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ABSTRACT. We prove Harnack’s inequality for local (quasi)minimizers in generalized Or-
licz spaces without polynomial growth or coercivity conditions. As a consequence, we obtain
the local Hölder continuity of local (quasi)minimizers. The results include as special cases
standard, variable exponent and double phase growth.

1. INTRODUCTION

In the calculus of variations one studies existence and properties of solutions to minimiza-
tion problems such as

(1.1) min
u∈W 1,1

ˆ

F (x, |∇u|) dx.

Classical techniques, by De Giorgi and Moser, cover both the linear case and the p-growth
case, where F (t) ≈ tp. Marcellini [31, 32] developed the theory of (p, q)-growth, which is
based on the growth assumption tp − 1 . F (x, t) . tq + 1, q > p. In this case, results
hold provided the ratio q

p
is sufficiently close to 1. For instance, the minimizer is Lipschitz

continuous if q
p
6 1 + 2

n−2
, n > 2 being the dimension. Zhikov [43, 44] studied such

minimizers as models of anisotropic materials and also observed that they exhibit the so-
called Lavrentiev phenomenon whereby minimizers do not have improved regularity and
may even be discontinuous. Marcellini’s theory provides maximal local flexibility (since
there is a gap between the upper and lower bounds), but it is rigid globally, since the lower
bound at one location restricts the upper bound everywhere else.

The opposite is true for variable exponent growth, i.e. F (x, t) ≈ tp(x). This theory pro-
vides results also in the case when sup p

inf p
> 1 + 2

n−2
but conversely requires some continuity

properties of p, cf. [33]. Such problems have been vigorously studied in recent years [10, 12].
In the variable exponent case, the change in the anisotropy (growth rate) is gradual ow-

ing to the continuity of p. For instance, in electrorheological fluid dynamics, where the
anisotropy depends on the smooth electrical field, this is a reasonable assumption [40]. In
other situations, such as composite materials, a more clear-cut transition is better. To this
end, Baroni, Colombo and Mingione [3, 4, 7, 8, 9] have studied the double phase functional

F (x, t) = tp + a(x)tq, q > p,

which has the property that the growth rate changes abruptly from p to q in the sets {a = 0}
and {a > 0}. They have nevertheless managed to build of regularity theory for minimizers
under the assumption that a ∈ Cα where either q

p
6 1 + α

n
or q

p
6 1 + α

p
is required.
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The reason that variable exponent research thrived while little harmonic analysis was done
in generalized Orlicz spaces was the belief that many classical results can be obtained in the
former setting but not the latter. However, this belief has been challenged recently, based on
new techniques that were developed and perfected in the context of variable exponent spaces
[11, 13, 19, 20, 24, 27, 28, 29, 30, 35, 36, 42].

We have developed a set of assumptions, imaginatively called (A0), (A1) and (A2), which
appear to very neatly capture all previously mentioned results. (A2) pertains to unbounded
domains and will not be used in this paper; (A0) is just a restriction to the un-weighted case
and is likely to be of a technical nature. The central condition (A1) corresponds to local log-
Hölder continuity in the variable exponent case (simple calculation) and to the restriction
q
p
6 1 + α

n
in the double phase case (see Theorem 4.7 in [24]). Both are known to be the

optimal continuity moduli in their respective settings.
In this paper, we introduce a new condition, called (A1-n). In the variable exponent setting

it too corresponds to local log-Hölder continuity and for the double phase functional it says
that q

p
6 1 + α

p
, as in Baroni–Colombo–Mingione. The fact that our assumptions agree with

known optimal assumptions in two very disparate cases strongly suggests that they form
a reasonable basis for a general theory. For the precise definition of the assumptions, see
Section 2.1.

Here we take the first step towards a regularity theory in generalized Orlicz spaces by
proving Harnack’s inequality and Hölder continuity of local quasiminimizers, defined as
follows (see Section 2 for further definitions). Note that any minimizer of (1.1) with

F (x, t) ≈ ϕ(x, t)

is a local quasiminimizer and hence covered by our results.

Definition 1.2. Let ϕ ∈ Φw(Ω). A function u ∈ W
1,ϕ(·)
loc (Ω) is a local quasiminimizer of the

ϕ(·)-energy in Ω if there exists a constant K > 1 such that
ˆ

{v 6=0}
ϕ(x, |∇u|) dx 6 K

ˆ

{v 6=0}
ϕ(x, |∇(u+ v)|) dx

for all v ∈ W 1,ϕ(·)(Ω) with spt v := {v 6= 0} ⊂ Ω.

Using Theorem 4.11 for u and −u, we obtain the following theorem.

Theorem 1.3 (Local boundedness). Assume that ϕ ∈ Φw(Ω) satisfies (A0), (A1), (aInc) and

(aDec). Then every local quasiminimizer of the ϕ(·)-energy is locally bounded.

Our main result, which we obtain by combining Corollaries 5.9 and 6.5, is:

Theorem 1.4 (Harnack’s inequality). Assume that ϕ ∈ Φw(Ω) satisfies (A0), (A1), (A1-n),

(aDec) and (aInc). Suppose that u ∈ W
1,ϕ(·)
loc (Ω) is a non-negative local quasiminimizer of

the ϕ(·)-energy. For compact K ⋐ Ω, there exists R0 (cf. Theorem 5.7) such that

ess sup
x∈QR

u(x) 6 C
(
ess inf
x∈QR

u(x) +R
)

for all R ∈ (0, R0] with and cubes Q6R ⋐ Ω centered in K. The constant C depends only on

the parameters from the assumptions, the dimension n, and the norm ‖u‖L∞(Q2R).

If u ∈ W 1,ϕ(·)(Ω) in the previous theorem, then R0 can be chosen for all of Ω, not just a
compact subset.

By standard arguments, the previous Harnack inequality implies the Hölder continuity of
the function.
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Corollary 1.5 (Hölder continuity). Assume that ϕ ∈ Φw(Ω) satisfies (A0), (A1), (A1-n),

(aDec) and (aInc). If u is a local quasiminimizer of the ϕ(·)-energy, then u ∈ Cα
loc(Ω) for

some α > 0.

In addition to being a natural generalization which covers results from both variable ex-
ponent and Orlicz spaces, the study of nonstandard growth problems can be motivated by
applications to image processing [1, 6, 21], fluid dynamics [40, 41] and differential equa-
tions [2, 14, 17, 18, 37, 38]

The structure of this paper is as follows. First we recall some basic properties of general-
ized Orlicz spaces in Section 2. Then we introduce the assumptions (Ax) and prove several
auxiliary results related to them (Section 2.1). In Section 3 we prove Sobolev and maximal
inequalities, both in modular form. Since modular inequalities are known not to be generally
true in this context, both have been crafted to work in the specific situation arising in this
paper.

The proof of the Harnack inequality uses De Giorgi’s method. In Section 4, we derive a
Caccioppoli inequality and prove the local boundedness of solutions by iteration. This is the
main part of the proof. While the general scheme is familiar, several technical innovations
are necessary to apply it in this context. Furthermore, the resultant upper bound is quantita-
tively poor: the right-hand side is not homogeneous and the constant of comparison blows
up when the radius tends to zero. These short-comings are remedied in Section 5 via a scal-
ing trick from the Orlicz setting and bootstrapping the boundedness result of the preceding
section. It is at this junction that we need the new assumption (A1-n). It is interesting to note
that Mingione et al. use the corresponding double phase assumption precisely when dealing
bounded solutions. The proof is concluded in Section 6 by establishing the weak Harnack
inequality.

2. PROPERTIES OF GENERALIZED Φ-FUNCTIONS

Generalized Orlicz spaces Lϕ(·) have been studied since the 1940s. A major synthesis of
functional analysis in these spaces is given in the 1983 monograph of Musielak [34], hence
the alternative name Musielak–Orlicz spaces. In this section we present pertinent aspects
of the theory of generalized Orlicz spaces from a modern point-of-view which emphasizes
properties that are invariant under equivalence of Φ-functions. This approach is inspired
by our Japanese colleagues [27], although our assumptions are more general than theirs, cf.
[24].

By Ω ⊂ R
n we denote a bounded domain, i.e. an open and connected set. The notation

f . g means that there exists a constant C > 0 such that f 6 Cg. The notation f ≈ g
means that f . g . f . By c we denote a generic constant whose value may change between
appearances. A function f is almost increasing if there exists a constant L > 1 such that
f(s) 6 Lf(t) for all s 6 t (abbreviated L-almost increasing). Almost decreasing is defined
similarly.

Definition 2.1. We say that ϕ : Ω × [0,∞) → [0,∞] is a weak Φ-function, and write
ϕ ∈ Φw(Ω), if

• For every t ∈ [0,∞) the function x 7→ ϕ(x, t) is measurable and for every x ∈ Ω the
function t 7→ ϕ(x, t) is increasing.

• ϕ(x, 0) = lim
t→0+

ϕ(x, t) = 0 and lim
t→∞

ϕ(x, t) = ∞ for every x ∈ Ω.

• The function t 7→ ϕ(x,t)
t

is almost increasing for t > 0 uniformly in Ω. "Uniformly"
means that the constant is independent of x.
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Two functions ϕ and ψ are equivalent, ϕ ≃ ψ, if there exists L > 1 such that ψ(x, t
L
) 6

ϕ(x, t) 6 ψ(x, Lt) for every x ∈ Ω and every t > 0. Equivalent Φ-functions give rise to the
same space with comparable norms.

