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Abstract 

In this paper, we propose a novel method for fast face recognition called    ⁄  

Regularized Sparse Representation using Hierarchical Feature Selection (HSR). By 

employing hierarchical feature selection, we can compress the scale and dimension of 

global dictionary, which directly contributes to the decrease of computational cost in 

sparse representation that our approach is strongly rooted in. It consists of Gabor 

wavelets and Extreme Learning Machine Auto-Encoder (ELM-AE) hierarchically. 

For Gabor wavelets part, local features can be extracted at multiple scales and 

orientations to form Gabor-feature based image, which in turn improves the 

recognition rate. Besides, in the presence of occluded face image, the scale of 

Gabor-feature based global dictionary can be compressed accordingly because 

redundancies exist in Gabor-feature based occlusion dictionary. For ELM-AE part, 

the dimension of Gabor-feature based global dictionary can be compressed because 

high-dimensional face images can be rapidly represented by low-dimensional feature. 

By introducing    ⁄  regularization, our approach can produce sparser and more 

robust representation compared to    regularized Sparse Representation based 

Classification (SRC), which also contributes to the decrease of the computational cost 

in sparse representation. In comparison with related work such as SRC and Gabor- 

feature based SRC (GSRC), experimental results on a variety of face databases 

demonstrate the great advantage of our method for computational cost. Moreover, we 

also achieve approximate or even better recognition rate. 

Keywords: Fast Face Recognition, Hierarchical Feature Selection, Gabor wavelets, ELM-AE, 

Sparse Representation,    ⁄  Regularization, HSR 

 

 

 

 

 



1 Introduction 

The technique of face recognition plays an important role in people’s life ranging 

from commercial to law enforcement applications, such as real-time surveillance, 

biometric personal identification, and information security[1]. It is one of the most 

challenging topics in the interface of computer vision and cognitive science. Over past 

   years, extensive research on face recognition has been conducted by many 

psychophysicists, neuroscientists and engineers. In general views, the definition of 

face recognition can be formulated as follows. Different faces in a static image can be 

identified using a database of stored faces. Available collateral information like facial 

expression may enhance the recognition rate. Generally speaking, if the face images 

are sufficiently provided, the quality of face recognition will be mainly related to 

feature extraction and recognition modeling.  

For feature extraction, more specifically, there are roughly two kinds of popular face 

features including holistic features and local features. However, the classical methods 

using holistic features such as Eigenface[2], Fisherface[3] and Randomface are hardly 

to reveal the essential structures of high-dimensional faces[4]. Therefore, researchers 

recently prefer local-feature based methods like subspace learning[5] or manifold 

representation[6]. On one hand, high-dimensional images can be effectively projected 

into low-dimensional subspace or sub-manifold. On the other hand, compared to 

holistic-feature based approaches, local-feature based approaches are always less 

sensitive to variations of illumination, viewpoint and expression, which in turn 

improves the recognition rate.  

For recognition modeling, lots of researchers usually evaluate the performance of 

model by recognition rate instead of computational cost. Recently, Wright and Ma[7] 

reported their work called the sparse representation based classification (SRC). To be 

more specific, it can represent the testing image sparsely using training samples via 

  -norm minimization, which can be solved by balancing the minimum reconstructed 

error and the sparsest coefficients. Experimental results showed that the recognition 

rate of SRC is much higher than that of classical algorithms such as Nearest Neighbor, 

Nearest Subspace and Linear Support Vector Machine (SVM). However, there are 

three drawbacks behind the SRC. First, SRC is based on the holistic features, which 

cannot exactly capture the partial deformation of the face images. Second,    

regularized SRC usually runs slowly for high-dimensional face images. Third, in the 

presence of occluded face images, Wright et al. introduce an occlusion dictionary to 

sparsely code the occluded components in face images. However, the computational 

cost of SRC increase drastically because of large number of elements in the occlusion 

dictionary. Therefore, the computational cost of SRC limits its application in real-time 

area, which increasingly attracts researchers’ attention to solve this issue. 

Recently, Yang and Zhang’s work (Gabor-feature based SRC (GSRC)) [8] claimed 

that if Gabor wavelets[9] can be employed in feature extraction, it is possible to 

obtain a much more compact occlusion dictionary in the presence of occluded faces, 

which not only speeds up the computation but also improves the recognition rate. 

Although the GSRC provides us a good insight about how to reduce the 

computational cost of SRC in the presence of occluded faces, to our best knowledge, 

there is still an essence issue to be addressed. Namely, the computational cost of 

sparse representation is highly related to three aspects including the dimension of face 

images, the scale of occlusion dictionary and the speed of regularized optimization. 

Without any occlusion, Gabor wavelets mainly play an important role in local features 



extraction. So the computational cost of SRC can be determined by the dimension of 

face images and   -norm minimization instead of the scale of occlusion dictionary. If 

we want to reduce computational cost of SRC in a general condition, on the one hand, 

we should effectively project high-dimensional faces into low-dimensional features. 

On the other hand, we should find a sparser representation than    regularized SRC. 

