Article  CAS  Google Scholar 

  • Carter CS, Perlstein W, Ganguli R, Brar J, Mintun M, Cohen JD (1998) Functional hypofrontality and working memory dysfunction in schizophrenia. Am J Psychiatry 155:1285–1287

    PubMed  CAS  Google Scholar 

  • Cavelier L, Jazin E, Eriksson I, Prince J, Bave B, Oreland L, Gyllensten U (1995) Decreased cytochrome c oxidase activity and lack of age related accumulation of mtDNA in brain of schizophrenics. Genomics 29:217–228

    Article  PubMed  CAS  Google Scholar 

  • Chan P, Di Monte DA, Luo JJ, DeLanney LE, Irwin I, Langston JW (1994) Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity. J Neurochem 62:2484–2487

    PubMed  CAS  Google Scholar 

  • Chaturvedi RK, Beal MF (2008) Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci 1147:395–412

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR (2002) On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res 30:2930–2939

    Article  PubMed  CAS  Google Scholar 

  • Clason T, Zickermann V, Ruiz T, Brandt U, Radermacher M (2007) Direct localization of the 51 and 24 kDa subunits of mitochondrial complex I by three-dimensional difference imaging. J Struct Biol 159:433–442

    Article  PubMed  CAS  Google Scholar 

  • Cohen G, Farooqui R, Kesler N (1997) Parkinson’s disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci USA 94:4890–4894

    Article  PubMed  CAS  Google Scholar 

  • Coupland NJ, Ogilvie CJ, Hegadoren KM, Seres P, Hanstock CC, Allen PS (2005) Decreased prefrontal Myo-inositol in major depressive disorder. Biol Psychiatry 57:1526–1534

    Article  PubMed  CAS  Google Scholar 

  • Daley E, Wilkie D, Loesch A, Hargreaves IP, Kendall DA, Pilkington GJ, Bates TE (2005) Chlorimipramine: a novel anticancer agent with a mitochondrial target. Biochem Biophys Res Commun 328:623–632

    Article  PubMed  CAS  Google Scholar 

  • Davey GP, Peuchen S, Clark JB (1998) Energy thresholds in brain mitochondria: potential involvement in neurodegeneration. J Biol Chem 273:12753–12757

    Article  PubMed  CAS  Google Scholar 

  • Davis KL, Kann RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    PubMed  CAS  Google Scholar 

  • Deicken RF, Johnson C, Pegues M (2000) Proton magnetic resonance spectroscopy of the human brain in schizophrenia. Rev Neurosci 11:147–158

    PubMed  CAS  Google Scholar 

  • Dingman CW, McGlashan TH (1986) Discriminating characteristics of suicides. Chestnut Lodge follow-up sample including patients with affective disorder, schizophrenia and schizoaffective disorder. Acta Psychiatr Scand 74:91–97

    Article  PubMed  CAS  Google Scholar 

  • Dror N, Klein E, Karry R, Sheinkman A, Kirsh Z, Mazor M, Tzukerman M, Ben-Shachar D (2002) State dependent alterations in mitochondrial complex I activity in platelets: a potential peripheral marker for schizophrenia. Mol Psychiatry 7:995–1001

    Article  PubMed  CAS  Google Scholar 

  • Fecke W, Sled VD, Ohnishi T, Weiss H (1994) Disruption of the gene encoding the NADH-binding subunit of NADH: ubiquinone oxidoreductase in Neurospora crassa. Formation of a partially assembled enzyme without FMN and the iron–sulphur cluster N-3. Eur J Biochem 220:551–558

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    Article  PubMed  CAS  Google Scholar 

  • Frith C, Dolan RJ (1997) Brain mechanisms associated with top–down processes in perception. Philos Trans R Soc Lond B Biol Sci 352:1221–1230

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Nakano T, Takano T, Hokazono Y, Asakura T, Tsuji T (1992) Study of chronic schizophrenics using 31P magnetic resonance chemical shift imaging. Acta Psychiatr Scand 86:455–462

    Article  PubMed  CAS  Google Scholar 

  • Fukuzako H, Fukuzako T, Hashiguchi T, Kodama S, Takigawa M, Fujimoto T (1999) Changes in levels of phosphorus metabolites in temporal lobes of drug-naive schizophrenic patients. Am J Psychiatry 156:1205–1208