We say that ϕ is doubling if there exists a constant L > 1 such that ϕ(x, 2t) 6 Lϕ(x, t)
for every x ∈ Ω and every t > 0. If ϕ is doubling with constant L, then by iteration

(2.2) ϕ(x, t) 6 L2
( t
s

)Q
ϕ(x, s)

for every x ∈ Ω and every 0 < s < t, where Q = log2(L). For the proof see for example
[5, Lemma 3.3 , p. 66]. If ϕ is doubling, then (2.2) yields that ≃ implies ≈. On the other
hand, ≈ always implies ≃ since the function t 7→ ϕ(x,t)

t
is almost increasing; hence ≃ and

≈ are equivalent in the doubling case. Note that doubling also yields that ϕ(x, t + s) 6
Lϕ(x, t) + Lϕ(x, s).

Doubling functions have many nice properties, including the following. Note that the
claims in the lemma are to be understood with respect of the second variable of ϕ. Similarly,
by ϕ−1 we denote the left-continuous inverse of a weak Φ-function ϕ,

ϕ−1(τ) := inf{t > 0 : ϕ(t) > τ}.
Lemma 2.3. If ϕ ∈ Φw(Ω) is doubling, then there exists ψ ∈ Φw(Ω) with ψ ≈ ϕ which is

strictly increasing and continuous, hence a bijection.

Proof. By [20, Proposition 2.3], there exists ψ ∈ Φw(Ω) with ψ ≃ ϕ which is convex. Then
ψ is also doubling and ψ ≈ ϕ. It follows from doubling that ψ(x, t) ∈ (0,∞) for every
t > 0. A finite convex function is continuous. Convexity implies that ψ(x,t)

t
is increasing

which combined with ψ(x, t) > 0 implies strict increasing. �

The conjugate Φ-function ϕ∗ is defined by the formula

ϕ∗(x, t) := sup
s>0

(st− ϕ(x, s)) .

Young’s inequality follows directly from this definition:

(2.4) st 6 ϕ(x, s) + ϕ∗(x, t).

2.1. Assumptions. Let us write ϕ+
B(t) := supx∈B ϕ(x, t) and ϕ−

B(t) := infx∈B ϕ(x, t); and
abbreviate ϕ± := ϕ±

Ω .
Assume following [24] that there exist β, σ > 0 such that ϕ+(β) 6 1 6 ϕ−(σ) and

ϕ+
B(βt) 6 ϕ−

B(t) when t ∈
[
σ, (ϕ−

B)
−1( 1

|B|)
]

for every ball B ⊂ Ω. Then the rescaling ϕ̃(x, t) := ϕ(x, t
σ
) satisfies the same conditions

with σ = 1. Thus we arrive at the following assumptions.

(A0) There exists β ∈ (0, 1) such that ϕ+(β) 6 1 6 ϕ−(1).
(A1) There exists β ∈ (0, 1) such that, for every ball B ⊂ Ω,

ϕ+
B(βt) 6 ϕ−

B(t) when t ∈
[
1, (ϕ−

B)
−1( 1

|B|)
]
.

(A1-n) There exists β ∈ (0, 1) such that, for every ball B ⊂ Ω,

ϕ+
B(βt) 6 ϕ−

B(t) when t ∈
[
1, 1

diamB

]
.

(aInc) There exist γ− > 1 and L > 1 such that t 7→ ϕ(x,t)

tγ−
is L-almost increasing in (0,∞).

(aDec) There exist γ+ > 1 and L > 1 such that t 7→ ϕ(x,t)

tγ+
is L-almost decreasing in (0,∞).
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We write (Inc) if the ratio is increasing rather than just almost increasing, similarly for (Dec).
Note that γ+ > γ−. All these assumptions are invariant under equivalence of Φ-functions,
modulo the scaling (σ = 1) mentioned in the beginning of the section. Note that the optimal
γ− and γ+ correspond to the lower and upper Matuszewska–Orlicz indexes, respectively.

Example 2.5. Let us consider the assumptions in some important special cases, namely
variable exponent growth and double phase growth. The next table contains a interpretation
of the assumptions for four Φ-functions. Note that in many cases the condition in the special
case is just an nearly optimal sufficient condition: for instance, in the variable exponent case
p ∈ C log implies (A1), and no worse continuity modulus is sufficient, but there may be
exponents p 6∈ C log for which (A1) nevertheless holds [4, 7, 24, 39].

ϕ(x, t) (A0) (A1) (A1-n) (aInc) (aDec)
tp(x)a(x) a ≈ 1 p ∈ C log p ∈ C log p− > 1 p+ <∞
tp(x) log(e + t) true p ∈ C log p ∈ C log p− > 1 p+ <∞
tp + a(x)tq a ∈ L∞ a ∈ C

n
p
(q−p) a ∈ Cq−p p > 1 q <∞

tp + a(x)tp log(e+ t) a ∈ L∞ a ∈ C log a ∈ C log p > 1 p <∞

The (almost) decreasing condition is equivalent to doubling. (Similarly, (aInc) is equiva-
lent to the ∇2 condition, which is not used in this paper.)

Lemma 2.6. Let ϕ ∈ Φw.

(1) Doubling is equivalent to (aDec).

(2) If ϕ is convex, then doubling is equivalent to (Dec).

Proof. By the (aDec) or (Dec) condition,

ϕ(2t)

(2t)γ+
.
ϕ(t)

tγ+
,

so ϕ(2t) . 2γ
+
ϕ(t), i.e. ϕ is doubling.

If ϕ is doubling, then by (2.2), (aDec) holds with with Q = log2(L), where L is the
doubling constant. Hence (1) is proved.

Assume that ϕ(t) is convex and doubling. If t > 2s, then L2( t
s
)Q 6 ( t

s
)Q

′

, where Q′ =

max{Q, 2 lnL
ln 2

}, and (Dec) follows from (2.2). Suppose that t < s < 2t and s−γϕ(s) >
t−γϕ(t) for some γ > 1. It follows by doubling and convexity for the first and second
inequalities, respectively, that

L >
ϕ(2t)

ϕ(t)
>
ϕ(s)− ϕ(t)

s− t

t

ϕ(t)
>

(s/t)γ − 1

s/t− 1
> γ.

Thus s−γϕ(s) 6 t−γϕ(t) when γ > L, and it follows that (Dec) holds with γ > max{L,Q′}.
�

Lemma 2.7 (Lemma 3.3, [19]). Assumption (A0) implies that ϕ−1(x, 1) ≈ 1.

Furthermore, (A0) and (aDec) imply that ϕ(x, 1) . β−γ+ϕ(x, β) 6 β−γ+, so

ϕ(x, 1) ≈ 1.

Lemma 2.8. Suppose that ϕ ∈ Φw(Ω) and ϕ(x, t) is a bijection in t or ϕ is doubling.

• (aDec) holds if and only if ϕ−1(x, t)/t1/γ
+

is almost increasing uniformly in Ω.

• (aInc) holds if and only if ϕ−1(x, t)/t1/γ
−

is almost decreasing uniformly in Ω.
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Proof. Assume first that ϕ is a bijection. Let t = ϕ−1(x, s) and p > 1. Then

ϕ(x, t)

tp
=

s

ϕ−1(x, s)p
=

(
ϕ−1(x, s)

s
1
p

)−p
.

Since ϕ−1 is increasing, t is an increasing function of s. Thus the left-hand side is increasing
in t if and only if the right-hand side is increasing in s. Taking into account the negative
exponent on the right-hand side, this gives the result.

Assume then that ϕ is doubling. By Lemma 2.3 we obtain ψ ≈ ϕ that is a bijection. The
first part of the proof give the claims for ψ but this yields the claims for ϕ. �

(A1-n) follows from (A0), (A1) and (aDec) if γ+ 6 n (hence the n in the notation):

Lemma 2.9. Assume that ϕ ∈ Φw(Ω) satisfies (A0), (A1) and (aDec). If γ+ 6 n, then ϕ
satisfies (A1-n).

Proof. (A1-n) follows from (A1) if (ϕ−
B)

−1( 1
|B|) > 1

diamB
. For every x ∈ B we have

(ϕ−
B)

−1( 1
|B|) > ϕ−1(x, 1

|B|). Since ϕ is almost decreasing with exponent γ+, Lemma 2.8

implies that ϕ−1(x, t)/t1/γ
+

is almost increasing. This and Lemma 2.7 give that

ϕ−1(x, 1
|B|)

|B|−1/γ+
&
ϕ−1(x, 1)

11/γ+
≈ 1

and hence

ϕ−1(x, 1
|B|) &

1

|B|1/γ+ ≈ 1

diam(B)n/γ+
&

1

diamB

since |B| 6 1 and n
γ+

> 1. Thus there exists α ∈ (0, 1] such that

ϕ+
B(βt) 6 ϕ−

B(t) when t ∈
[
1, α

diamB

]
.

When t ∈
(

α
diamB

, 1
diamB

]
we obtain by the previous case that

ϕ+
B(αβt) 6 ϕ−

B(αt) 6 ϕ−
B(t).

Hence (A1-n) holds with a constant αβ. �

If Q ⊂ R
n is a ball of cube, then we denote by cQ a ball or cube with the same center and

c-fold diameter.

