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The Honeycomb Conjecture

T. C. Hales

Department of Mathematics, University of Michigan,
Ann Arbor, MI 48109, USA

Abstract. This article gives a proof of the classical honeycomb conjecture: any partition
of the plane into regions of equal area has perimeter at least that of the regular hexagonal
honeycomb tiling.

1. Introduction

Around 36 B.C., Marcus Terentius Varro, in his book on agriculture, wrote about the
hexagonal form of the bee’s honeycomb [V]. There were two competing theories of
the hexagonal structure. One theory held that the hexagons better accommodated the
bee’s six feet. The other theory, supported by the mathematicians of the day, was that
the structure was explained by an isoperimetric property of the hexagonal honeycomb.
Varro wrote, “Does not the chamber in the comb have six angleEhe geometricians

prove that this hexagon inscribed in a circular figure encloses the greatest amount of
space.”

The origin of this problem is somewhat obscure. Varro was aware of it long before
Pappus of Alexandria, who mentions it in his fifth book [P1]. Much of Book V fol-
lows Zenodorus’s much earlier wotkometric Figureqca 180 B.C.). However, only
fragments of Zenodorus’s book remain, and it is not known whether the honeycomb is
discussed there.

The argumentin Pappus is incomplete. In fact it involves nothing more than a compar-
ison of three suggestive cases. It was known to the Pythagoreans that only three regular
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polygons tile the plane: the triangle, the square, and the hexagon. Pappus states that if the
same quantity of material is used for the constructions of these figures, it is the hexagon
that will be able to hold more honey. Pappus’s reason for restricting to the three regular
polygons that tile are not mathematical (bees avoid dissimilar figures). He also excludes
gaps between the cells of the honeycomb without mathematical argument. If the cells
are not contiguous “foreign matter could enter the interstices between them and so defile
the purity of their produce” [H, p. 390].

In part because of the isoperimetric property of the honeycomb, there is is a vast
literature through the centuries mentioning the bee as a geometer. Thompson devotes
nearly 20 pages to the literature on the bee’s cell in [T2]. Some background also appears
in [K1, Intro.], [W3] and [W1]. During the 18th century, the mathematical architecture of
the honeycomb was viewed as evidence of a great teleological tendency of the universe.
Darwin explained the same structures by natural selection. “That motive power of the
process of natural selection having been economy of wax; that individual swarm that
wasted least honey in the secretion of wax, having succeeded best” [D, p. 235].

The honeycomb problem has never been solved, except under special hypotheses. An
unsolved special case of the problem is attributed to Steinhaus in Problem C15 of [CFG].
Extending Pappus’s results, in 1943, L. Fejegthlproved the honeycomb conjecture
underthe hypothesis that the cells are convex [FT1]. L. Feyédsdredicted that a proof of
the honeycomb conjecture without the convexity hypothesis would “involve considerable
difficulties” [FT2, p. 183]. Elsewhere, he writes about his proof for convex cells, “There
is no doubt that the same is true for general cells. Nevertheless, this conjecture resisted
all attempts at proving it” [FT3]. This paper gives a proof without the assumption of
convexity.

Convexity is a highly restrictive hypothesis. This hypothesis immediately forces the
boundaries of the cells to be polygons. By the isoperimetric inequality, we expect po-
tential counterexamples to be regions bounded by circular arcs. One of the two regions
bounded by a positively curved arc will not be convex. Thus, the assumption of convexity
eliminates at once almost all the candidates that should be studied the most closely.

The geometrical properties of the three-dimensional honeycomb cells have also been
studied extensively. The three-dimensional honeycomb cell is a hexagonal prism built
on a base of three congruent rhombuses. The shape of the rhombic base of the three-
dimensional cell suggested the rhombic dodecahedron to Kepler, the Voronoi cell of the
face-centered cubic lattice. During the 18th century, many mathematicians studied the
isoperimetric properties of the base of the cells. MacLaurin, in his analysis of the hon-
eycomb, wrote, in 1743, “The sagacity of the bees in making their cells of an hexagonal
form, has been admired of old.” “The cells, by being hexagonal, are the most capacious,
in proportion to their surface, of any regular figures that leave no interstices between
them, and at the same time admit of the most perfect bases” [M1]. In a reversal of
MacLaurin’s conclusions and upsetting the prevailing opinion, L. Fegk discovered
that the three-dimensional honeycomb cell is not the most economical (that is, it is not
surface area minimizing) [FT3].