Inspired by these observations, in this paper, we propose a novel method for fast face 

recognition called    ⁄  Regularized Sparse Representation using Hierarchical 

Feature Selection (HSR). In the feature extraction, we employ hierarchical feature 

selection because it contributes to the decrease of computational cost in sparse 

representation that our approach is strongly rooted in. It consists of Gabor wavelets 

and Extreme Learning Machine Auto-Encoder (ELM-AE)[10] hierarchically. To be 

more specific, Gabor wavelets could effectively extract local features at multiple 

scales and orientations[11] forming Gabor-feature based images, which can greatly 

improve the recognition rate. Moreover, in the presence of occluded faces, we can 

obtain a compact occlusion dictionary via sparse coding because of redundancies in 

Gabor-feature based occlusion dictionary, thus the scale of global dictionary can be 

decreased accordingly. In addition, high-dimensional face images can be effectively 

represented by low-dimensional features via ELM-AE, thus the dimension of global 

dictionary can be decreased accordingly. So for Gabor-feature based global dictionary, 

the compression of scale and dimension contributes to the decrease of computational 

cost in sparse representation. Finally, the Gabor-feature based methods have been 

applied into face recognition leading to state-of-the-art recognition rate[12]. Also the 

computational cost of ELM-AE is much less than Principal Component Analysis 

(PCA) used in SRC. In the recognition modeling, the main difference between our 

method HSR and SRC is that   -norm minimization is replaced by    ⁄ -norm 

minimization[13] because    ⁄ -norm minimization can produce sparser 

representation, which directly decreases the computational cost of sparse 

representation. Although    ⁄ -norm minimization belongs to non-convex 

optimization problems, it can be easily transformed into a series of weighted   -norm 

minimization, which is convenient for us to solve by existing methods. Moreover, 

   ⁄ -norm minimization is more robust than   -norm minimization, which is more 

suitable to process occluded face images. In our experiments, the new method has 

been verified on representative face databases (Extended Yale B, AR and FERET) 

with different conditions like lighting, pose, expression, and occlusion. In comparison 

with related work such as SRC[7] and GSRC[8], experimental results demonstrated 

that our method is slightly complicated in structure, but it shows the great advantage 

for computational cost. And we also achieve approximate or even better recognition 

rate. Therefore, our method has a great potential for the application of fast face 

recognition like real-time surveillance. 

The rest of paper is organized as follows. In section 2, we briefly discuss previous 

work on ELM and sparse representation based on    regularization. In section 3, we 

describe our new method including hierarchical feature selection and    ⁄  

regularized sparse representation. In section 4, we report experimental results on SRC, 

GSRC and our method HSR under representative face databases with different 

conditions. Also we present discussions on the performance of new method. Finally, 

in section 5, we show conclusions on our current research and indicate two important 

directions for future work. 



2 Previous works 

2.1 The structure of the original ELM 

Extreme Learning Machine (ELM) was proposed by Huang et.al for faster learning 

speed and higher generalization performance[14][15]. The essence of ELM is that the 

parameters of the hidden nodes can be generated randomly without manually 

tuning[16]. Specifically speaking, the input data   is mapped to L-dimensional 

hidden layer and the network output is given by Eq(1). 

  ( )  ∑    ( )

 

   

 (1) 

Where    [             ]
 
are the output weights between the hidden nodes and 

the output nodes,    ( )    ( 
      ) is the output of hidden layer,    is the 

input weight,    is the input bias and   ( ) is the activation function, they all 

correspond with the output of the     hidden node. The ELM algorithm can be 

summarized as follows. Given   training samples {     }   
 , where input data 

   [             ]
  and the target labels   [             ]

 . The input data is 

mapped to  -dimensional hidden layer initially. The structure of ELM can be 

determined if the output weights   can be calculated, so the following learning 

problems can be formulated by Eq(2). 
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Where   [          ]
  is the target matrix,   [ (  )    (  )    (  )] is 

the hidden layer output matrix, and   (  )  [  (  )   (  )     (  )]
 . So the 

output weights   can be calculated by Eq(3). 

      (3) 

Where   [15][17] denotes the Moore-Penrose generalized inverse of matrix  . 

To make the resultant solution more stable and have better generalization 

performance[10], a positive value   ⁄   as a regularization term can be added to the 

diagonal of     shown Eq(4). 

  (
 

 
    )

  

    (4) 

2.2 Sparse representation based on 𝑳𝟏 regularization 

Given training samples   [                 ]   
     from all the    training 

samples, where     (          ) is an  -dimensional vector, which belongs to 

the     sample of the    class. Denote by     
 , a test sample from the same 

    class. Intuitively,    can be approximately represented by the linear combination 

of the training samples within   . 

                                  ∑        

  

   

 (5) 



Suppose that the test sample    is initially unknown of the exact class, a new matrix   

is defined to concatenate the entire training samples of all   classes: 

  [          ]  [                 ] (6) 

Then the linear representation of    can be naturally written as Eq(7). 

      (7) 

According to sparse coding via   -norm minimization, the sparse coefficients   can 

be calculated as Eq(8). 

 ̂        
 
{‖     ‖ 

   ‖ ‖ } (8) 

In the case of occluded data, we should express the test sample    as a sum of sparse 

representation and error. Then the previous model[7] can be modified as Eq(9). 

         [    ] [
 
  
]     (9) 

Where       (      ) , and the      
  is a noise term with bounded 

energy‖  ‖   . According to sparse coding via   -norm minimization, the sparse 

coefficients   can be calculated as Eq(10). 

 ̂        
 
{‖     ‖ 

   ‖ ‖ } (10) 

Therefore, we can represent test sample (     ) as sparse coefficients ( ̂   ̂ ), 

which can be employed to identify the class of test sample. 