Lemma 2.10. Let ϕ ∈ Φw(Ω) satisfy (A1) or (A1-n). There exists β ∈ (0, 1) such that, for

every cube
√
nQ ⊂ Ω,

ϕ+
Q(βt) 6 ϕ−

Q(t) when t ∈
[
1,M

]
,

where M := (ϕ−
Q)

−1( 1
|√nQ|) for (A1) and M := 1

diamQ
for (A1-n).

Proof. Let B be the smallest ball containing Q. Since B ⊂ √
nQ, |B| 6 |√nQ|. Assump-

tion (A1) yields that

ϕ+
Q(βt) 6 ϕ+

B(βt) 6 ϕ−
B(t) 6 ϕ−

Q(t) when t ∈
[
1, (ϕ−

B)
−1( 1

|B|)
]
.

The first claim follows for this since (ϕ−
Q)

−1( 1
|√nQ|) 6 (ϕ−

B)
−1( 1

|B|). The second claim
follows analogously from (A1-n) since diamB = diamQ. �

Lemma 2.11. If ϕ ∈ Φw(Ω) satisfies (A1) and is a bijection, then there exists β ∈ (0, 1)
such that βϕ−1(x, t) 6 ϕ−1(y, t) for every t ∈

[
1, 1

|√nQ|
]
, every x, y ∈ Q and every cube Q

with
√
nQ ⊂ Ω and |√nQ| 6 1.
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Proof. Let t ∈
[
1, 1

|√nQ|
]
. By Lemma 2.7, ϕ−1(y, t) ∈ [α, ϕ−1(y, 1

|√nQ|)] for some α ∈ (0, 1].

If ϕ−1(y, t) ∈ [1, ϕ−1(y, 1
|√nQ|)] then by Lemma 2.10

ϕ(x, βϕ−1(y, t)) 6 ϕ(y, ϕ−1(y, t)) = t

and the claim follows from this by taking ϕ−1(x, ·) of both sides.
Assume then that ϕ−1(y, t) ∈ [α, 1), Since ϕ is bijection, there exists ξ such that ϕ(x, ξ) =

1. We obtain

ϕ(x,min{1, ξ}ϕ−1(y, t)) 6 ϕ(x, ξ) = 1 6 t

and the claim follows from this by taking ϕ−1(x, ·) of both sides. The claim follows by
choosing the constant to be min{β, ξ}. �

3. FUNCTION SPACES AND INEQUALITIES

The generalized Orlicz and Orlicz–Sobolev spaces have been studied with our assumptions
in [20]. We recall some definitions. We denote by L0(Ω) the set of measurable functions in
Ω.

Definition 3.1. Let ϕ ∈ Φw(Ω) and define the modular ̺ϕ(·) for f ∈ L0(Ω) by

̺ϕ(·)(f) :=

ˆ

Ω

ϕ(x, |f(x)|) dx.

The generalized Orlicz space, also called Musielak–Orlicz space, is defined as the set

Lϕ(·)(Ω) :=
{
f ∈ L0(Ω) : lim

λ→0+
̺ϕ(·)(λf) = 0

}

equipped with the (Luxemburg) norm

‖f‖Lϕ(·)(Ω) := inf
{
λ > 0: ̺ϕ(·)

(f
λ

)
6 1

}
.

If the set is clear from the context we abbreviate ‖f‖Lϕ(·)(Ω) by ‖f‖ϕ(·).

Hölder’s inequality holds in generalized Orlicz spaces with a constant 2, without restric-
tions on the Φ-function [12, Lemma 2.6.5]:

ˆ

Ω

|f | |g| dx 6 2‖f‖ϕ(·)‖g‖ϕ∗(·).

Definition 3.2. A function u ∈ Lϕ(·)(Ω) belongs to the Orlicz–Sobolev space W 1,ϕ(·)(Ω) if
its weak partial derivatives ∂1u, . . . , ∂nu exist and belong to Lϕ(·)(Ω).

Definition 3.3. W 1,ϕ(·)
0 (Ω) is the closure of C∞

0 (Ω) in W 1,ϕ(·)(Ω).

If ϕ ∈ Φw satisfies (A0) and (aInc), and Ω ⊂ R
n is bounded, then we have the inclusions

Lϕ(·)(Ω) →֒ Lγ
−

(Ω), W 1,ϕ(·)(Ω) →֒ W 1,γ−(Ω) and W 1,ϕ(·)
0 (Ω) →֒ W 1,γ−

0 (Ω). For the proofs
see Lemmas 4.4, 6.2 and 6.9 in [20].

We need the following fact regarding Sobolev functions. The problem is that smooth
functions are not necessary dense in the Orlicz–Sobolev space and in this case our definition
for zero boundary values Orlicz–Sobolev space is deficient.

Lemma 3.4. Let Ω ⊂ R
n. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1) and (aDec). If v ∈ W 1,ϕ(·)(Ω)

and spt v ⊂ Ω, then v ∈ W
1,ϕ(·)
0 (Ω).
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Proof. Since spt v ⊂ Ω and spt v is closed , we can find Ω′ ⊂ Ω which is bounded and
quasiconvex and contains spt v. Since values outside Ω′ do not affect the claim, we may
consider the problem in Ω′. To simplify notation, we assume without loss of generality
that Ω is bounded and quasiconvex. Then Lemma 5.1 and Theorem 6.6 of [20] imply that
C∞(Ω) ∩W 1,ϕ(·)(Ω) is dense in W 1,ϕ(·)(Ω). Let v ∈ W 1,ϕ(·)(Ω) with spt v ⊂ Ω. Let ξi be a
sequence inC∞(Ω) converging to v inW 1,ϕ(·)(Ω). Let η ∈ C∞

0 (Ω) be a cut-off function with
0 6 η 6 1 and η ≡ 1 in spt v. Then ηξi is a sequence in C∞

0 (Ω). Since v − ηξi = η(v− ξi),

a short calculation gives that ηξi → v in W 1,ϕ(·)(Ω) and thus v ∈ W
1,ϕ(·)
0 (Ω). �

Next we prove a modular maximal inequality which holds only for functions with range
{0} ∪ [1,∞), and a modular-type Sobolev inequality in the Orlicz space (i.e. without direct
x-dependence). It can be shown by a scaling argument that such modular inequalities cannot
hold in the generalized Orlicz case without extra restrictions. Later on, these will be used to
estimate the large and small parts of our quasiminimizers, respectively.

Lemma 3.5. Suppose that ϕ ∈ Φw(3Q) satisfies (A0), (A1) and (aInc). There exists β > 0
such that

ˆ

Q

ϕ(x, βMf1) dx .

ˆ

Q

ϕ(x, f1) dx

for all f1 ∈ Lϕ(·)(3Q) with norm at most 1, support in Q and range in {0} ∪ [1,∞). The

implicit constant depends only on the parameters in assumptions (A0), (A1) and (aInc) and

the dimension n.

Proof. By Proposition 2.2 of [20] there exists a convex ψ ∈ Φ(3Q) such that ψ ≃ ϕ which
satisfies σ-versions of (A0), (A1) and (aInc). Note that if x ∈ Q and B(x, r) does not cover
Q, then B(x, r) ⊂ 3Q. Since f1 has support in Q, it follows that it suffices to consider balls
in 3Q in the maximal operator. Thus we can conclude as in the proof of Lemma 4.4 of [25]
that (

ψ

(
x,
β

2

 

B

f1 dx

)) 1
γ−

6

 

B

ψ(x, f1)
1
γ− 6M

(
ψ(·, f1)

1
γ−

)
(x)

for ‖f1‖Lψ(·)(3Q) 6 1. Taking supremum over all balls, we find that

(
ψ(x, β

2
Mf 1)

) 1
γ− 6 M

(
ψ(·, f1)

1
γ−

)
(x).

Raising both sides to the power γ−, integrating the over Q and using that M : Lγ
− → Lγ

−

is bounded, we obtain that
ˆ

Q

ψ
(
x, β

2
Mf 1

)
dx 6

ˆ

Q

M
(
ψ(·, f1)

1
γ−

)
(x)γ

−

dx .

ˆ

Q

ψ(x, f1) dx.

Since ϕ ≃ ψ with a constant L, we obtain that
ˆ

Q

ϕ
(
x, βMf1

2L2

)
dx 6

ˆ

Q

ψ
(
x, βMf1

2L

)
dx .

ˆ

Q

ψ
(
x, f1

L

)
dx 6

ˆ

Q

ϕ(x, f1) dx. �

Note that in the next lemma, ϕ is independent of x.

Lemma 3.6. If Q ⊂ R
n, |Q| 6 V , and ϕ ∈ Φw is doubling, then

ˆ

Q

ϕ(v)n
′

dx .

(
ˆ

Q

ϕ(|∇v|) dx
)n′

for all v ∈ W 1,ϕ
0 (Q). The implicit constant depends only on n and V .
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Proof. By Lemma 2.3 there exists a convex continuous ψ ∈ Φw such that ψ ≃ ϕ. Since ϕ is
doubling, ψ ≈ ϕ and thus it is enough to prove the claim for convex and continuous ϕ.

We first show that there exists ϕ ∈ C1 ∩ Φw such that ϕ ≈ ϕ. Define ϕ(0) := 0 and

ϕ(t) :=
1

t

ˆ t

0

ϕ(s) ds for t > 0.