    PubMed  CAS  Google Scholar 

  • Goffart S, Wiesner RJ (2003) Regulation and co-ordination of nuclear gene expression during mitochondrial biogenesis. Exp Physiol 88:33–40

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S, Schoenfield M, Marin L, Charlton MP, Atwood HL, Zinsmaier KE (2005) The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47:379–393

    Article  PubMed  CAS  Google Scholar 

  • Gur RE, Resnick SM, Alavi A, Gur RC, Caroff S, Dann R, Silver FL, Saykin AJ, Chwluk JB, Kudhner M (1987) Regional brain function in schizophrenia II: repeated evaluation with positron emission tomography. Arch Gen Psychiatry 44:126–129

    PubMed  CAS  Google Scholar 

  • Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122(Pt 4):593–624

    Article  PubMed  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68 (image 45)

    Article  PubMed  CAS  Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–1069

    Article  PubMed  CAS  Google Scholar 

  • Hazlett EA, Buchsbaum MS, Byne W, Wei TC, Spiegel-Cohen J, Geneve C, Kinderlehrer R, Haznedar MM, Shihabuddin L, Siever LJ (1999) Three-dimensional analysis with MRI and PET of the size, shape, and function of the thalamus in the schizophrenia spectrum. Am J Psychiatry 156:1190–1199

    PubMed  CAS  Google Scholar 

  • Hazlett EA, Buchsbaum MS, Jeu LA, Nenadic I, Fleischman MB, Shihabuddin L, Haznedar MM, Harvey PD (2000) Hypofrontality in unmedicated schizophrenia patients studied with PET during performance of a serial verbal learning tasks. Schizophr Res 43:33–46

    Article  PubMed  CAS  Google Scholar 

  • Hevner RF, Wong-Riley M (1991) Neuronal expression of nuclear and mitochondrial genes for cytochrome oxidase (CO) subunits analyzed by in situ hybridization: comparison with CO activity and protein. J Neurosci 11:1942–1958

    PubMed  CAS  Google Scholar 

  • Iwamoto K, Bundo M, Kato T (2005) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14:241–253

    Article  PubMed  CAS  Google Scholar 

  • Izumi Y, Sawada H, Yamamoto N, Kume T, Katsuki H, Shimohama S, Akaike A (2005) Iron accelerates the conversion of dopamine-oxidized intermediates into melanin and provides protection in SH-SY5Y cells. J Neurosci Res 82:126–137

    Article  PubMed  CAS  Google Scholar 

  • Jakob H, Beckmann H (1989) Gross and histological criteria for developmental disorders in brains of schizophrenics. J R Soc Med 82:466–469

    PubMed  CAS  Google Scholar 

  • Jayakumar PN, Venkatasubramanian G, Keshavan MS, Srinivas JS, Gangadhar BN (2006) MRI volumetric and 31P MRS metabolic correlates of caudate nucleus in antipsychotic-naive schizophrenia. Acta Psychiatr Scand 114:346–351

    Article  PubMed  CAS  Google Scholar 

  • Jensen JE, Miller J, Williamson PC, Neufeld RW, Menon RS, Malla A, Manchanda R, Schaefer B, Densmore M, Drost DJ (2006) Grey and white matter differences in brain energy metabolism in first episode schizophrenia: 31P-MRS chemical shift imaging at 4 Tesla. Psychiatry Res 146:127–135

    Article  PubMed  CAS  Google Scholar 

  • Kaminska B, Kaczmarek L, Larocque S, Chaudhuri A (1997) Activity-dependent regulation of cytochrome b gene expression in monkey visual cortex. J Comp Neurol 379:271–282

    Article  PubMed  CAS  Google Scholar 

  • Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132:137–148

    Article  PubMed  CAS  Google Scholar 

  • Karry R, Klein E, Ben Shachar D (2004) Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiatry 55:676–684

    Article  PubMed  CAS  Google Scholar 

  • Kato T (2005) Mitochondrial dysfunction in bipolar disorder: from 31P-magnetic resonance spectroscopic findings to their molecular mechanisms. Int Rev Neurobiol 63:21–40