The honeycomb conjecture is the two-dimensional version of the three-dimensional
Kelvin problem. The Kelvin problem asks for the surface minimizing partition of space
into cells of equal volume. According to Lhuilier's memoir of 1781, the problem has
been described as one of the most difficult in geometry [L1, p. 281]. The solution
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proposed by Kelvin is a natural generalization of the hexagonal honeycomb in two di-
mensions. Take the Voronoi cells of the dual lattice of the lattice giving the densest
sphere packing. In two dimensions this is the honeycomb arrangement. In three dimen-
sions this gives truncated octahedra, the Voronoi cells of the body-centered cubic. A
small deformation of the faces produces a minimal surface, which is Kelvin's proposed
solution.

Phelan and Weaire produced a remarkable counterexample to the Kelvin conjec-
ture. As a result, the honeycomb problem in two dimensions has come under increased
scrutiny, and the need for a solution has become more acute. Morgan remarks, “In 1994,
D. Weaire and R. Phelan improved on Lord Kelvin's candidate for the least-area way to
partition space into regions of unit volume. Contrary to popular belief, even the planar
guestion remains open” [M4].

It seems that the honeycomb is minimal with respect to various optimization problems.
Even the classical problem can be expressed as a minimization of perimeter for fixed
areas or as a maximization of areas for fixed perimeters. The first of the two presents
greater difficulties and is treated here. (See Section 26 of [FT2]).

Morgan states several versions and points out that the versions are not known to be
equivalent. Here the situation is similar to the sphere packing problem, which also
has several competing versions (find the densest, the solid, or tight packings [CS],
the finitely stable or the uniformly stable sphere packings [BBC]). (Also see [K2].)
These notions have isoperimetric analogues. However, here the situation is even more
perplexing because there is no upper bound on the diameter of the cells of a parti-
tion of the plane into equal areas. In this paper we follow the first approach outlined
by Morgan (Section 2 of his paper). A topic for future research might be to deter-
mine to what extent the methods of this paper can be adapted to the other optimization
problems.

Steiner’s proofs of the isoperimetric problem were criticized by Weierstrass because
they did not prove the existence of a solution. Today, general theorems assuring the
existence and regularity of solutions to isoperimetric problems are available. (See [T1],
[A], [M2], and compare [B].) This paper depends on these results, assuring the existence
of a solution to our isoperimetric problems.

To solve the problem, we replace the planar cluster with a cluster on a flat torus. The
torus has the advantages of compactness and a vanishing Euler characteristic. This part
of the proof is reminiscent of [FT1], which transports the planar cluster to a sphere. The
key inequality, called the hexagonal isoperimetric inequality, appears in Theorem 4. It
asserts that a certain functional is uniquely minimized by a regular hexagon of area 1.
The isoperimetric properties of the functional force the minimizing figure to be convex.
A penalty term prevents the solution from becoming too “round.” The optimality of the
hexagonal honeycomb results.

2. Statement of the Theorem

We follow [M4] in the formulation of Theorem 1-A. Lety = Ntan(w/N) be the
isoperimetric constant for a reguld-gon. That is, 4y is the ratio of the circumference
squared to the area of a reguldrgon. The particularly important case, the perimeter



4 T. C. Hales

2 /7 = 2:/12 of a regular hexagon with unit area, is used frequentlyB(6tr) be a
disk of radiug at the origin.

Theorem 1-A (Honeycomb Conjecture).Let I' be a locally finite graph irlR?, con-
sisting of smooth curveand such thaR?\I" has infinitely many bounded connected
componentsall of unit area Let C be the union of these bounded componéifitsn

. perim(C N B(0, r)) .
| 12
P areacnBO.1) - Vi

Equality is attained for the regular hexagonal tile

The limit is insensitive to compact alterations. Therefore, there is no uniqueness
statement for the theorem in this form. The uniqueness of the hexagonal tile appears in
the compact version of Theorem 3 below.