Since ϕ is doubling, convex and increasing, ϕ(t) . 1
2
ϕ( t

2
) 6 ϕ(t) 6 ϕ(t). Hence ϕ ≈ ϕ

and so ϕ ∈ Φw. For t > 0 we have

ϕ′(t) = 1
t
ϕ(t)− 1

t2

ˆ t

0

ϕ(s) ds =
ϕ(t)− ϕ(t)

t
.

Thusϕ′(·) is continuous in (0,∞). To investigate the continuity at 0, we set a := limt→0+
ϕ(t)
t

(which exists since ϕ(t)
t

is increasing) and ǫ(t) := ϕ(t)
t
−a. Then ǫ(t) > 0 and limt→0+ ǫ(t) =

0. Note that ϕ′(0) = limt→0+
ϕ(t)
t

. Thus continuity of the derivative requires that ϕ(t)−2ϕ(t)
t

→
0. We calculate

lim
t→0+

ϕ(t)− 2ϕ(t)

t
= lim

t→0+

(
a + ǫ(t)− 2

t2

ˆ t

0

as+ ǫ(s)s ds

)

= lim
t→0+

ǫ(t)− lim
t→0+

2

t2

ˆ t

0

ǫ(s)s ds = − lim
t→0+

2

t2

ˆ t

0

ǫ(s)s ds.

Since ǫ(t) is increasing in t, we find that

0 6 lim
t→0+

2

t2

ˆ t

0

ǫ(s)s ds 6 lim
t→0+

2

t2
ǫ(t)

ˆ t

0

s ds = lim
t→0+

ǫ(t) = 0.

Hence we obtain continuity at the origin also, so that ϕ(·) ∈ C1
(
[0,∞)

)
. Next we show that

ϕ̄(s)/s is increasing:

d

ds

ϕ̄(s)

s
=
ϕ(s)− 2ϕ̄(s)

s2
=

1

s2

(
ϕ(s)− 2

s

ˆ s

0

ϕ(t) dt

)

>
1

s2

(
ϕ(s)− 2

s

ϕ(s)

s

ˆ s

0

t dt

)
= 0.

Let v ∈ C1
0(Ω). It follows from the classical L1-Sobolev inequality that

(
ˆ

Q

ϕ(v)n
′

dx

) 1
n′

.

ˆ

Q

|∇ϕ(v)| dx.

By our above expression for the derivative,

ϕ′(t) =
ϕ(t)− ϕ(t)

t
6
ϕ(t)

t
.
ϕ(t)

t
.

Furthermore,

ϕ∗
(ϕ(t)

t

)
= sup

s>0

(ϕ(t)
t

− ϕ(s)

s

)
s = sup

s∈(0,t]

(ϕ(t)
t

− ϕ(s)

s

)
s 6 sup

s∈(0,t]

ϕ(t)

t
s 6 ϕ(t),

where the second equality holds since ϕ(t)
t

is increasing. By Young’s inequality (2.4) and
these estimates,

|∇(ϕ(v))| = ϕ′(v)|∇v| . ϕ(v)
v
|∇v| 6 ǫϕ∗(ϕ(v)

v
) + cǫϕ(|∇v|) 6 ǫϕ(v) + cǫϕ(|∇v|).
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Thus we have by Hölder’s inequality
(
ˆ

Q

ϕ(v)n
′

dx

) 1
n′

. ǫ

ˆ

Q

ϕ(v) dx+ cǫ

ˆ

Q

ϕ(∇v) dx

. ǫ V
1
n

(
ˆ

Q

ϕ(v)n
′

dx

) 1
n′

+ cǫ

ˆ

Q

ϕ(|∇v|) dx

Choosing ǫ small enough, we can absorb the first term on the right-hand side into the left-
hand side and obtain the claim for v ∈ C1

0(Ω). Since W 1,ϕ(·)
0 (Ω) is a closure of C∞

0 (Ω) in
W 1,ϕ(·)(Ω), the general claim follows from this by a standard approximation argument. �

4. LOCAL BOUNDEDNESS

We use the following setup for the rest of this paper.

Notation 4.1. Suppose that 0 ∈ Ω ⊂ R
n and 0 < R < R0 6 1

2
. We write QR := Q(0, R)

for the cube centered at 0 with side-length 2R,

AR := A(k, R) := QR ∩ {u > k} and u+ := max{u, 0}.
Once we have our results for cubes centered at 0, we can get the general result by trans-

lation. Note that the Φ-function also has to be translated, since our space is not translation-
invariant as such.

We need the following lemma which is a generalization from Giusti’s book [16, Lemma 6.1,
p. 191]. In the original version, X(t) = tp + tq .

Lemma 4.2. Let Z be a bounded non-negative function in the interval [r, R] ⊂ R and let X
be a doubling function in [0,∞). Assume that there exists θ ∈ [0, 1) such that

Z(t) 6 X( 1
s−t) + θZ(s)

for all r 6 t < s 6 R. Then

Z(r) . X( 1
R−r ),

where the implicit constant depends only on the doubling constant and θ.

Proof. Let L be the doubling constant ofX , Q := log2(L) and a ∈ (θ1/Q, 1). Define r0 := r,
δi := (R− r)(1− a)ai and ri := ri−1 + δi. Iterating the assumption, we find that

Z(r) 6 X( 1
δ1
) + θZ(r1) 6 · · · 6

∞∑

k=1

θk−1X( 1
δk
) + lim

k→∞
θkZ(rk).

Since Z is bounded, the limit equals zero. Since X is doubling, (2.2) implies that

X( 1
δk
) = X( 1

(1−a)ak
1

R−r ) 6 L2((1− a)ak)−QX( 1
R−r ).

Thus we find that

Z(r) 6
∞∑

k=1

L2θk−1X( 1
R−r )

((1− a)ak)Q
=
L2X( 1

R−r )

θ(1− a)Q

∞∑

k=1

( θ

aQ

)k
=

L2X( 1
R−r )

(1− a)Q(aQ − θ)
. �

Lemma 4.3 (Caccioppoli inequality). Let ϕ ∈ Φw(Ω) be doubling. Let u be a local quasi-

minimizer in Ω. Then for all k ∈ R we have

(4.4)

ˆ

A(k,r)

ϕ(x, |∇(u− k)+|) dx .

ˆ

A(k,R)

ϕ

(
x,
u− k

R− r

)
dx,

where the implicit constant depends only on the doubling constant of ϕ and the quasimini-

mizing constant of u.
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Proof. Let r 6 t < s 6 R and k ∈ R. Let η ∈ C∞
0 (Qs) be such that 0 6 η 6 1, η = 1 in

Qt, and |∇η| 6 2
s−t . Denote w := (u − k)+ and v := u − ηw. Note that v 6 u, and v = u

in Qs \ As. Since u is a local quasiminimizer with constant K and spt(u− v) ⊂ Qs,
ˆ

As

ϕ(x, |∇u|) dx 6 K

ˆ

As

ϕ(x, |∇v|) dx.

In As, w = u − k so that v = u(1 − η) + ηk, and hence ∇v = (1 − η)∇u − (u − k)∇η.
From this follows that in As we have

|∇v| 6 (1− η)|∇u|+ |∇η|(u− k)+ 6 2max
{
(1− η)|∇u|, |∇η|(u− k)+

}
.

By doubling (with constant L) and |∇η| 6 2
s−t , we get that

ϕ(x, |∇v|) 6 ϕ(x, 2(1− η)|∇u|) + ϕ(x, 4 (u−k)+
s−t )

6 Lϕ(x, (1− η)|∇u|) + L2ϕ(x, (u−k)+
s−t ).

Combining the above inequalities, we find that
ˆ

As

ϕ(x, |∇u|) dx 6 LK

ˆ

As

ϕ(x, (1− η)|∇u|) dx+ L2K

ˆ

As

ϕ(x, (u−k)+
s−t ) dx.

Since t < s < R, it follows that At ⊂ As ⊂ AR, and so we obtain

(4.5)

ˆ

At

ϕ(x, |∇u|) dx 6 LK

ˆ

As

ϕ(x, (1− η)|∇u|) dx+ L2K

ˆ

AR

ϕ(x, (u−k)+
s−t ) dx.

On the right-hand side, we have ϕ(x, (1− η)|∇u|) = ϕ(x, 0) = 0 in Qt, and so
ˆ

As

ϕ(x, (1− η)|∇u|) dx =

ˆ

As\At
ϕ(x, (1− η)|∇u|) dx 6

ˆ

As\At
ϕ(x, |∇u|) dx.

Now we can use the hole-filling trick by adding LK
´

At
ϕ(x, |∇u|) dx to both sides of (4.5),

ending with LK + 1 of the integral on the left-hand side, and LK on the right. After we
divide with LK + 1, we have

ˆ

At

ϕ(x, |∇u|) dx 6
LK

LK + 1

ˆ

As

ϕ(x, |∇u|) dx+ L2K

LK + 1

ˆ

AR

ϕ(x, (u−k)+
s−t ) dx.

The multiplier LK
LK+1

< 1, so the claim follows from Lemma 4.2 withZ(τ) :=
´

Aτ
ϕ(x, |∇u|) dx

and X(τ) := L2K
LK+1

´

AR
ϕ(x, τ(u− k)+) dx. �

The following is the main technical lemma of the paper. It follows the general scheme
of having a larger exponent on the right-hand side, which will allow us to iterate later on.
Several of the technical details are quite complicated and novel, however.