 

3 𝑳𝟏 𝟐⁄  Regularized Sparse Representation using Hierarchical Feature 

Selection 

3.1 Framework 

In this section, we briefly introduce the new method called    ⁄  Regularized Sparse 

Representation using Hierarchical Feature Selection (HSR). Our method will tackle 

with two critical issues in face recognition. First, how can we reduce computational 

cost of recognition modeling while keeping the recognition rate?  Second, how can 

we ensure the robustness of our method to occluded faces?  Our approach roughly 

consists of feature extraction and recognition modeling, which solves above problems 

accordingly. And also we provide the convincing reasons for the choice of recognition 

model and parameters. The structure of HSR is shown in Fig1. 

For feature extraction, by employing hierarchical feature selection, we can compress 

the scale and dimension of global dictionary, which directly contributes to the 

decrease of computational cost in sparse representation that our approach is strongly 

rooted in. To be more specific, it consists of Gabor wavelets and ELM-AE 

hierarchically. For Gabor wavelets part, according to theories of visual neuroscience, 

the mechanism of retina cells in human eyes can be simply simulated by Gabor 

wavelets, which could effectively extract local features at multiple scales and 

orientations. And the local-feature based methods are always less sensitive to 

variations of illumination, viewpoint and expression. Therefore, Gabor-feature based       
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Fig1. The framework of HSR 

images can improve recognition rate to some extent. Moreover, for the occluded 

images, the enormous scale of occlusion dictionary is the principle factor to affect the 

computational cost of sparse representation. Because of redundancies exist in 

Gabor-feature based occlusion dictionary, the scale of Gabor-feature based global 

dictionary can be compressed. Besides, the Gabor-feature based methods have been 

applied into face recognition leading to state-of-the-art recognition rate like Liu and 

Wechsler’s work. For ELM-AE part, we hope to modify the basic ELM to represent 

input training and testing images meaningfully. Namely, the output weight of 

ELM-AE is responsible of learning the features from the input data via singular 

values. According to ELM theory, ELM-AE is a universal approximator that has a 

strong ability to achieve compressed, sparse, and equal dimension representation. So 

it is reasonable to believe that images in a higher dimensional input space can be 

effectively projected into a lower dimensional feature space via ELM-AE. Thus the 

dimension of Gabor-feature based global dictionary can be compressed. Moreover, 

the computational cost of ELM-AE is much less than that of PCA used in SRC 

because of its random weights and biases of the hidden nodes. 

For recognition modeling, more specifically, our approach is strongly rooted in the 

framework of sparse representation, which has showed its excellent performance on 

recognition rate especially for occluded faces. The testing image can be sparsely 

represented by the linear combination of the training samples and our target is to 

balance the reconstructed error and the sparsest coefficients via different kinds of 

regularization. In our approach, we choose    ⁄ -norm minimization instead of 

  -norm minimization used in SRC or another regularized parameters because of two 

reasons. First,    regularization locates between     regularization and 

     regularization, so    regularization has sparse property and it can be solved 

easily. Naturally thinking,    ⁄  regularization locates between     regularization and 

    regularization, so we expect that    ⁄  regularization has sparser property than 

   regularization. Actually, the geometry property of    ⁄  and     regularization has 

obviously proved our expectation. Second, Xu’s experiments[13] demonstrated that 

the performance of sparse representation using    ⁄  regularization is stronger than 

that using other    regularization (0<p<1/2 or 1/2<p<1). One might argue that 

   ⁄ -norm minimization belongs to non-convex optimization problems, which means 

it is hard to solve. However, we can transform it into a series of weighted   -norm 

minimization, which is convenient for us to solve by existing methods. Moreover, 



according to Xu’s experiments,    ⁄ -norm minimization is more robust than 

  -norm minimization, which is more suitable to process occluded faces. 

3.2 Hierarchical Feature Selection 

In sparse representation, the compression of global dictionary normally comes from 

the reduction of dimension and scale (the number of elements), which directly 

contributes to the decrease of computational cost. For hierarchical feature selection, 

we employ Gabor wavelets and ELM-AE hierarchically. By employing Gabor 

wavelets, we can initially represent original images by Gabor-feature based images, 

which can improve the recognition rate. In addition, when the face images are 

partially occluded, we can compress the scale of Gabor-feature based occlusion 

dictionary via sparse coding, thus the scale of Gabor-feature based global dictionary 

can be compressed accordingly. By using ELM-AE, high-dimensional images can be 

rapidly represented by low-dimensional features, thus we can compress the dimension 

of Gabor-feature based global dictionary and testing images. 

3.2.1 Gabor-Feature based Image Representation and Occlusion Dictionary 

The motivation that we choose Gabor wavelets for image representation is mainly due 

to their biological relevance and computational properties. In this section, we will 

mainly formulate how to represent original image via Gabor wavelets below. Then, in 

the presence of occluded images, we briefly introduce how to compress the scale of 

Gabor-feature based occlusion dictionary via sparse coding. 

More specifically, Gabor wavelets[12] usually demonstrate good characteristics of 

spatial locality and orientation selectivity. Moreover, in the space and frequency 

domains, they are optimally localized. It can also be defined with the orientation   

and scale   as follows. 

    ( )  
‖    ‖

  
 ( 

‖    ‖
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  ⁄ ] (11) 

Where the pixel of an image is   (   ), the wave vector is defined as      

   
    with         

 ⁄  and       ⁄ .      is the maximum frequency, 

and   is the spacing factor between kernels in the frequency domain. Besides,   

determines the ratio of the Gaussian window width to wavelength. In most cases, 

Gabor wavelets have five different scales and eight orientations. As Liu and 

Wechsler’s work, the real part of Gabor wavelets can be shown in Fig2.(a).  