Theorem 1-A has stronger hypotheses than necessary. It assumes that the curves
are piecewise smooth. Each cell must be connected with unit area. There can be no
intersticesbetween the cells. Why are disBg0, r) used for the truncation? Why must
the inequality involve lim sup?

We present a second version (1-B) of the theorem that has weaker hypotheses. Before
stating the theorem, we discuss the form such a theorem might tak&,Let, T, ...
be a countable sequence of disjoint subsetR%frepresenting the cells of a general
cluster. It is natural to assume that for ea¢hhe topological boundary of; has fi-
nite one-dimensional Hausdorff measure. By a result of Federer, this implie§ tisat
measurable and that the current boundafy is rectifiable (see Section 2.1 of [M2]
and Sections 4.5.12 and 2.10.6 of [F]). In general, the one-dimensional Hausdorff mea-
sure of( J; 8T; will be infinite. To get a finite perimeter, we truncate by fixing a com-
pact setK c R? (for example, a disk of radiug). Let R c T; N K be such that
HY@R\AT,) = 0, whereH! is the one-dimensional Hausdorff measure. For example,
we could takeR, to be the union of connected componentsTotontained inK. We
can measure the characteristics of the candi@f&tethrough the Hausdorff measure
of the setd J dR;, and by taking a compact exhaustion of the plane with Bet3o
state the honeycomb inequality, it is not necessary to refer to the originalTeglts
can be formulated in terms & andK, where we now allow the area & to be less
than 1. This provides motivation for the honeycomb problem in the following general
form.

Theorem 1-B(Honeycomb Conjecture for Disconnected Regiond)et K be a com-
pact set in the plane containing disjoint measurable sgtsRR . ... Assume that each
R has a rectifiable current boundadR;. Sete; = min(1, areqR))). Setl' = | J; dR..
Assumey; > 0 for somei Then

HYT) > «“/izzai.

Asymptotically, this inequality is sharp. For example, tdkéo be the regions of the
honeycomb tile, an& = B(0, p), adisk of radiug. TakeR, = T;,if T ¢ B(0, p), and
R = @, otherwise. Thew; = 0 or 1, and} _ «; is the number (or area) of the hexagonal
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tiles contained entirely irB(0, p). Moreover, H1(I') is asymptotic to(‘/iZZ aj, as
p = Q.

We combine region&; if the sum of their areas is less than 1. This does not change
HYT) or Y «j, so that the validity of the theorem is not affected by combining regions.
Regions can be combined as long as there are at least two regions with area between 0
and%. This allows us to assume without generality, when we prove Theorem 1-B, that
there are only finitely mangy, ..., R,.

To apply regularity results, we consider an optimization problem that will lead to a
lower bound or{(I"). We fix the constants; € [0, 1], fori =1, ..., n. Consider the

optimization problem of varyindry, . .., R, so as to minimize
i (Usr)
subject to the constraint that atép) > «; fori = 1, ..., n. (We no longer require that
R c K))
By the existence and regularity results of [M2], there exists= I'(ay, ..., an)

that minimizes the one-dimensional Hausdorff measure of the boudariR of the
corresponding region®&;. The boundany™ consists of finitely many arcs of circles
(possibly reducing to straight lines) meeting at vertices of degree 3. (Morgan formulates
the optimization problem with equality constraints gRa = §;, whereg; > «; are

fixed areas. To get the existence and regularify(@, . . .) from this, we apply Morgan’s
optimization to a set of constams > «; giving the shortest perimeter.) The minimizing
setl™ is connected [CHH]. Each connected component of edghs simply connected.

Let Ry be the union of the connected component®&{T", other than the components

of Ry, ..., R,. Ryis connected (otherwise remove edges betwResnd R, to shorten

I" and increase aréR))).

Theorem 2(Honeycomb Conjecture, Finite Version)Assumed < o« < 1fori =
1,...,n.Let A=) o;. Then

perimT (c, . . ., on)) > AV12

Remark 2.1. By an argument in [M4], the cas& = ), o; < 398 is elementary.
Assume we havéwy, ..., R, with aredR)) > «; € [0, 1]. Applying the isoperimetric
inequality to eachR, and then applying it once again to the union of tewe find

2perimI(ay, ... on) = Y 2@ + 2V A

27 + VT /N DA
2/12A.

v

\

Lemma 2.2(Morgan). Theoren® implies Theoreni-A.