    Article  PubMed  CAS  Google Scholar 

  • Kato T (2007) Mitochondrial dysfunction as the molecular basis of bipolar disorder: therapeutic implications. CNS Drugs 21:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Takahashi S, Shioiri T, Inubushi T (1992) Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 26:223–230

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kunugi H, Nanko S, Kato N (2001) Mitochondrial DNA polymorphisms in bipolar disorder. J Affect Disord 62:151–164

    Article  PubMed  CAS  Google Scholar 

  • Khan FH, Sen T, Maiti AK, Jana S, Chatterjee U, Chakrabarti S (2005) Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: implications for Parkinson’s disease. Biochim Biophys Acta 1741:65–74

    PubMed  Google Scholar 

  • Kim JJ, Mohamed S, Andreasen NC, O’Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD (2000) Regional neural dysfunctions in chronic schizophrenia studied with positron emission tomography. Am J Psychiatry 157:542–548

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto H, Yamada K, Iseki E, Kosaka K, Okoshi T (1998) Brain imaging of affective disorders and schizophrenia. Psychiatry Clin Neurosci 52:S212–S214

    Article  PubMed  Google Scholar 

  • Kolomeet NS, Uranova NA (1999) Synaptic contacts in schizophrenia: studies using immunocytochemical identification of dopaminergic neurons. Neurosci Behav Physiol 29:217–221

    Article  Google Scholar 

  • Kolomeets NS, Uranova N (2009) Ultrastructural abnormalities of astrocytes in the hippocampus in schizophrenia and duration of illness: a postmortem morphometric study. World J Biol Psychiatry 99999:1–11

    Article  Google Scholar 

  • Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Thomas A, Lavretsky H, Yue K, Huda A, Curran J, Venkatraman T, Estanol L, Mintz J, Mega M, Toga A (2002) Frontal white matter biochemical abnormalities in late-life major depression detected with proton magnetic resonance spectroscopy. Am J Psychiatry 159:630–636

    Article  PubMed  Google Scholar 

  • Kung L, Roberts RC (1999) Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse 31:67–75

    Article  PubMed  CAS  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR, Weiler MA, Tamminga CA, Carpenter WT Jr (2001) Abnormal patterns of regional cerebral blood flow in schizophrenia with primary negative symptoms during an effortful auditory recognition task. Am J Psychiatry 158:1797–1808

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phase. Biol Psychiatry 46:56–72

    Article  PubMed  CAS  Google Scholar 

  • LaVoie MJ, Hastings TG (1999) Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci 19:1484–1491

    PubMed  CAS  Google Scholar 

  • Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887

    Article  PubMed  CAS  Google Scholar 

  • Liu A, Zhuang Z, Hoffman PW, Bai G (2003) Functional analysis of the rat N-methyl-d-aspartate receptor 2A promoter: multiple transcription starts points, positive regulation by Sp factors, and translational regulation. J Biol Chem 278:26423–26434

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Song L, Radoi GE, Harrison NL (2004) Transcriptional regulation of the mouse gene encoding the alpha-4 subunit of the GABAA receptor. J Biol Chem 279:40451–40461

    Article  PubMed  CAS  Google Scholar 

  • Madhavarao CN, Chinopoulos C, Chandrasekaran K, Namboodiri MA (2003) Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. J Neurochem 86:824–835

    Article  PubMed  CAS  Google Scholar 

  • Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E, Saper CB, Warach S (1999) Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. Biol Psychiatry 45:1128–1137

    Article  PubMed  CAS  Google Scholar 

  • Martorell L, Segues T, Folch G, Valero J, Joven J, Labad A, Vilella E (2006) New variants in the mitochondrial genomes of schizophrenic patients. Eur J Hum Genet 14:520–528

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (1999) Establishment and plasticity of neuronal polarity. J Neurosci 57:577–589

    Article  CAS  Google Scholar 

  • Maurer I, Zierz S, Moller H (2001) Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 48:125–136

    Article  PubMed  CAS  Google Scholar 

  • McGlashan TH (1988) A selective review of recent North American long-term follow-up studies of schizophrenia. Schizophr Bull 14:515–542

    PubMed  CAS  Google Scholar 

  • McGlashan TH, Fenton WS (1992) The positive/negative distinction in schizophrenia: review of natural history validators. Arch Gen Psychiatry 49:63–72