Here we should also note that when the parameters of Gabor wavelets are as 

     ,         ⁄ ,     √ , the Gabor wavelets demonstrate the excellent 

characteristics of spatial frequency, orientation selectivity and spatial locality. 

According to above discussion, we can naturally represent high-dimensional images 

via Gabor wavelets. The Gabor-feature based local representation is equal to the 

convolution of the input images with each Gabor wavelet. For example, the 

convolution of image    ( ) with a Gabor wavelet is defined as below.  

    ( )     ( )      ( ) (12) 

 



Gabor wavelets

(a) (b)

Gabor-feature image

Fig2 (a)The real part of the Gabor wavelets at five scales and eight orientations, 

(b)Gabor-feature based image   

These convolution results show different scales, localities and orientations 

corresponding to the Gabor wavelets. As Liu and Wechsler’s work, the convolution 

results are all complex number. To contain a Gabor-feature based image, we should 

first normalize all convolution results, and then concatenate them to form an 

augmented feature vector  . 

  (    
     

          
 )

 
 (13) 

Where   is an image based on Gabor-feature, which not only improves recognition 

rate but also bears to image local deformation to some degree.   can be shown in 

Fig2.(b). 

To make a further step, we can derive Gabor-feature based Image Representationin 

two situations. First, without any occlusion, the linear representation of    can be 

rewritten as      . By employing Gabor wavelets, we can derive the Eq(14). 

 (  )   (  )    (  )      (  )    ( )  (14) 

Where  ( )  [ (  )  (  )    (  )] and  (  )  [ (    )    (     )]. 

In the presence of occluded testing image   , the Eq(14) should be modified as Ma’s 

work indicated as Eq(15). 

 (  )  [ ( )  (  )] [
 
  
]   ( )  (15) 

Where  (  ) is the Gabor-feature based occlusion dictionary, and   is the 

representation coefficient vector of the input Gabor feature vector  (  ) over  (  ).  

The occlusion dictionary    in SRC is normally selected as the identity matrix  [7], 

so SRC has a large number of elements in occlusion dictionary, which definitely 

increases the computational cost of optimization. For example, If the dimension of 

original images is      (    ), then the dimension of occlusion dictionary   in 

SRC is of          . By using Gabor wavelets, the occlusion dictionary will be 

represented into Gabor-feature based occlusion dictionary (            ) , 

which is obviously redundant. So we should compress it from two aspects including 



the dimension and scale. Now, let’s briefly discuss the scale compression. We hope to 

compress the scale of Gabor-feature based occlusion dictionary because redundancies 

exist in it. For example, suppose    (  )  [        ]   
      the original 

Gabor-feature based occlusion dictionary, then the scale-compressed occlusion 

dictionary is denoted by   [       ]   
    (    ), and we can represent   

by   via sparse coding. So our objective function is defined as Eq(16). 

           {‖    ‖ 
   ‖ ‖ }           

          (16) 

It is easy to solve this optimization problem by optimizing   and   alternatively. 

Therefore, the compression of scale is easily achieved. The Eq(15) can be modified 

by Eq(17)    

  (  )  [ ( )  ] [
 
  
]                         (17) 

In the next section, we will introduce a new method called ELM-AE, which can 

effectively compress the dimension of global dictionary. 

3.2.2 ELM-AE for High-Dimensional Images Representation 

The motivation that we choose ELM-AE for image representation is due to its 

representation ability and computational cost. We will mainly introduce ELM-AE for 

high-dimensional images representation below. And then we will briefly verify the 

performance of ELM-AE. 

For Auto-Encoder[18], the output data  ̂  is similar to the input data  . Some 

interesting structure can be obtained when constraints are placing on the networks. 

For example, suppose that the input image is      , and the number of the input 

nodes is    , but only    hidden nodes, then the network must try to reconstruct 

   -dimension output nodes with the    hidden nodes, which is forced to learn a 

compressed representation a compressed representation of the input. Based on the 

above concept, the ELM-AE was first proposed by Huang et.al[10], and the main 

objective of ELM-AE is to represent the input data meaningfully and rapidly. In term 

of the number of the input nodes and hidden nodes, there are three different 

representation including compressed representation, sparse representation and equal 

dimension representation. For face recognition task, we hope to represent input 

training and testing images by compressed representation. The training structure of 

ELM-AE can be seen as Fig3.(a). 

To be more specific, we first modify the basic ELM[15][19] to conduct unsupervised 

learning (   ), and random weights and biases of the hidden nodes are chosen to 

be orthogonal because orthogonalization will make the generalization of ELM-AE 

better. 

The orthogonal random weight and bias can be calculated by Eq(18). 

            (18) 

Where   [       ] is the orthogonal random weight and   [       ] is the 

orthogonal random bias between the input nodes and hidden nodes. Then we calculate 

the hidden layer output matrix   as the original ELM does. 



   (    ) (19) 

After training process, we first hypothesize that the output weights of ELM can be 

treated as coding parameters of Auto-Encoder, which is responsible of learning the 

low-dimensional features from the high-dimensional data. And the output weight   

as Eq(20). 

  (
 

 
    )

  

    (20) 

Where   [       ] is the output of hidden layer and   [       ] is the input 

data. 