Proof. We consider the particular casg= --- = o, = 1. Let

pn = perimT'(1,...,21))/n.
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Let po, be the infimum of the left-hand side of the inequality of Theorem IC asns
over all planar clusters satisfying the conditions of the theoremCllst the hexagonal
honeycomb tiling to see thaf12 > p... Theorem 2 gives

liminf p, > V12 > pe..
n
By Section 2.1 of [M4], we have,, > liminf, p,. The result follows. O

Remark 2.3. In the third edition of [M3], Morgan extends his truncation lemma [M4,
Section 2.1] to areas less than 1. This permits a generalization of Theorem 1-A to cells
that are not connected.

Lemma 2.4. Theoren? implies Theoreni-B.

Proof. If [ is the current boundary in Theorem 1-B, then the optimization problem
described above yieldB(«ay, ..., an). Its perimeter gives a lower bound on the one-
dimensional Hausdorff measure of O

Remark 2.5. Assume thar" is a finite connected collection of analytic arcs, and that
I is the boundary of (finite unions of) simply connected bounded red®nket o =
min(1, aredR;)), and setA = ), «;. Set

F(T, A) = perimI’) — AV12,

Theorem 2is false iff (I', A) < 0forsomd’, A. To check Theorem 2, we can therefore
make a finite number of modifications that decrease the valkgof A).

Remark 2.6. We claim that for the proof of Theorem 2, we can assume that the regions
R are connected. EadR is a disjoint union of connected compones. Letajj =
min(1, aredR;j)) and A’ = Zij aij. We haveA < A'. Apply Remark 2.5.

Remark 2.7. Letay = 27+/3/3 = 4n/ns. If R is one of the regions, leM =
M (R) be the number of sides that its boundary has (counted by the number of different
regions neighborindr along analytic arcs). We claim that we may assume that &ch
satisfies

aregR) > ap/M2.

In fact, let R be a region of area less tharay/M?2. By the isoperimetric inequality,

the perimeter oRR is at least 2/7a, so it shares at least the leng®y M)./7a with

some neighboring region. L&Y be the collection of analytic arcs obtained by deleting
the edges shared with this neighboring region. By deleting these edges, we “pop” the
bubbleR and combine it with the neighboring region, so thabounds one fewer region
thanT. If A’ is the sum of they; with respect td™, then A’ > A — a. We claim that
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F{@T, A > F{I’, A). Infact,

F(I, A — F(I', A) = perimT) — perimI"”) + (A’ — A)v/12
(2/M)J/ma—av/12
= Va(@/Mv7 - vav12)

> VaM 7 — JaV12)
= 0.

v

Deleting edges in this way may lead to regions that are not simply connected. However,
when an edge is deleted, arbitrarily short edges can be added to make the regions simply
connected again. (Translate the boundary componeritssof that they are arbitrarily

close to one another, and then connect them with a short edge.) We can choose this short
edge to be so short that this modification(Io, A’) still gives a value of less than the
original F(T", A).

3. Honeycombs on a Torus

Let R?/A be a torus of area at least 1. Take a partition of the torus into a finite number
of simply connected regions. Assume that the boundary consists of a finite number of
simple rectifiable curves, meeting only at endpoints.

In view of Remark 2.7, we defin@ M) = min(27+/3/(3M?), 1). Assume the con-
nected, simply connected regions &g . .., R,, and assume that ardgd) > a(M;).

Theorem 3(Honeycomb Conjecture on a Torus).

perim(U 8R) > Xn:ai J12.

Equality is attained if and only if every;Rs a regular hexagon of area and each
o = 1.

This follows as an immediate consequence of an isoperimetric inequality proved in the
next section. The existence of a honeycomb tiling depends on the shape and size of
the lattice:A must be a sublattice of a lattice formed by the tiling by unit area regular
hexagonal tiles. In particular, the areaR%/A must be an integer.

Lemma 3.1. This theorem implies the honeycomb conjecture for a finite number of
cells(TheorenR).