Lemma 4.6. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1), (aInc) and (aDec). Suppose that u ∈
W

1,ϕ(·)
loc (Ω) satisfies the Caccioppoli inequality (4.4). Let R

2
6 σ < τ 6 R with Q3R ⊂ Ω

and define ϕ(x, t) := ϕ−
QR

(t)χ[0,1](t) + ϕ(x, t)χ(1,∞)(t). There exists R0 such that

ˆ

Qσ

ϕ(x, (u− k)+) dx .

ˆ

Qτ

ϕ

(
x,

(u− h)+
τ − σ

)
dx

(
ˆ

Qτ

ϕ(x, (u− h)+)

ϕ(x, k − h)
dx

)α

,

when R ∈ (0, R0] and k − h > τ − σ, where α := γ−

n2γ+−n(γ+−γ−)
.

Here R0 is such that R0 6 c(n) and ̺Lϕ(·)(Q3R0
)(∇u) 6 1, and the implicit constant

depends only on the parameters in assumptions (A0), (A1), (aInc) and (aDec), and n.
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Proof. Let h < k, Q := Q(σ+τ)/2 and η ∈ C∞
0 (Q) be a cut-off function such that 0 6 η 6 1,

η = 1 inQσ, and |∇η| 6 4
τ−σ . Denote v := (u−k)+η,A := {v > 1}∩Q,B := {v 6 1}∩Q

and D := {u > k} ∩Q. Then
ˆ

Qσ

ϕ(x, (u− k)+) dx 6

ˆ

Q

ϕ(x, (u− k)+η) dx =

ˆ

A

ϕ(x, v) dx+

ˆ

B

ϕ(x, v) dx.

Denote by n′ the Hölder conjugate of the dimension n. Define ǫ := (n′ − 1)γ
−

γ+
. If t > 1,

then (aInc), (aDec), and (A0) imply that

ϕ(x, tn
′

) & t(n
′−1)γ−ϕ(x, t) &

( ϕ(x,t)
ϕ(x,1)

)(n′−1)γ−/γ+
ϕ(x, t) ≈ ϕ(x, t)1+ǫ.

With Hölder’s inequality, we then estimate

(4.7)

ˆ

A

ϕ(x, v) dx .

ˆ

A

ϕ(x, vn
′

)
1

1+ǫ dx 6 |A| ǫ
1+ǫ

(
ˆ

A

ϕ(x, vn
′

) dx

) 1
1+ǫ

.

Denote by I the Riesz potential operator and set f1 := |∇v|χ{|∇v|>1}. Since v ∈ W 1,1
0 (Q)

we obtain by the Riesz potential estimate, see for example [15, Lemma 7.14, p. 161], that

v 6 c1I(∇v) 6 c1I(∇vχ{|∇v|61}) + c1I(f1).

Now I(∇vχ{|∇v|61}) 6 I(χQ) 6 cR0 6 1
2c1

, provided R0 is small enough. Since v > 1 in

A, we obtain that v 6 1
2
v + c1I(f1) and hence v . I(f1) in A. Suppose that R0 is so small

that ‖∇u‖Lϕ(·)(3Q) 6 1. Since ‖f1‖L1(Rn) = ‖f1‖L1(3Q) 6 ‖∇u‖Lϕ(·)(3Q) 6 1, it follows that

(If1)
n′

6 cMf1 [23, (3), p. 506] and that Lemma 3.5 is applicable. Since ϕ is doubling, the
constant β in the lemma can be transferred outside ϕ. Combining the previous estimates and
the lemma for the last step, we find that

(4.8)

ˆ

A

ϕ(x, vn
′

) dx .

ˆ

A

ϕ(x, (If1)
n′

) dx .

ˆ

A

ϕ(x,Mf 1) dx .

ˆ

A

ϕ(x,∇v) dx.

Extend ϕ|[0,1] to (1,∞) as ϕ+
QR

(1)tγ
−

and call the result ϕ̃. By (aInc) and (A0), ϕ̃(t) .

ϕ(x, t) for every x. We next estimate the measure of A = {v > 1} ∩ Q. By (A0), χA .

ϕ̃(v)n
′

and by Lemmas 3.4 and 3.6 (for the second inequality):

|A| .
ˆ

Q

ϕ̃(v)n
′

dx .

(
ˆ

Q

ϕ̃(|∇v|) dx
)n′

.

(
ˆ

Q

ϕ(x, |∇v|) dx
)n′

,

On the other hand, |A| 6 |D|, so that |A| ǫ
1+ǫ 6 |D|

ǫ
n(1+ǫ) |A|

ǫ
n′(1+ǫ) . Collecting the estimates

for the integral over A and using ϕ 6 ϕ, we obtain from (4.7) and (4.8) that

ˆ

A

ϕ(x, v) dx . |D|
ǫ

n(1+ǫ)

(
ˆ

Q

ϕ(x, |∇v|) dx
) n′ǫ

n′(1+ǫ)
+ 1

1+ǫ

.

Denote the exponent of |D| by α := ǫ
n(1+ǫ)

and note that the exponent of the integral equals
1.

Let us turn to the estimate of the integral in the set B. In this case the function ϕ is
independent of x and equals ϕ̃. By Hölder’s inequality,

ˆ

B

ϕ(x, v) dx 6

ˆ

D

ϕ̃(v) dx . |D| 1n
(
ˆ

Q

ϕ̃(v)n
′

dx

) 1
n′

.
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Since |D| 6 |Q| 6 1 and α = ǫ
n(1+ǫ)

6 1
n

, we see that |D| 1n 6 |D|α. By Lemma 3.4 and 3.6

and ϕ̃ . ϕ 6 ϕ, we continue the estimate and find that
ˆ

B

ϕ(x, v) dx . |D|α
ˆ

Q

ϕ̃(|∇v|) dx 6 |D|α
ˆ

Q

ϕ(x, |∇v|) dx.

We have now estimated the integral over both set A and set B by the same upper bound,
which we next consider further.

By the product rule, |∇v| 6 |∇(u− k)+|+ (u− k)+|∇η|. Since |∇η| 6 4
τ−σ , we obtain

by this and the Caccioppoli inequality (4.4) that
ˆ

Q

ϕ(x, |∇v|) dx .

ˆ

Q

ϕ(x, |∇(u− k)+|) + ϕ

(
x,

(u− k)+
τ − σ

)
dx

.

ˆ

Qτ

ϕ

(
x,

(u− k)+
τ − σ

)
dx,

where the doubling of ϕ was also used. In the set D = {u > k} ∩ Q, we observe that
(u− h)+ > k − h > τ − σ. Hence

ϕ

(
x,

(u− k)+
τ − σ

)
6 ϕ

(
x,

(u− h)+
τ − σ

)
χD 6 ϕ

(
x,

(u− h)+
τ − σ

)
.

From (u− h)+ > k − h in D we also derive, since ϕ is increasing, that

|D| =
ˆ

Qτ

χD dx 6

ˆ

Qτ

ϕ(x, (u− h)+)

ϕ(x, k − h)
dx.

Collecting all our estimates, we conclude that
ˆ

Q

ϕ(x, v) dx .

ˆ

Qτ

ϕ

(
x,

(u− h)+
τ − σ

)
dx

(
ˆ

Qτ

ϕ(x, (u− h)+)

ϕ(x, k − h)
dx

)α

. �

Remark 4.9. Note from the proof that we could also have replaced
ˆ

Qτ

ϕ(x, (u− h)+)

ϕ(x, k − h)
dx by

ˆ

Qτ

ϕ
(
x,

(u− h)+
k − h

)
dx

since, by (A0), ϕ(x, (u−h)+
k−h ) > 1 in D. However, in our next derivations the unusual form

chosen works better than the alternative, more standard form.

Now that our estimate is done, we use standard iteration based on the following lemma.

Lemma 4.10 (Lemma 7.1, [16]). Let α > 0 and (Φi) be a sequence of real numbers such

that

Φi+1 6 DLiΦ1+α
i

with D > 0 and L > 1. If Φ0 6 D−1/αL−1/α2
, then Φi → 0 as i→ ∞.

We can now present a preliminary version of the ess sup-estimate. In this estimate there
is an extra “+1”, a bad dependence on the size R of the cube, and an inhomogeneity on
the right-hand side. We will remove the latter two deficiencies later. Nevertheless, even
the preliminary estimate allows us to conclude that every local quasiminimizer is locally
bounded. Note that we do not need the assumption (A1-n) for this result.
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Theorem 4.11. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1), (aInc) and (aDec). Suppose that u ∈
W

1,ϕ(·)
loc (Ω) satisfies the Caccioppoli inequality (4.4) and thatR0 ∈ (0, 1) is as in Lemma 4.6.

Then

ess sup
QR/2

u 6 k0 + 1 + cR
− γ+

αγ−

(
ˆ

QR

ϕ(x, (u− k0)+) dx

) 1
γ−

for every k0 ∈ R when R ∈ (0, R0]. Here the constant c depends only on the parameters in

assumptions (A0), (A1), (aInc) and (aDec) and the dimension n.

Proof. Let d > 1 be a number to be determined later. We choose levels ki := k0+d(1−2−i)
and radii σi :=

R
2
(1+ 2−i), i ∈ N. Note that ki increases from k0 to k0 + d, and σi decreases

from R to R/2. Let ϕ be as in Lemma 4.6 and define

Φi :=

ˆ

Qσi

ϕ(x, (u− ki)+) dx.