Therefore, the trained ELM-AE will be employed to conduct high-dimensional 

images representation, for example, the original image is initially represented via 

Gabor wavelets, and the dimension of Gabor-feature based image will naturally 

increase. Then we represent Gabor-feature based image   into low-dimensional 

features    via ELM-AE by Eq(21).  

                                   (21) 

After hierarchical feature selection, the image representation    can be visualized in 

Fig3.(b), which will be sent into the framework of sparse representation for further 

processing. 
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Fig3. (a)The training of ELM-AE. (When the number of hidden nodes is less than that 

of input nodes, it can be used as the compressed representation), (b) Image 

representation after hierarchical feature selection 



We can clearly see that the computational cost of ELM-AE is much lower than that of 

PCA. It shows that ELM-AE itself can speed up the process of feature extraction. 

Moreover, in HSR, the ELM-AE can effectively reduce the dimension of global 

dictionary and testing images, which greatly relieve the computational burden 

undertaken by optimization methods. 

3.3 𝑳𝟏 𝟐⁄ Regularized Sparse Representation 

For recognition modeling, our approach is strongly rooted in the framework of sparse 

representation because of good recognition rate and robustness to occluded faces. In 

this section, we first introduce generic framework of sparse representation, and then 

compare different regularized parameters such as    ⁄ ,    and   . Finally, we 

decide to employ    ⁄  because it can produce sparser and more robust representation 

compared to   , which speeds up the face recognition. 

3.3.1 Generic Framework of Sparse Representation for Face Recognition 

Specifically speaking, supposing that well-aligned training face images of each class 

are sufficiently provided. We collect training images together forming a large training 

dictionary and each column is normalized via   -norm. One classical assumption is 

that a new image of     class can be well represented as a linear combination of all 

the     training samples. However, if the identity of the test image is unknown, the 

problem becomes more complex because we will represent the test image using 

training dictionary . So the linear representation of the test image    can be written 

as Eq(22). 

       
  (22) 

Where   is a vector of sparse coefficients. In practical situations, the coefficient 

vector is often complicated because of the presence of partial occluded faces   . The 

linear model should be modified as Eq(23). 

         [    ] [
 
  
]     (23) 

Where     
 is a vector of error,   [    ]  and    [    ]

 , thus face 

recognition in the presence of occlusion can be represented as the sparest coefficients. 

We hope to introduce more general framework of sparse representation, so we will 

choose general loss function   for there constructed error and an uncertain norm for 

regularized parameters. Therefore, the sparest coefficients can be represented as 

Eq(24).  

 ̂        
 
{ (     )   ‖ ‖ } (24) 

Where ‖ ‖  denotes  -norm that represents the uncertain parameter. Therefore, we 

can represent test sample    using sparse coefficients   ̂ . The general framework 

can almost explain all special cases. For example, if general loss function   can be 

denoted as square loss, then the framework can be converted into AIC[20] and 

BIC[21] criteria when    , the framework can be converted into Lasso 

algorithm[22] when    , the framework can be converted into ridge regression[23] 

when    . In our approach, we choose traditional square loss function, and the next 

section will discuss the choice of regularized parameters. 



3.3.2 Regularized Parameters: 𝑳 , 𝑳𝟏 𝟐⁄  and 𝑳𝟏 

The motivation why we choose    ⁄ -norm minimization is due to two aspects. 

First, although the sparsest coefficients can be obtained via   -norm minimization, 

the procedure of solving   -norm minimization is a NP-hard problem. Therefore, 

Tibshirani introduced the Lasso algorithm (  -norm minimization) to obtain relative 

sparse coefficients, which is much easier for us to solve because   -norm 

minimization belongs to the convex problem. What’s more, they proved that    

regularization is equal to    regularization on the certain constraint condition.  

However, in the practical application, we find that   -norm minimization usually 

cannot produce the sparest solution, so a question is raised that whether we can 

introduce a new regularized parameter, which provides a sparser solution than    

regularization. Fortunately, Xu’s experimental results proved that    ⁄  regularization 

can produce sparser representation compared with    regularization, which is also 

proved by their geometry property. From the Fig4, the bound of    regularization has 

different shape, and the solution of   -norm minimization is equal to the intersection 

of the bound and the loss function. For example, we can clearly see that solution via 

   is not sparse at all and the solution via    ⁄  is sparser than that via    because 

the bound of    ⁄  is easier to intersect with loss function at coordinates. 

 

(a)                     
(b)                

(c)    ⁄  

Fig4. The possibility of sparse solution via   ,    and    ⁄  

Although    ⁄ -norm minimization belongs to non-convex optimization problems, we 

can transform it into a series of weighted   -norm minimization, which is also 

convenient for us to solve by existing methods. Moreover, according to Xu’s 

experiments,    ⁄ -norm minimization is more robust than   -norm minimization, 

which is more suitable to process occlusion in face images. 

Second, although we initially want to explore other possibilities like   -norm 

minimization (0<p<1/2 or 1/2<p<1), Xu’s experiments[13] clearly demonstrated that 

the performance of sparse representation using    ⁄  regularization is stronger than 

that using other   regularization (0<p<1/2 or 1/2<p<1). Therefore    ⁄  

regularization can completely replace   regularization (0<p<1). 