Proof. ConsiderI'(«, ..., an), A=) o) appearing in Theorem 2. By Remarks 2.6
and 2.7, we may modify the example so that the regions in the example are connected,
simply connected, and such that each redgisatisfies the inequality

aredR) > 27+/3/(3M?) > a(M).
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Let (I'V, A') denote this modification. If we havd < 398, then Theorem 2 follows
from Remark 2.1. Assume tha® > 398. To complete the proof of the lemma, we
move the cluster to the torus. This involves adding an additional edge of Igfigth/

and an additional region of area at least 1. Theorem 3 applied to this situation gives the
inequality

perimI™) + /1/A > (1+ A)V/12,

When A’ > 398, this yields the inequality of Theorem 2.

Before moving the cluster to a torus, we first move it to a cylinder. Pick a diameter
to the cluster (a segment between maximally separated ppirdsd p, onI"). Then
move the cluster to the cylind&?/Zv, whereuv is the translation along the length of
the diameter. The map of the cluster to the cylinder is injective, except at the jpgints
and pp, which become identified. Singa and p, are maximally separated, the cluster
fits inside a square of edge lendth with a pair of sides parallel to. Thus the area of
the cluster is at most the ar@g? of the square. To simplify notation, we now drop the
primes from(I"", A'). This givesiv| > +/A, with A = Yo, ande; = min(1, areaR,)).

Let w be a unit vector perpendicular to Pick u > 0 to be the largest real number
for whichT" + pww touched™ without overlap. Let

A=7Zv+Zun+V1/Aw.

The cluster descendsR¥/ A, injective except ap; andp,. We add a segment of length
I/ Ato join the cluster with its translate. On the torus, the region “at infinity” becomes
simply connected. Call iRy. By adding this extra edge, we avoid the complications of
a component with a loop representing a nontrivial homology claB i .

Sincelv| > /A, and the componer®, has height at leasy1/A in the direction of
w at every point, the area &%, is at least 1. Now we have a partition of the toR& A
into connected, simply connected regions of total area at leasf\1 O

3.1. Torus Modifications

The combinatorial structure is described by a finite torus graph in which each face is
simply connected.

Loops (edges joined at both ends to the same vertex) can be eliminated from the
graph as follows. If the vertex has degree greater than 3, then it can be considered a
limit of multiple vertices of degree 3 and edges of length 0. This can be done in such
a way that the vertex on the loop has multiplicity at least 2. If the vertex has degree 3,
let e be the other edge that meets the loop at the vertex. Both sides of the bdged
the same regiotie. Removinge leads to a honsimply connected component. The loop
I';1 can be moved arbitrarily close to another boundary compoigrit can be joined
to I', with two edges (one edge moving from a point vertexof I'y down tow on
I',, and another edge moving backigin the opposite direction, as in Fig. 1). This
decreases the area Bf which is not permissible. However, by scaling the entire torus
by a homothetyX + A — tx+tA), its area is restored. Since we can make the decrease
in area arbitrarily small, we can make the increase in perimeter due to the homothety
arbitrarily small. In particular, we can arrange that the total increase in perimeter by this
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e

Fig. 1

process is offset by the length of the edghat was removed. (Alternatively, we could
let v; = vy, and let the return path to, be the same as the path framto w in the
opposite direction. Them, is considered to be a vertex of multiplicity 2, etc.)

If the torus graph has any vertices of degree greater than 3, we view them as vertices of
degree 3 with degenerate edges of length 0. We can do this in a way that avoids creating
any new loops. Each vertex has degree 3.

We are now in the situation where the boundary of every re§igsma combinatorial
N-gon, for someN > 2, whereN = N(P) is the number of directed edges bounding
the region. (The boundary & might traverse a segment twice in opposite directions.)
We have the Euler characteristic of the torus graph

0=V-E+F=) (1-N(P)/6), (3.1)
P

whereP runs over the regions.

4. A Hexagonal Isoperimetric Inequality for Closed Plane Curves

LetI" be a closed piecewise simple rectifiable curve in the plane. In our application we
takeI" to be a lift from the torus to the plane of one of #B; from Section 3.