Observe that ϕ(x, d2−i−1) & dγ
−

2−(i+1)γ+ by (aDec), (aInc) and (A0). By Lemma 4.6 with
k := ki+1, h := ki, σ := σi+1 and τ := σi,

Φi+1 .

ˆ

Qσi

ϕ

(
x,

(u− ki)+
σi − σi+1

)
dx

(
ˆ

Qσi

ϕ(x, (u− ki)+)

ϕ(x, ki+1 − ki)
dx

)α

=

ˆ

Qσi

ϕ

(
x,

(u− ki)+
R2−i−2

)
dx

(
ˆ

Qσi

ϕ(x, (u− ki)+)

ϕ(x, d2−i−1)
dx

)α

. R−γ+2i(1+α)γ
+

d−αγ
−

Φ1+α
i ,

where we used (aDec) and the previous estimate for the second inequality.
Thus the inequality from Lemma 4.10 holds with D := cR−γ+d−αγ

−

and L := 2(1+α)γ
+

.
The required condition Φ0 6 D−1/αL−1/α2

is therefore

Φ0 6 cR
γ+

α dγ
−

2−
1+α

α2
γ+ .

Collecting the restrictions on d, we see that we may choose d = max{1, cR− γ+

αγ− Φ
1
γ−

0 }. With
this choice, Lemma 4.10 implies that

ˆ

Qσ∞

ϕ(x, (u− k∞)+) dx = lim
i→∞

Φi = 0.

Thus u 6 k∞ = k0 + d almost everywhere in Qσ∞ = QR/2. Since ϕ 6 ϕ, Φ0 can be
estimated by the integral in the statement of the theorem, so the claim follows. �

5. IMPROVED UPPER BOUND FOR BOUNDED SOLUTIONS

We can easily and with minimal assumptions derive the following version of Lemma 4.6.
It is worse than the previous estimate in that the left-hand side contains ϕ−

QR
, but this will

not matter since we will use it for bounded functions. On the positive side, we do not need
to assume any smallness of the norm of the gradient.

Lemma 5.1. Let ϕ ∈ Φw(Ω) satisfy (A0) and (aDec) and define ϕ̃(x, t) := tγ
+
ϕ−(1)χ[0,1)(t)+

ϕ(x, t)χ[1,∞)(t). Suppose that u ∈ W
1,ϕ(·)
loc (Ω) satisfies the Caccioppoli inequality (4.4). Let

R
2
6 σ < τ 6 R with QR ⊂ Ω. Then

ˆ

Qσ

ϕ̃−
QR

(
(u− k)+

)
dx .

(
ˆ

Qτ

ϕ̃(x, (u− h)+)

ϕ̃(x, k − h)
dx

) 1
n
ˆ

Qτ

ϕ̃
(
x,

(u− h)+
τ − σ

)
dx
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when k − h > τ − σ. The implicit constant depends only on the parameters in assumptions

(A0) and (aDec) and on n.

Proof. Let h < k, Q := Q(σ+τ)/2 and η ∈ C∞
0 (Q) be a cut-off function such that 0 6 η 6 1,

η = 1 in Qσ , and |∇η| 6 4
τ−σ . Denote v := (u− k)+η and D := {u > k} ∩Q. By Hölder’s

inequality,

ˆ

Qσ

ϕ̃−
QR

(
(u− k)+

)
dx 6

ˆ

D

ϕ̃−
QR

(v) dx . |D|1− 1
n′

(
ˆ

D

ϕ̃−
QR

(v)n
′

dx

) 1
n′

.

By definition and (aDec), ϕ̃−
QR

(t) 6 ϕ(x, t). Sobolev’s inequality (Lemma 3.6) and this
estimate yield

ˆ

Qσ

ϕ̃−
QR

(
(u− k)+

)
dx . |D| 1n

ˆ

D

ϕ̃−
QR

(
|∇v|

)
dx . |D| 1n

ˆ

D

ϕ
(
x, |∇v|

)
dx.

Exactly as in Lemma 4.6, we derive
ˆ

Q

ϕ(x, |∇v|) dx .

ˆ

Qτ

ϕ

(
x,

(u− k)+
τ − σ

)
dx .

ˆ

Qτ

ϕ̃

(
x,

(u− h)+
τ − σ

)
dx

and

|D| =
ˆ

Qτ

χD dx 6

ˆ

Qτ

ϕ̃(x, (u− h)+)

ϕ̃(x, k − h)
dx,

from which the claim follows. �

Even though the ϕ(·)-Laplace equation is not very scalable, it is possible to scale the
solution provided we also modify ϕ. Let us define, for s > 0,

us(x) :=
u(sx)

s
and ϕs(x, f(x)) := ϕ(sx, f(x)).

Note that ϕs has the same doubling constant as ϕ. The constants of (A1) and (A1-n) are not
invariant under this scaling, so they have to be considered separately where needed. Recall
that 0 ∈ Ω and we study cubes centered at 0.

Lemma 5.2. Let ϕ ∈ Φw(Ω) and let u ∈ W
1,ϕ(·)
loc (Ω) be a local K-quasiminimizer of the

ϕ-energy. Let s ∈ (0, 1] and suppose that QsR ⋐ Ω. Then us is a K-quasiminimizer of the

ϕs-energy in QR.

Proof. Note first that ∇us(x) = ∇u(sx). Let vs ∈ W 1,ϕ(·)(QR) with spt vs ⊂ QR and ob-
serve that {v 6= 0} = s{vs 6= 0} ⊂ QsR. Two changes of variables and the quasiminimizing
property of u in QsR yield
ˆ

{vs 6=0}
ϕs(x, |∇us(x)|) dx =

ˆ

{vs 6=0}
ϕs(x, |∇u(sx)|) dx = s−n

ˆ

{v 6=0}
ϕ(z, |∇u(z)|) dz

6 Ks−n
ˆ

{v 6=0}
ϕ(z, |∇(u+ v)(z)|) dz = K

ˆ

{vs 6=0}
ϕs(x, |∇(us + vs)(x)|) dx. �

Since us is a quasiminimizer of the ϕs-energy, we could directly apply Lemma 4.6 to it.
However, this would incur the restriction ̺Lϕs(·)(QR)(∇us) 6 1. Undoing the scaling, this
is equivalent to ̺Lϕ(·)(QsR)(∇u) 6 sn, which is a problem when s → 0. Therefore, we use
Lemma 5.1 instead. Note that the constant in the next proposition depends on ‖u‖∞, not
‖us‖∞.
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Proposition 5.3. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1-n) and (aDec). Suppose that u ∈
W

1,ϕ(·)
loc (Ω) is a bounded local quasiminimizer. Then

ess sup
QR/2

us − k0 .

(
ˆ

QR

(us − k0)
γ+

+ dx

) 1
γ+

+R

when 0 < R < R0, s ∈ (0, 1], QsR ⋐ Ω and k0 > −2‖us‖L∞(QR). The constant R0 depends

only on n and ‖u‖L∞(QsR). The implicit constant is independent of s and depends only on

the parameters in assumptions (A0), (A1-n) and (aDec) as well as on n, R and ‖u‖L∞(QsR).

Proof. Denote ϕ̃(x, t) := tγ
+
ϕ−(1)χ[0,1)(t)+ϕ(x, t)χ[1,∞)(t) and suppose that t0 ∈ [0, 3‖u‖∞

s
].

Undoing the scaling, we see that

(5.4) (ϕ̃s)
+
QR

(βt0) 6 (ϕ̃s)
−
QR

(t0) ⇔ ϕ̃+
QsR

(βt0) 6 ϕ̃−
QsR

(t0).

If t0 <
1
β

, then the inequality is trivially true by the definition of ϕ̃, (A0) and (aDec). When

t0 > 1
β

, by (A1-n) and Lemma 2.10, the latter inequality holds when t0 6 1
2
√
nsR

. Since

t0 6
3‖u‖∞
s

, a sufficient condition is 3‖u‖∞
s

6 1
2
√
nsR

which holds provided R0 <
1

6
√
n‖u‖∞ .

Let d0 := max{(
´

QR
(us − k0)

γ+

+ dx)
1
γ+ , R} and d := Kd0 where the constant K > 1

will be specified later. Note that d0 ∈ [0, 3‖u‖∞
s

]. Let us denote ψ := (ϕ̃s)
+
QR

. By the almost

increasing property of ϕ(x,t)
t

, (5.4) and doubling,

(5.5) ϕ̃s(x, d) & Kϕ̃s(x, d0) > Kψ(βd0) & Kψ(d0).

For i ∈ N, let ki := k0+d(1−2−i) and σi :=
R
2
(1+2−i). Note that ki+1−ki > σi−σi+1.

Define

Φi :=

ˆ

Qσi

ϕ̃s(x, (us − ki)+) dx.

By (5.4), (A0) and (aDec),

Φi+1 .

ˆ

Qσi+1

(ϕ̃s)
−
QR

(
(us − ki+1)+

)
dx.

By Lemma 5.2, the function us is a local quasiminimizer and thus by Lemma 4.3 it satisfies
the Caccioppoli inequality (4.4). Hence by Lemma 5.1

Φi+1 .