Overall, we naturally introduce    ⁄  regularized sparse representation for fast face 

recognition using hierarchical feature selection (HSR). Our method has solved two 

critical issues raised in the section3.1. First, we employ Gabor wavelets and ELM-AE 

hierarchically in order to reduce the dimension and scale of global dictionary, which 



accordingly reduces the computational cost of sparse representation. Second, 

   ⁄ -norm minimization can produce sparser and more robust representation than 

  -norm minimization, which not only reduces the computational cost of optimization 

but also is more suitable to process occlusion in face images. The algorithm of HSR 

and its explanation are released below. 

Algorithm 1 The HSR algorithm 

1.Images representation:   is an occluded face, which is a special case of normal face. The 

columns of  and    are normalized to have unit   -norm. 

         [    ] [
 
  
]     

Where     
   ,      (      ). 

2. Gabor wavelets: extract local feature to enhance recognition rate and compress the scale of 

Gabor feature based occlusion dictionary via sparse coding. 
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Where (  )   
    ,     

   (      ),     
   (     ), and       . 

3. ELM-EA: compress the dimension of global dictionary and testing image 
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]    

    

Where   (  )   
    ,   

      (     ), and      . 

4. Solve the    ⁄ -norm minimization problem: get a sparser and more robust representation. 
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And   is a positive scalar number that balances the reconstructed error and sparse 

coefficients. 

5. Compute the residuals 

  (  (  ))  ‖  (  )     ̂   ⁄
   ( )  ( ̂  ⁄ )‖

 
                 

Where   ( )   
     is the characteristic function which selects the coefficients associated 

with the    class. 

6. Output that         (  )          (  (  ))           (  (  )) 

 

 



4 Experimental results 

In this section, we present some experimental results on available benchmark 

databases to compare the performance of the proposed algorithm HSR with GSRC 

and SRC. The reason why HSR does not compare with deep learning algorithms[24] 

is due to the common fact that their computational cost is very expensive. To evaluate 

the performance of HSR comprehensively, this section is divided into two detailed 

sections. In section 4.1 we first tested our method on the face datasets without 

occlusion. And then in section 4.2 we tested the new method on the face datasets 

against occlusion using two different frameworks (no partition and partition). All the 

simulations for the HSR, GSRC and SRC algorithms are carried out in Matlab 7.8 

environment running in an Intel Xeon E5-1650         CPU. In the experiments of 

Gabor wavelets, the parameters are set as         ⁄ ,    √ ,     , eight 

orientations  {     } and five different scales  {     }by our experience. 

And the parameters are fixed for all the experiments below. The activation function of 

ELM is set to ‘sig’ representing the sigmoidal function, the parameter   is set to     

and the number of the hidden neurons is equal to the compressive feature space 

dimension. In addition, all face images provided in the databases are cropped and 

aligned by the location of eyes. The face images from the databases are further 

normalized to zero mean and unit variance. 

4.1 Face recognition without occlusion 

We compared the performance of the HSR with two classical algorithms SRC and 

GSRC on three typical facial image databases:  Extended Yale B[25], AR[26] and 

FERET[27]. For the Extended Yale B and AR databases, we compared the 

performance of HSR, SRC and GSRC versus feature dimension. Moreover, we 

compared the performance of different compression methods (ELM-AE and PCA) 

and different regularized parameters (   and    ⁄ ) on two databases. For the FERET, 

we compared the performance of HSR, SRC and GSRC versus pose angle. 

1) Extended Yale B Database: The database consists of      frontal-face images 

of    individuals. The images are normalized to      under various 

laboratory-controlled lighting conditions. We randomly selected half of the images for 

training (i.e.,    images per subject), and the other half for testing. Choosing the 

training set randomly assures that our results will be independent of any special 

choice. Fig5 shows some samples from the same object class, and it is obvious that 

only illumination is added to these images. The dimension of the Gabor-feature based 

image is       (      ) through a set of Gabor wavelets, which includes five 

different scales and eight orientations. They can capture abundant local features to 

form Gabor-feature based image, which will take a lot of time to process this 

high-dimensional image. To compress the feature space, we applied ELM-AE (a part 

of HSR) and PCA (a part of SRC and GSRC) respectively with the feature dimensions 

              and     on the Gabor-feature based images. Then we computed 

the recognition rate and the computational cost. In addition, the computational cost of 

sparse representation is equal to the testing time because there is no training process. 

In our experiments, we set        [7] in HSR, GSRC and SRC by our experience. 

It shows the recognition rates in Fig6.(a) and computational cost in Fig6.(b) of HSR 

comparing with GSRC and SRC versus the feature dimension. It is turned out that 

with the increase of feature dimension, the recognition rate becomes higher and the 

computational cost becomes more. HSR achieves a maximum recognition rate of 



     % with    D feature space. In contrast, the maximum recognition rate of 

GSRC is      % and SRC is      %. The computational cost of SRC and new 

method is similar, which much less than that of GSRC. According to a specific 

dimension    𝐷, the computational cost of compression by PCA is        s while 

ELM-AE is        .  