We use the parametrization of the curve to give it a direction, and use the direction to
assign a signed area to the bounded components of the plane determined by the curve. For
example, ifl" is a piecewise smooth curve, the signed area is given by Green’s formula

/xdy.
r

Generally, we viewl as an integral current [M3, p. 44]. We I[Btbe an integral current
with boundaryl". (In applicationsP = R;, for somej.) Expressed differently, we give
a signed area by assigning a multiplicityU) € Z to each bounded componddtof
R?\T". (An illustration appears in Fig. 2.) The aredism(U)aredU). P is represented
by the formal sunP = m(U)U.

Letvs, ..., v, t > 2, be afinite list of points off. We do not assume that the points
are distinct. Index the pointg, vy, ..., v, in the order provided by the parametrization
of Ij. Joinv; to vi;1 by a directed line segmerit (takev,,1 = v3). The chordsf; form
a generalized polygon, and from the direction assigned to the edges, it has a signed area
Ap e R.

Letg be segment of betweeny; to v ;. Let f °P be the chordf with the orientation
reversed. Let(e) € R bethe signed area ofthe integral current bounde{ébyfio"). Let
E(P) = {e} denote the set of edgesBf Accounting for multiplicities and orientations,
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we have

aredP) = Ap + Z x(e).

ecE(P)
Leta(P) = min(1, aredP)).
Define a truncation function;: R — R by
1 1
E) X 2 iv
T(X) = { X, x| < 2,
_1 x < 1

Nl

2°

Setry = % SetT(P) = ZE(P) 7(x(e)). Recall that the perimeter of a regular hexagon of

unitareais 2/12. LetL (P) be the length of . Let N (P) be the number of points onT,
counted with multiplicities. Recall from Remark 2.7 taaN) = min(27+/3/(3N?), 1).

Theorem 4 (Hexagonal Isoperimetric Inequality).Define P, L(P), N(P), and a(N)
as aboveAssume that the signed area of P is at lead¥&P)). Then

L(P) > —T(P)¥/12— (N(P) — 6)0.0505+ 2a(P) /12
Equality is attained if and only if P is a regular hexagon of afea
The theorem will be proved below.

Lemma 4.1. The hexagonalisoperimetricinequalityimplies the honeycomb conjecture
for a torus(Theoren®).

Proof. We apply this inequality to the different regionsRy, ..., R, in the torus
partition. We let the points be the endpoints of the simple curves described in Section 3.

Let P be one of the regionR;. The regions in Theorem 3 satisfy a(@a > a(M(P)),
whereM is the number of different regions boundiRgWe haveN > M, so aregP) >
a(M(P)) > a(N(P)). Thus,P satisfies the area constraint of the hexagonal isoperimet-
ric inequality.
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Each edge ofP occurs with opposite orientatiog?® on a neighboring regiorr’,
and by constructiox(e) + x(e°?) = 0. Thus, summing over all directed edges of the

partition, we get
> x(e =0.
e
Sincer is an odd function, we have(x(e)) + t(x(e°?)) = 0, so also

> rx@) =) T(P)=0. (4.1)
P

e

By Theorem 4,
2 perimI) = Z L(P)
P

> —V12) "T(P)+6(0.0509 ) "(1— N(P)/6) +2) a(P)¥12
P P P
Thus, the lemma follows from Euler (3.1) and (4.1). O

Set

A(P) = L(P) +&(N(P),a(P), T(P)),

e(N,a, T) = T/12+ (N — 6)0.0505— 2 v/12,
X(P) = Zx(e).

E(P)

Remark 4.2. The inequality is false without the truncation. For example,Rebe
constructed as a simple closed curve of area 1 bounded by three inverted circular arcs of
the same curvature and the same length (Fig. 3). When the circular arcs are sufficiently
long,L(P) +¢(@3,1, X(P)) <O0.

Remark 4.3. Ifthe regionP is a polygon of area 1 with; as vertices, thea(P) = 1,
x(e) = 0 for alle, andT (P) = 0. The inequality in this case is essentially the one used
by Phelan and Weaire in [P2].

Remark 4.4. The sharp case of the inequality occurs f(P) = 6, «(P) = 1, and
x(e) near 0, so thak(P) = T(P).y = —¢(6, 1, X) is the tangent line ty = L (Px) at

Fig. 3
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o

Fig. 4

X = 0 of the following regionPx (Figs. 4 and 5). Take a regular hexagon of areaX.
and add six circular arcs of the same curvature to the six edges to make the total area 1
(inverting the arcs iiX < 0).