    PubMed  CAS  Google Scholar 

  • McMahon FJ, Chen YS, Patel S, Kokoszka J, Brown MD, Torroni A, DePaulo JR, Wallace DC (2000) Mitochondrial DNA sequence diversity in bipolar affective disorder. Am J Psychiatry 157:1058–1064

    Article  PubMed  CAS  Google Scholar 

  • Mehler-Wex C, Duvigneau JC, Hartl RT, Ben-Shachar D, Warnke A, Gerlach M (2006) Increased mRNA levels of the mitochondrial complex I 75-kDa subunit : a potential peripheral marker of early onset schizophrenia? Eur Child Adolesc Psychiatry 15:504–507

    Article  PubMed  Google Scholar 

  • Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P (2002) Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 22:2718–2729

    PubMed  CAS  Google Scholar 

  • Mizino Y, Suzuki K, Ohta S (1990) Postmortem changes in mitochondrial respiratory enzymes in brain and a preliminary observation in Parkinson’s disease. J Neurol Sci 96:49–57

    Article  Google Scholar 

  • Muir WJ, Pickard BS, Blackwood DH (2008) Disrupted-in-Schizophrenia-1. Curr Psychiatry Rep 10:140–147

    Article  PubMed  Google Scholar 

  • Mulcrone J, Whatley SA, Ferrier IN, Marchbanks RM (1995) A study of altered gene expression in frontal cortex from schizophrenic patients using differential screening. Schizophr Res 14:203–213

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Ragan CI, Hatefi Y (1985) EPR studies of iron–sulfur clusters in isolated subunits and subfractions of NADH-ubiquinone oxidoreductase. J Biol Chem 260:2782–2788

    PubMed  CAS  Google Scholar 

  • Okamoto S, Sherman K, Bai G, Lipton SA (2002) Effect of the ubiquitous transcription factors, SP1 and MAZ, on NMDA receptor subunit type 1 (NR1) expression during neuronal differentiation. Brain Res Mol Brain Res 107:89–96

    Article  PubMed  CAS  Google Scholar 

  • Phillips LJ, Francey SM, Edwards J, McMurray N (2007) Stress and psychosis: towards the development of new models of investigation. Clin Psychol Rev 27:307–317

    Article  PubMed  Google Scholar 

  • Potkin SG, Alva G, Fleming K, Anand R, Keator D, Carreon D, Doo M, Jin Y, Wu JC, Fallon JH (2002) A PET study of the pathophysiology of negative symptoms in schizophrenia. Positron emission tomography. Am J Psychiatry 157:227–237

    Article  Google Scholar 

  • Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS, Karp NA, Hester S, Tkachev D, Mimmack ML, Yolken RH, Webster MJ, Torrey EF, Bahn S (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697 (see also 643)

    Article  PubMed  CAS  Google Scholar 

  • Prince JA, Yassin MS, Oreland L (1998) A histochemical demonstration of altered cytochrome oxidase activity in the rat brain by neuroleptics. Eur Neuropsychopharmacol 8:1–6

    Article  PubMed  CAS  Google Scholar 

  • Prince JA, Blennow K, Gottfries CG, Karlsson I, Oreland L (1999) Mitochondrial function in differentially altered in the basal ganglia of chronic schizophrenics. Neuropsychopharmacol 21:372–379

    Article  CAS  Google Scholar 

  • Prince JA, Harro J, Blennow K, Gottfries CG, Karlsson I, Oreland L (2000) Putamen mitochondrial energy metabolism is highly correlated to emotional and intellectual impairment in schizophrenics. Neuropsychopharmacol 22:284–292

    Article  CAS  Google Scholar 

  • Przedborski S, Jackson-Lewis V, Muthane U, Jiang H, Ferreria M, Naini AB, Fahn S (1993) Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity. Ann Neurol 34:715–723

    Article  PubMed  CAS  Google Scholar 

  • Ragan CI, Galante YM, Hatefi Y (1982) Purification of three iron–sulfur proteins from the iron-protein fragment of mitochondrial NADH-ubiquinone oxidoreductase. Biochemistry 21:2518–2524

    Article  PubMed  CAS  Google Scholar 

  • Reddy R, Keshavan MS (2003) Phosphorus magnetic resonance spectroscopy: its utility in examining the membrane hypothesis of schizophrenia. Prostaglandins Leukot Essent Fatty Acids 69:401–405