 
Fig5.Samples from the same object of Extended Yale B dataset 

 
(a)                             (b) 

Fig6. Recognition rates (a) and time (b) by SRC, GSRC and HSR versus feature 

dimension across Extended Yale B database 

2) AR Database: The AR database consists of      frontal images from    

individuals. We chose a subset consisting of    male subjects and    female 

subjects. For each subject,    images are selected, which includes only illumination 

changes and expressions. Fig7 shows several samples from the same object class with 

the variation of expression and illumination. We selected seven images from Session 1 

for training and seven images from Session 2 for testing. The images were cropped 

and converted to gray scale with the size is     . The dimension of the 

Gabor-feature vector is       after a set of Gabor wavelets. Then we continued to 

reduce the feature space with five dimensions:              and    .We also set 

        in HSR, GSRC and SRC, like on the Extended Yale B database. it shows 

the recognition rates in Fig8.(a) and the computational cost in Fig8.(b) of HSR 

comparing with GSRC and SRC versus the feature dimension. On this database, the 

maximum recognition rate of HSR, GSRC and SRC are      %      %  and 

     %respectively. The computational cost of HSR is much less than the other two 

methods on different dimensions. To be more specific, the total computational time of 

HSR is about   % less than that of SRC, and about   % less than that of GSRC. 
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Fig7.samples from the same object of AR dataset 

 
(a)                              (b) 

Fig8. Recognition rates (a) and time (b) by SRC, GSRC and HSR versus feature 

dimension across AR database 

On the whole, the AR database is more challenging than the Extended Yale B 

database, thus the total recognition rate of the AR database is declining slightly. This 

is due to the AR database includes     subjects, but the training samples (dictionary 

atoms) are only seven images. With more stringent conditions, different lighting 

conditions are added into four neutral faces and different expressions are added into 

three faces per subject for AR database. In contrast, for the Extended Yale B database, 

the number of each subject is larger, and the scale of global dictionary is bigger. Only 

illumination variations exist on the images. The above two experiments illustrate the 

performance of HSR is much better than that of the SRC and GSRC versus feature 

dimension especially for computational cost. 

For briefly verifying the compression performance of ELM-AE, we selected PCA as a 

control group for high-dimensional images representation. Only the computational 

cost of the compression component was taken into consideration in our experiments. 

We compared the computational cost of ELM-AE and PCA on the Extended Yale B 

and the AR database before the process of recognition modeling. The testing sets of 

the Extended Yale B and the AR are compressed to a certain dimension (405D for the 

Extended Yale B and 450D for the AR), whose computational costs are list on the 

follow Table 1. 

Table1 : Comparation on computational cost of ELM-AE and PCA 

 Databases Yale AR 

Time(s) 
ELM-AE 1.3011 0.4596 

PCA 36.2022 9.8460 

 

We also conducted a quantitative experiment using different compression methods 

(ELM-AE and PCA) and different regularized parameters (  -norm and    ⁄ -norm) 

on two databases (table 2). For one thing, when testing sets are compressed to a 

certain dimension (   D for the Extended Yale B and    D for the AR), we 

demonstrated that    ⁄ -norm minimization is superior to the   -norm minimization 

for computational cost while keeping the approximate recognition rate. For another 

thing, ELM-AE and PCA are used to compress the Gabor-feature based images in 

different mechanisms. So under the same regularized parameter, the computational 

cost of methods using ELM-AE is less. 
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Table 2: experiments on different dimension compression methods (ELM-AE and 

PCA) and different minimization frame (   and    ⁄ ) of the sparse problem across 

the two databases 
Database Yale AR 

methods ELM-AE PCA ELM-AE PCA 

   
Rec.rate(%) 97.12 98.44 95.71 95.86 

Time(s) 4117.0 7786.6 909.4263 2227.2 

   ⁄  
Rec.rate(%) 98.52 98.27 95.86 95.00 

Time(s) 1708.3 2937.4 465.0887 729.29 

 

(3) FERET pose database: this database includes      images from     subjects 

(  images per subject). Among the      images,     images are the frontal face 

with illumination and facial expressions and the others are the face variation with 

different pose angles. The images marked with ‘ba’,’bd’, ‘be’, ‘bf’, ‘bg’, ‘bj’ and ‘bk’ 

stand for the different illumination, facial expressions and pose angles (Fig9). In our 

experiments, the images of this database were already cropped to the size of     . 

In order to examine the robustness of HSR comparing with the other original 

algorithms, we tested the recognition rates and computational cost with respect to the 

variable pose angle. Then in the first test, we used images marked with ‘ba’ and ‘bj’ 

for training, images marked with ‘bk’ for testing. In another four tests, images marked 

with ‘ba’, ‘bj’ and ‘bk’ were used as training set, and the rest of images were 

respectively used as testing set. After feature extraction, the dimension was fixed on 

350D in above three methods. We set the parameters         for HSR and GSRC 

and        for SRC, which will conduct the best results. The results showed a 

growing trend of the recognition rate with less pose angle variability in Fig10.(a). 

When the pose angle becomes larger, the recognition rate of HSR is almost 40% 

higher than the nearest competitor but still poor. Besides, the computational cost of 

HSR and GSRC is much less than that of SRC in Fig10 (b). The above experiment 

illustrated the performance of HSR is also much better than that of the SRC and 

GSRC versus pose angle. 

 

Fig9. Samples from the same object class of FERET database 

 

ba:gallery bd:+25 be:+15 bf:-15 bg:-25 bj:expression bk:illumination



 

(a)                             (b) 

Fig10. Recognition rates (a) and time (b) by SRC, GSRC and HSR versus pose 

angle across FERET database 

 

4.2 Face recognition with occlusion  

In this section, we also compared the performance of the HSR with SRC, GSRC on a 

subset of AR dataset, which includes occluded images. The chosen subset consists of 

     images from     subjects (   male and    female). In this subset,     

images of unoccluded frontal face with expression and illumination variation were 

used for training set. Besides, the rest data were split into two separate test sets of 

equal size. The first test set contains     images, on which all the     subjects are 

wearing sunglasses. The second test set also contains     images, and all the 

subjects wear scarves instead. Sunglass occludes about   % of the image and scarf 

occludes about   % of the image intuitively (Fig11).  