(
ˆ

Qσi

ϕ̃s(x, (us − ki)+)

ϕ̃s(x, ki+1 − ki)
dx

) 1
n
ˆ

Qσi

ϕ̃s

(
x,

(us − ki)+
σi − σi+1

)
dx

=

(
ˆ

Qσi

ϕ̃s(x, us(x)− ki)+)

ϕ̃s(x, d2−i−1)
dx

) 1
n
ˆ

Qσi

ϕ̃s

(
x,

(us(x)− ki)+
R2−i−2

)
dx.

By (aDec) and almost increasing inherent in Φw, ϕ̃s(x,Kd02−i−1) & K2−(i+1)γ+ϕ̃s(x, d0)
and

ϕ̃s

(
x,

(us(x)− ki)+
R2−i−2

)
. (R2−i−2)−γ

+

ϕ̃s(x, (us(x)− ki)+).
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Taking also into account (5.5), the previous estimate can be continued by

Φi+1 .

(
ˆ

Qσi

ϕ̃s(x, us(x)− ki)+)

2−(i+1)γ+Kψ(d0)
dx

) 1
n
ˆ

Qσi

(R2−i−2)−γ
+

ϕ̃s(x, (us(x)− ki)+) dx

= [2−(i+1)γ+Kψ(d0)]
− 1
n (R2−i−2)−γ

+

Φ
1+ 1

n
i

≈ 2iγ
+(1+ 1

n
)K− 1

nψ(d0)
− 1
nR−γ+Φ

1+ 1
n

i .

Thus the inequality from Lemma 4.10 holds with α := 1
n

, D := cR−γ+K−αψ(d0)
−α and

L := 2(1+α)γ
+

. The condition of the lemma now requires that

(5.6) Φ0 6 c2−
1+α
α2

γ+R
γ+

α Kψ(d0)

Then the lemma implies that u 6 k∞ = k0+Kd0 almost everywhere inQσ∞ = QR/2, which
gives the claim of the proposition.

We will show that Φ0/ψ(d0) is bounded independent of s. Then we can choose K to
ensure that inequality (5.6) holds. Since t−γ

+
ϕ̃s(x, t) is almost decreasing, the same holds

for ψ. Then, by Lemma 2.8, t−1ψ−1(t)γ
+

is almost increasing and so (ψ−1)γ
+

is equivalent
to a convex function ξ [20, Lemma 2.2]. Since ϕ̃s 6 ψ, it follows from Jensen’s inequality
that

ψ−1(Φ0) 6 ψ−1

(
ˆ

QR

ψ((us − k0)+) dx

)
≈

[
ξ

(
ˆ

QR

ψ((us − k0)+) dx

)] 1
γ+

6

(
ˆ

QR

ξ(ψ((us − k0)+)) dx

) 1
γ+

≈
(
ˆ

QR

(us − k0)
γ+

+ dx

) 1
γ+

6 d0.

Since ψ is doubling, this yields that Φ0 6 ψ(cd0) . ψ(d0), so Φ0/ψ(d0) is bounded, as
required. �

Theorem 5.7. Let ϕ ∈ Φw(Ω) satisfy (A0), (A1-n) and (aDec). Suppose that u ∈ W
1,ϕ(·)
loc (Ω)

is a bounded local quasiminimizer. Then

ess sup
Qr/2

u− k .

(
 

Qr

(u− k)γ
+

+ dx

) 1
γ+

+ r

when r ∈ (0, R0] and k ∈ R. The implicit constant depends only on the parameters in

assumptions (A0), (A1-n) and (aDec), n, R0 and ‖u‖L∞(Qr).

Proof. Suppose first that k0 > −2‖us‖∞ i.e. k := sk0 > −2‖u‖∞. In Proposition 5.3 we fix
R = R0 and multiply the result by s ∈ (0, 1]:

ess sup
QsR0/2

u− k = ess sup
QR0/2

sus − k .

(
ˆ

QR0

(sus − k)γ
+

+ dx

) 1
γ+

+R0s

where the implicit constant is independent of s. Next we change variables (x := s−1z):
ˆ

QR0

(sus(x)− k)γ
+

+ dx = s−n
ˆ

QsR0

(u(z)− k)γ
+

+ dz = c

 

QsR0

(u(z)− k)γ
+

+ dz,

where the constant depends on R0 but not s. Hence we obtain that

ess sup
QsR0/2

u− k .

(
 

QsR0

(u− k)γ
+

+ dz

) 1
γ+

+R0s.
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Denoting r := sR0 ∈ (0, R0], we obtain that

ess sup
Qr/2

u− k .

(
 

Qr

(u− k)γ
+

+ dz

) 1
γ+

+ r.

It remains to consider k < −2‖u‖∞. In this case, ess supQr/2 u− k 6 2|k| and

(
 

Qr

(u− k)γ
+

+ dx

) 1
γ+

>
1

2

(
 

Qr

|k|γ+ dx
) 1

γ+

=
|k|
2

so the claim again holds. �

Instead of the cubeQR/2, it is possible to have any cube smaller thanQR on the right-hand
side. For that we use cubes not centered at the origin.

Corollary 5.8. Let ϕ ∈ Φw(Ω), u ∈ W
1,ϕ(·)
loc (Ω) and R0 > 0 be as in Theorem 5.7. For every

τ ∈ (0, 1),

ess sup
QτR

u− k .

(
1

(1− τ)n

 

QR

(u− k)γ
+

+ dx

) 1
γ+

+R

when R ∈ (0, R0] and k ∈ R. The implicit constant is independent of R and τ .

Proof. Let us choose x1 ∈ QτR such that ess sup
QτR

u = ess sup
Q(x1,(1−τ)R/2)

u. By Theorem 5.7,

ess sup
Q(x1,(1−τ)R/2)

u− k .

(
 

Q(x1,(1−τ)R)
(u− k)γ

+

+ dx

) 1
γ+

+ (1− τ)R.

Since Q(x1, (1− τ)R) ⊂ QR, we obtain that

ess sup
Q(x1,(1−τ)R/2)

u− k .

(
1

(1− τ)n

 

QR

(u− k)γ
+

+ dx

) 1
γ+

+R. �

Corollary 5.9. Let ϕ ∈ Φw(Ω), u ∈ W
1,ϕ(·)
loc (Ω) and R0 > 0 be as in Theorem 5.7. Then

(5.10) ess sup
QR/2

u− k .

(
 

QR

(u− k)q+ dx

) 1
q

+R,

for every R ∈ (0, R0], k ∈ R and q ∈ (0,∞). The implicit constant is independent of R and

depends on q and on the parameters listed in Theorem 5.7.

Proof. If q > γ+, then the claim follows from Theorem 5.7 by Hölder’s inequality. So we
may assume that 0 < q < γ+.

Let R
2
6 σ < τ 6 R and denote Z(t) := ess supQt(u− k)+ By Corollary 5.8,

Z(σ) .

(
1

(1−σ/τ)n

 

Qτ

(u− k)γ
+

+ dx

) 1
γ+

+R =

(
c

(τ−σ)n

ˆ

Qτ

(u− k)γ
+

+ dx

) 1
γ+

+R.

Thus we obtain by Young’s inequality with exponents γ+

q
and γ+

γ+−q =: 1
θ

that

Z(σ) .

(
1

(τ − σ)n

ˆ

Qτ

(u− k)q+ dx

) 1
γ+

Z(τ)θ +R

6
cq

γ+

(
1

(τ − σ)n

ˆ

QR

(u− k)q+ dx

) 1
q

+R

︸ ︷︷ ︸
=:X( 1

τ−σ
)

+ θZ(τ).



HÖLDER REGULARITY OF QUASIMINIMIZERS UNDER GENERALIZED GROWTH CONDITIONS 19

Then Z is bounded in [R/2, R], X is doubling and Z(σ) 6 X( 1
τ−σ ) + θZ(τ) for all R

2
6

σ < τ 6 R. Hence Lemma 4.2 yields Z(R
2
) . X( 2

R
), which is the claim. �

6. THE WEAK HARNACK INEQUALITY

In this section, we denote Dθ := {u < θ} ∩QR.

Lemma 6.1. If u > 0, −u satisfies (5.10), with q = 1 and constant c1, and

|Dθ| 6 1
2c1

|QR|,
for some θ > 0, then

ess inf
QR/2

u+ c1R >
θ

2
.

Proof. Equation (5.10) applied to −u with k = −θ and q = 1 gives

ess sup
QR/2

(−u) 6 −θ + c1

 

QR

(θ − u)+ dx+ c1R

6 −θ + c1θ
|Dθ|
|QR|

+ c1R 6 −θ
2
+ c1R. �

The following is the main lemma of this section.

Lemma 6.2. Let ϕ ∈ Φw(Ω), u ∈ W
1,ϕ(·)
loc (Ω) and R0 > 0 be as in Theorem 1.4. If u > 0,

then for every κ ∈ (0, 1) there exists µ > 0 such that

|Dθ| 6 κ |QR| ⇒ ess inf
QR/2

u+ cR > µθ

for all R ∈ (0, R0] and all θ > 0.

Proof. By Lemma 2.3, we may assume without loss of generality that ϕ is a bijection. We
assume first that θ > R. Abbreviate Q := QR and set, for R < h < k < θ,

v =





0, if u > k,

k − u, if h < u < k,

k − h, if u 6 h.

Then v ∈ W
1,ϕ(·)
loc (Ω) and |∇v| = |∇u|χ{h<u<k} a.e. in Ω.