    Article  PubMed  CAS  Google Scholar 

  • Rollins B, Martin MV, Sequeira PA, Moon EA, Morgan LZ, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Wallace DC, Bunney WE, Vawter MP (2009) Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS One 4:e4913

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    Article  PubMed  CAS  Google Scholar 

  • Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40:281–295

    Article  PubMed  CAS  Google Scholar 

  • Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52

    Article  PubMed  CAS  Google Scholar 

  • Sherman SM, Spear PD (1982) Organization of visual pathways in normal and visually deprived cats. Physiol Rev 62:738–755

    PubMed  CAS  Google Scholar 

  • Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A, Reznik I, Spivak B, Grisaru N, Karp L, Schiffer R, Kotler M, Strous RD, Swartz-Vanetik M, Knobler HY, Shinar E, Beckmann JS, Yakir B, Risch N, Zak NB, Darvasi A (2002) A Highly Significant Association between a COMT Haplotype and Schizophrenia. Am J Hum Genet 71:1296–1302

    Article  PubMed  CAS  Google Scholar 

  • Shih JC, Grimsby J, Chen K, Zhu QS (1993) Structure and promoter organization of the human monoamine oxidase A and B genes. J Psychiatry Neurosci 18:25–32

    PubMed  CAS  Google Scholar 

  • Souza ME, Polizello AC, Uyemura SA, Castro-Silva O, Curti C (1994) Effect of fluoxetine on rat liver mitochondria. Biochem Pharmacol 48:535–541

    Article  PubMed  CAS  Google Scholar 

  • Stefansson H, Thorgeirsson TE, Gulcher JR, Stefansson K (2003) Neuregulin 1 in schizophrenia: out of Iceland. Mol Psychiatry 8:639–640

    Article  PubMed  CAS  Google Scholar 

  • Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10:900–919

    Article  PubMed  CAS  Google Scholar 

  • Stowers RS, Megeath LJ, Gorska-Andrzejak J, Meinertzhagen IA, Schwarz TL (2002) Axonal transport of mitochondria to synapses depends on Milton, a novel Drosophila protein. Neuron 36:1063–1077

    Article  PubMed  CAS  Google Scholar 

  • Suske G (1999) The Sp-family of transcription factors. Gene 238:291–300

    Article  PubMed  CAS  Google Scholar 

  • Szabo G, Katarova Z, Kortvely E, Greenspan RJ, Urban Z (1996) Structure and the promoter region of the mouse gene encoding the 67-kD form of glutamic acid decarboxylase. DNA Cell Biol 15:1081–1091

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA, Thaker GK, Buchanan R, Kirkpatrick B, Alphs LD, Chase TN, Carpenter WT (1992) Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry 49:522–530

    PubMed  CAS  Google Scholar 

  • Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355–367

    Article  PubMed  CAS  Google Scholar 

  • Uranova NA, Aganova EA (1989) Ultrastructure of synapses of the anterior limbic cortex in schizophrenia. Zh Nevropatol Psikhiatr Im S S Korsakova 89:56–59

    PubMed  CAS  Google Scholar 

  • Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V, Rachmanova V (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55:597–610

    Article  PubMed  CAS  Google Scholar 

  • Van Laar VS, Dukes AA, Cascio M, Hastings TG (2008) Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone: implications for Parkinson disease. Neurobiol Dis 29:477–489

    Article  PubMed  CAS  Google Scholar 

  • van Winkel R, Stefanis NC, Myin-Germeys I (2008) Psychosocial stress and psychosis: a review of the neurobiological mechanisms and the evidence for gene–stress interaction. Schizophr Bull 34:1095–1105

    Article  PubMed  Google Scholar 

  • Vawter MP, Tomita H, Meng F, Bolstad B, Li J, Evans S, Choudary P, Atz M, Shao L, Neal C, Walsh DM, Burmeister M, Speed T, Myers R, Jones EG, Watson SJ, Akil H, Bunney WE (2006) Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol Psychiatry 11(615):663–679

    Article  CAS  Google Scholar 

  • Verstreken P, Ly CV, Venken KJ, Koh TW, Zhou Y, Bellen HJ (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47:365–378