5. Preliminaries for the Proof

Without loss of generality, we modifly to decrease the perimeter, maintaining the lower
bound on the area, and holdindixed, or we may also modiff? by fixing the perimeter,
maintaining the lower bound on the area, and decreasing

For each chordf, we may apply the isoperimetric inequality to the cutee f °P)
to replacee with a circular arc with the same enclosed signed area. The isoperimetric
inequality for integral currents appears in Section 4.5.14 of [F]. Uniqueness and regularity
follow along the lines of [M2].

We may replace the polygaif,, ..., fn) by a convex polygon with the same edge
lengths in the same order, that has at least the area as the original polygon. Thus, we may
assume that the polygon has positive area.

If any x(e) < —19, we decrease the curvature efintil x(e) = —1p. This leaves
T (P) unchanged, decreases the perimeter, and increaséP ar€hus, there is no loss
in generality, if we assume(e) > —1g for all e.

-0.4 -0.2 0.2 0.\4\

Fig. 5. The graph ofy = L(Px) and its tangent ling = —&(6, 1, X).
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Fig. 6. A deformation reducing the perimeter at fixed area.

We leave edgeswith x(e) > tp untouched.

If there are two edgesy, e, of P with 0 < Xx(e;) < 10 andx(e;) < 0 (and so
alsox(e) > —19), we deformP by decreasing the curvature of the amsande,
preservingx(e;) + X(&2), thereby decreasing the perimetgiP) (see Fig. 6)T(P) is
unchanged. Continuing in this way, we may assume without loss of generality that all
x(e) € [—1o, 10] have the same sign. We consider two cases depending on whether there
is an edges with x(e) > 1o.

Case | Foralle, x(e) > —1g, and there existssuch thak(e) > to. All X(€) € [—10, T0]
have the same sign.

Case Il For alle, |x(e)| < 1o. All X(e) have the same sign.

The theorem will be proved by a separate argument for the two cases.

6. Lower Bounds onL (P)

We were not able to find a single estimatd @) that leads to the theorem in all cases.
Instead, we rely on number of lower boundslofP) (and A(P)). Most are based on
the isoperimetric inequality.

Lower Bound L(N, «, X), N = 3,4,.... The perimeter of a reguldd-gon of area 1
is 2,/7n, Wherery = Ntan(w/N). The polygon(fy, ..., fy) has area at leaat— X.
By the isoperimetric inequality for polygons, it has perimeter at least

L(N, a, X) :=2{/(a — X)mN.

Each ara has length at least that df, soL(P) > L(N, «, X(P)).

Lower Bound L. By the isoperimetric inequality,

L(P) > Li(a) :=2V7a,

the perimeter of a circle of area

Lower Bound L_. LetJ be the set of indices of the edges wiite;) < 0, for j € J.
LetX; = ), x(¢). By reflecting each edg®, j € J, across the choré, P is replaced
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with a region of the same perimeter and area at least2X;. By the isoperimetric
inequality,

L(P)>L_(a, X3) =2/ (a — 2Xj)7.

Lower Bound Lp. Assume here thgik(e)| < 7o, for eache. Dido found the curve

of minimum length with both endpoints on a given line, subject to the condition that
the curve and the line bound a given area. The solution is a semicircle cut through the
center by the line. Applying this to an ag; we find that the length oé is at least

J2m|x(©)| > |x(e)|/2r /1. Thus,
L(P) = Lp(Xp) := Xpy/2n /10,

whereXp = )" Ix(e)|. In Case II.Xp = |T| = | X|.

Lower Bound L’(N, «, X). Only this last bound is new. Fdt x > 0, let ar@¢, x) be
the length of a circular arc chosen so that together with a chord of l¢njgihing its
endpoints, the enclosed areaxisFor example, ar@, 0) = £ and arc0, x) = 2./Xx.
Let L(N, a, X) be as above. Let

L'(N, @, X) = L(N, &, X)ara(L, | X|/L(N, a, X)).

Proposition 6.1. If all the chords f{ of P have length at most, if |X| < 0.119,
099 <o <1,andif N < 7,then

L(P) > L'(N, a, X),

where X= X(P), N = N(P), @ = «(P).