Clearly v = 0 in Q \Dθ, and since |Dθ| 6 κ|Q|, we have

|Q \Dθ| > (1− κ)|Q|.
Under these circumstances, [16, Theorem 3.16] tells us that

(
ˆ

Q

vn
′

dx

) 1
n′

6 C(n, κ) |∆|
 

∆

|∇v| dx

for v ∈ W 1,1(Q) and ∆ := Dk \Dh. By Hölder’s inequality,

(k − h)|Dh|
1
n′ = |Dh|−

1
n

ˆ

Dh

v dx 6

(
ˆ

Q

vn
′

dx

) 1
n′

. |∆|
 

∆

|∇v| dx.

Denote V (x) := ϕ(x, |∇v(x)|). By [24, Lemma 4.3],

1

2

 

∆

|∇v| dx 6 (ϕ−
Q)

−1

(
 

∆

ϕ−
Q(|∇v|) dx

)
6 (ϕ−

Q)
−1

(
 

∆

V dx

)
.
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Sinceϕ satisfies (aInc), so does ϕ−
Q. Thus t

− 1
γ− (ϕ−

Q)
−1(x, t) is almost decreasing by Lemma 2.8.

This and |Q|
|∆| > 1 imply that

(ϕ−
Q)

−1

(
 

∆

V dx

)
.

( |Q|
|∆|

) 1
γ−

(ϕ−
Q)

−1

(
1

|Q|

ˆ

∆

V dx

)
.

Suppose first that
ffl

Q
V dx > 1. Then the inequality ̺ϕ(·)(∇u) 6 c(n) implies that the

conditions in Lemma 2.11 (based on (A1) ) are fulfilled, and so we conclude that

(ϕ−
Q)

−1

(
1

|Q|

ˆ

∆

V dx

)
6 (ϕ−

2Q)
−1

(
 

Q

V dx

)
6

1

β
(ϕ+

2Q)
−1

(
 

Q

V dx

)
.

Since u is a local quasiminimizer so is −u and thus by the Caccioppoli estimate (4.4) and
(aInc) we have

 

Q

V dx =

 

Q

ϕ(x, |∇v|) dx 6 c

 

2Q

ϕ
(
x,
v

R

)
dx 6 ϕ+

2Q

(
c1
k

R

)
.

If
ffl

Q
V dx 6 1, then the inequality (ϕ−

2Q)
−1(

ffl

Q
V dx) 6 ϕ+

2Q(c1
k
R
) also holds, by (A0) and

k
R
> 1. Combining the previous five inequality-lines, we find that

(k − h)|Dh|
1
n′ . |∆|

( |Q|
|∆|

) 1
γ−

(ϕ+
2Q)

−1
(
ϕ+
2Q

(
c1
k

R

))
6 c1 |∆|1−

1
γ−R

n
γ−
k

R
.

Divide the previous inequality by k, raise it to the power τ := γ−

γ−−1
and substitute k := ki

and h := ki+1, i ∈ N:
(ki − ki+1

ki

)τ
|Dki+1

| τn′ 6
[
|Dki| − |Dki+1

|
]
R

n−γ−

γ−
τ
.

Assume first that θ > 2i0R, where i0 ∈ N will be fixed later. Set ki := θ2−i and di := |Dki|
for i = 0, . . . , i0 and note that ki−ki+1

ki
= 1

2
. Since di > di0 = |Dθ2−i0 | for i 6 i0, this implies

that

|Dθ2−i0 |
τ
n′ . [di − di+1]R

n−γ−

γ−
τ
.

Adding these inequalities for i from 0 to i0, we get

(i0 + 1) |Dθ2−i0 |
τ
n′ . R

n−γ−

γ−
τ
(d0 − di0) . R

n+n−γ−

γ−
τ
.

Now n + n−γ−
γ−

τ = γ− n−1
γ−−1

= τ(n− 1). Hence we obtain

|Dθ2−i0 | . (i0 + 1)−
n′

τ Rn = c(i0 + 1)−
n′

τ |Q|.

We choose i0 such that C(i0 + 1)−
n′

τ 6 1
2c1

, where c1 is the constant from Lemma 6.1. Then

by Corollary 5.9 and Lemma 6.1, ess infQR/2 u+ cR > θ2−i0−1, so the claim holds with the
choice µ := 2−i0−1.

If, on the other hand, θ ∈ (0, 2i0R], then

ess inf u+ cR > cR > θc2−i0 ,

so the claim holds with µ := c2−i0 . �

The statement of the next lemma is exactly what is proved in [22, Theorem 5.7], although
the assumptions are stated differently. For completeness, the proof is included below.
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Lemma 6.3. Assume that u > 0 and R0 are such that for every κ > 0, there exist µ > 0 with

(6.4) |Dθ| 6 κ|QR| ⇒ ess inf
QR/2

u+ R > µθ

for all R ∈ (0, R0). Then there exists q > 0 such that

(
 

QR

uq dx

) 1
q

. ess inf
QR/2

u+R,

for every R ∈ (0, R0).

Since µ in Lemma 6.2 depends only on the parameters of Theorem 1.4, we obtain the
weak Harnack inequality with the same dependence via the previous lemma.

Corollary 6.5 (Weak Harnack inequality). Let ϕ ∈ Φw(Ω) satisfy (A0), (A1), (A1-n), (aInc)

and (aDec). Suppose that u ∈ W
1,ϕ(·)
loc (Ω) is a non-negative local quasiminimizer and R0 is

as in Theorem 5.7. Then (
 

QR

uq dx

) 1
q

. ess inf
QR/2

u+R

when R ∈ (0, R0] and k ∈ R. The implicit constant depends only on the parameters in

assumptions (A0), (A1), (A1-n), (aInc), (aDec), the dimension n, R0 and ‖u‖L∞(QR).

For the proof of Lemma 6.3 we need the following covering theorem that is due to Krylov
and Safonov [26]. For the proof, see, e.g., the monograph by Giusti [16].

Lemma 6.6. Let E ⊂ QR ⊂ R
n be a measurable set, and let 0 < δ < 1. Moreover, let

Eδ :=
⋃

x∈QR, 0<̺<R
{Q(x, 3̺) ∩QR : |Q(x, 3̺) ∩ E| > δ|Q̺|}.

Then either |E| > δ|QR|, in which case Eδ = QR, or

|Eδ| >
1

δ
|E|.

In the next proof we denote D(θ, z, R) := {u+R 6 θ} ∩Q(z, R).
Proof of Lemma 6.3. By Cavalieri’s principle,

(6.7)

ˆ

QR

(u+R)h dx = h

ˆ ∞

0

th−1|A0
t | dt

where A0
t := {x ∈ QR : u(x) + R > t} for t > 0. In order to estimate the measure of A0

t ,
we fix 0 < δ < 1 and κ := 1− δ/3n and define sets Ait by

A(tµi, x, R) := {y ∈ Q(x,R) : u(y) +R > tµi},
where µ is the constant in (6.4) corresponding the constant κ. We abbreviateAit := A(tµi, 0, R).
Suppose that for some ̺ < R and z ∈ QR, we have

(6.8) Q(z, 3̺) ∩QR ⊂ (Ait)δ,

where (·)δ is defined in Lemma 6.6. It follows that

δ

3n
|Q3̺| = δ|Q̺| 6 |Q(z, 3̺) ∩ A(tµi, 0, R)|

= |QR ∩A(tµi, z, 3̺)| 6 |A(tµi, z, 3̺)|.
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This estimate implies that

|D(tµi, z, 3̺)| 6
(
1− δ

3n

)
|Q3̺| = κ|Q3̺|.

Hence, (6.4) gives us

(6.9) ess inf
Q(z,3̺)

u+R > tµi+1.

Since assumption (6.8) leads to (6.9), it follows that

(Ait)δ ⊂ Ai+1
t .

This together with Krylov–Safonov covering lemma (Lemma 6.6) imply that either Ai+1
t =

QR or |Ai+1
t | > |(Ait)δ| > δ−1|Ait|.

If Ai+1
t = QR, then ess infQR/2 u + R > tµi+1. Otherwise, |Ai+1

t | > |(Ait)δ| > δ−1|Ait|
and so it follows that

|Ajt | > δ−1|Aj−1
t | > δ−2|Aj−2

t | > . . . > δ−j|A0
t |.

If A0
t has positive measure we choose j to be the smallest integer satisfying

j >
1

log δ
log

|A0
t |

|QR|
.

Then
δj|QR| 6 |A0

t | 6 δj−1|QR|,
and thus |Ajt | > |QR| i.e. Ajt = QR. As before this leads to ess infQR/2 u+R > tµj .

We obtain

ess inf
QR/2

u+R > tµj+1 = Ct

( |A0
t |

|QR|

)logµ/ log δ

or, equivalently, by setting ξ = ess infQR/2 u+R and a = log δ
log µ

> 0, we get

|A0
t | 6 C|QR|ξat−a.

We choose 0 < h < a and obtain by (6.7) that
ˆ

QR

(u+R)h dx = h

ˆ ξ

0

th−1|QR| dt+ h

ˆ ∞

ξ

th−1|A0
t | dt

6 ξh|QR|+ C|QR|ξa
ˆ ∞

ξ

th−a−1 dt = C|QR|ξh,

which is (
1

|QR|

ˆ

QR

(u+R)h dx

)1/h

. ess inf
QR/2

u+R.

With the estimate u 6 u+R we can complete the proof. �
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