Fig11: samples of occluded faces with sunglasses and scarves on AR database 

The parameters of HSR and GSRC were set to          and SRC used        , 

which will conduct the best results. The images of this dataset were resized to 8360, 

then the size of global dictionary is          in the original SRC. In the case of 

the proposed HSR and GSRC, the dimension of Gabor-feature based image is 

      , and then decreases to     D by ELM-AE. Meanwhile, the scale of 

Gabor-feature based occlusion dictionary is compressed to     by sparse coding. As 

a result, after hierarchical feature selection, the size of global dictionary is        . 

Table 3 has shown the experimental results on two testing sets implemented by SRC, 

GSRC and HSR. Apparently, SRC performs the worst recognition rate and the highest 

computational cost, in other words, the holistic features used in SRC are not suitable 

for the occluded images and the scale of global dictionary decides the computational 
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cost of sparse representation to some degree. Besides, it is clearly seen that the 

computational cost of HSR is much less than that of GSRC in two datasets while the 

recognition rate of HSR is higher than that of GSRC in AR scarves. 

Table 3: performances of non-partitioning methods (SRC, GSRC and HSR) 

Testing set AR sunglasses AR scarves 

methods SRC GSRC HSR SRC GSRC HSR 

Rec.rate(%) 79.69 94.33 85.67 49.00 90.67 93.67 

Time(s) 13402.00 4788.30 1826.90 137610.00 4782.00 1935.10 

 

We quoted the approach in [Wright][7] to partition the whole image into blocks and 

processed each block independently, assuming the occlusion part is contiguous. In 

these blocks, some of them are assumed to be completely occluded and some of them 

may be partially occluded. We calculated the performance of each block using the 

HSR, which naturally determined the performance of the whole image by voting. In 

our experiments, the image is divided into   (  ) blocks, and rescaled to the size 

of a small (     for AR database) pixel patch. In each block, After hierarchical 

feature selection, the dimension of Gabor-feature based image is    , and the scale 

of Gabor-feature based occlusion dictionary is fixed on   . Thus, the global 

dictionary in SRC is        , while the global dictionary of HSR and GSRC are 

      . Table 4 illustrates the recognition rate and computational cost with the 

partition approach. The HSR with the partition achieves      % in the case of 

sunglasses testing set and      % in the case of scarves testing set with the least 

computational cost. 

Table 4: performances of partitioning methods (SRC (p), GSRC (p) and HSR (p)) 

Test set AR sunglasses AR scarves 

methods SRC(P) GSRC(P) HSR(P) SRC(P) GSRC(P) HSR(P) 

Rec.rate(%) 96.00 99.67 99.33 93.67 98.67 99.00 

Time(s) 4686.80 12310.00 1610.60 4693.40 12259.00 1617.00 

 

For comparing difference between partitioned and no-partitioned approaches, we have 

visualized all results from Table3 and Table4 into Fig12 and Fig13. 

 

Fig12. Recognition rates and time of SRC, GSRC and HSR with no partitioning and 

partitioning on the sunglasses testing set 



 

Fig13. Recognition rates and time of SRC, GSRC and HSR with no partitioning and 

partitioning on the scarves testing set 

We can clearly see that using partitioning method, the recognition rates generally 

increase while the computational costs generally decrease except for GSRC. We 

believe that the number of sub-blocks which make wrong classifications is normally 

less than the number of sub-blocks that are correctly classified, which can ensure the 

final recognition rate. What’s more, because of partitioning, the dimension and scale 

of occlusion dictionary are accordingly decreased, which in turn reduce the 

computational cost of sparse representation. 

 

5 Conclusions 

In this paper, we proposed a novel method for fast face recognition called    ⁄  

Regularized Sparse Representation using Hierarchical Feature Selection (HSR). By 

employing hierarchical feature selection, we can extract the local features from image, 

which improves recognition rate because local features are less sensitive to the facial 

variation. More importantly, the global dictionary can be easily compressed in the 

dimension and scale by hierarchical feature selection, which speeds up the 

computation of sparse representation. To be more specific, it is feasible to compress 

the scale of Gabor-feature based occlusion dictionary via sparse coding. And 

high-dimensional images and global dictionary can be rapidly compressed into 

low-dimensional feature space via ELM-AE. By introducing    ⁄  regularized sparse 

representation, our method can produce sparser representation than    regularized 

SRC, which in turn speeds up the face recognition. Besides, our method can also 

produce more robust representation than    regularized SRC, which is more suitable 

to identify occluded faces such as AR sunglasses and scarves. We evaluated our 

method on a variety of face databases. Experimental results have demonstrated the 

great advantage of our method for computational cost in comparison with SRC and 

GSRC. Besides, we also achieve approximate or even better recognition rate. 

Therefore, our method has a great potential for the application of fast face recognition 

like real-time surveillance. Our future work will focus on two aspects. First, we will 

extend ELM-AE into Multi-Layer ELM-AE, which may extract more representative 

features in order to improve the recognition rate. Second, we will optimize the    ⁄  

regularization algorithm in order to reduce the computational cost further. 
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