    Article  PubMed  CAS  Google Scholar 

  • Volz HR, Riehemann S, Maurer I, Smesny S, Sommer M, Rzanny R, Holstein W, Czekalla J, Sauer H (2000) Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a 31P chemical shift spectroscopic-imaging study. Biol Psychiatry 47:954–961

    Article  PubMed  CAS  Google Scholar 

  • Washizuka S, Kametani M, Sasaki T, Tochigi M, Umekage T, Kohda K, Kato T (2006) Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with schizophrenia in the Japanese population. Am J Med Genet B Neuropsychiatr Genet 141:301–304

    Google Scholar 

  • Weeber EJ, Levy M, Sampson MJ, Anflous K, Armstrong DL, Brown SE, Sweatt JD, Craigen WJ (2002) The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J Biol Chem 277:18891–18897

    Article  PubMed  CAS  Google Scholar 

  • Weinbach EC, Costa JL, Nelson BD, Claggett CE, Hundal T, Bradley D, Morris SJ (1986) Effects of tricyclic antidepressant drugs on energy-linked reactions in mitochondria. Biochem Pharmacol 35:1445–1451

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50:825–844

    Article  PubMed  CAS  Google Scholar 

  • Whatley SA, Curi D, Marchbanks RM (1996) Mitochondrial involvement in schizophrenia and other functional psychoses. Neuroch Res 21:995–1004

    Article  CAS  Google Scholar 

  • Whatley SA, Curi D, Das Gupta F (1998) Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normals and schizophrenic patients. Mol Psychiatry 3:227–237

    Article  PubMed  CAS  Google Scholar 

  • Wolkin A, Jaeger J, Brodie JD, Wolf AP, Fowler J, Rotrosen J, Gomez-Mont F, Cancro R (1985) Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography. Am J Psychiatry 142:564–571

    PubMed  CAS  Google Scholar 

  • Wong-Riley M (1989) Cytochrome c oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101

    Article  PubMed  CAS  Google Scholar 

  • Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, Bullmore ET (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157:16–25

    PubMed  CAS  Google Scholar 

  • Yang C, Silver B, Ellis SR, Mower GD (2001) Bidirectional regulation of mitochondrial gene expression during developmental neuroplasticity of visual cortex. Biochem Biophys Res Commun 287:1070–1074

    Article  PubMed  CAS  Google Scholar 

  • Yildiz-Yesiloglu A, Ankerst DP (2006) Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res 147:1–25

    Article  PubMed  CAS  Google Scholar 

  • Zaid A, Li R, Luciakova K, Barath P, Nery S, Nelson BD (1999) On the role of the general transcription factor Sp1 in the activation and repression of diverse mammalian oxidative phosphorylation genes. J Bioenerg Biomembr 31:129–135

    Article  PubMed  CAS  Google Scholar 

  • Zickermann V, Zwicker K, Tocilescu MA, Kerscher S, Brandt U (2007) Characterization of a subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I) lacking the flavoprotein part of the N-module. Biochim Biophys Acta 1767:393–400

    Article  PubMed  CAS  Google Scholar 

  • Zubin J, Spring B (1977) Vulnerability––a new view of schizophrenia. J Abnorm Psychol 86:103–126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Rachel Karry (Ph.D.) and Natalie Dror who performed the molecular studies in postmortem specimens and blood cells, Hanit Brenner-Lavie (Ph.D.), Predrag Ljubuncic (Ph.D.), Haifa Gazawi (M.Sc.) and Rosa Zuk (M.Sc.) who performed the studies on complex I activity and characterized its interaction with DA. We acknowledge the assistance of Alon Reshef (MD), Ala Sheinkman MD, Marina Mazar (MD) and Zvi Kirsh (MD) for their contribution to blood samples collection and the clinical characterization of the patients and Ehud Klein (MD) for supervising the clinical part of the studies. Postmortem brain specimens were provided from the Stanley Foundation Neuropathology Consortium (Bethesda, MD). This project was supported by the by grants from The Chief Scientist Israel Ministry of Health, The Stanley Medical Research Institute grant and The NARSAD Independent Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorit Ben-Shachar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Shachar, D. The interplay between mitochondrial complex I, dopamine and Sp1 in schizophrenia. J Neural Transm 116, 1383–1396 (2009). https://doi.org/10.1007/s00702-009-0319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0319-5

Keywords

Navigation