This is proved in the Appendix.

6.1. Equal Curvature Condition

Here is a simple observation about the lower bounds on perimeters that we refer to as
the equal curvature condition(A version for polygons was known to Zenodorus [H,
p. 210].)

Suppose that we have two choréisand f;, of circular arcse; ande,. Minimize the
sum of the lengths of; andey, fixing f; and f,, and constrained so the sum of the two
enclosed areas is fixed. Two arcs of equal curvature give the minimum. If an arc is more
than a semicircle, it occurs along the chord of greater length (or one of the two if the
chords are equal in length).

To see this result, form a triangle with the two chords and a third edge of variable
lengtht. Adjustt until the circumscribing circle gives arcs of the correct combined
enclosing area on the two chords. Any shorter perimeter contradicts the isoperimetric
inequality.
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7. Case | of the Proof of the Hexagonal Isoperimetric Inequality

Digons. Before treating Case |, we treat the case of digons separately for both Cases |
and Il. HereAp = 0 andN(P) = 2, so

aredP) = x(ep) + x(&) > a.

Also,a > a(N) = a(2) > 1. In Case 1Y X(6) = Xmax+ Xmin = 7o — 70 > 0. In Case
I, T(P) =) t(X(8)) =) _X(@) > a.
If T(P) > 0.21, thenA(P) > 0, by the bound_,: L(P) > 2/7a > 20 /7.
AssumeT (P) < 0.21. We are now in Case |, SGax > To = Tmax

Xmin < Tmin < 0.21 — Tmax = —0.29.

By reflecting the are corresponding ta,, across the corresponding chofrdthe area
becomes at leastr — 2xmin), Without changing the perimeter. We then have

L(P) > 2\/7(ct — 2Xmin) > 2y/7( + 2(0.29)).

A(P) > O follows.

For the rest of the proof, we assurhgP) > 3, so that, in particulag (N, «, T) >
e3,a,T).

Case | We assume that for adl, x(e) > —19 and that for some, x(e) > 1o. All x(€)
satisfying|x(e)| < 1o have the same sign. In treating this case, we only need to assume
thata > 0, rather thame > a(N).

AssumeT (P) > 0.177. We have the bounds,: L(P) > 2a./7 ande(N, a, T) >
e(3, a, 0.177). It follows thatA(P) > 0.

Assume next thal (P) < —0.36. There existx(e) < 0. Index so thak(g) > 19
fori € | andx(g) < Oforj € J. SetX;, = ) x(&), X; = > x(g), so that
X(P) = X; + X;. The area ofP is X; + X; + Ap > «. Letk = |I|. We have
T(P) = kzo + X;. By Dido,

L(P) =Y " V2rx|+ Y /2rIx] = ky/2110 — X31/27/70.
| J

Then

A(P) > ky/2mt9g — X3v/ 21 /t0 + (3, 1, K1g + X3).

Substituting the upper bounl; < —0.36— kg for X3, and then the lower bourid> 1
for k, we find thatA(P) > 0.

Assume finally thatl (P) € [—0.36, 0.177]. With the same notation, we hal’éP) =
ko + X; < 0.177, which givesX; < —0.323. Reflecting the arcs corresponding to
negative signed areas as above, we get

L(P) > 2J/7(a + 2(0.323)).

This givesA(P) > 0.
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8. Case Il of the Proof of the Hexagonal Isoperimetric Inequality

Assume thatx(e)| < 1o for all e, and that allx(e) have the same sign. Thet(P) =
T(P) andXp = | X(P)|.

First, we treat the case € [27+v/3/(3N?), ], and then we treat the case> 1. If
7> a>2rv/3/(3N?), we haveN > 4. If T > 0, we useL (P) > L, () to get

A(P) > 2\/ma + (N — 6)0.0505— 201/7.

The second derivative ia is negative, so it is enough to check that this is positive for
a = 27+/3/(3N?), anda = 3. This is elementary.

Next, if T € [—-2.4,0], we useL(P) > L_(P). We show that the following is
positive:

27 (e — 2T) + T¥/12+ (N — 6)0.0505— 20 v/12.

The second derivative i is negative as well as that far. Hence, it is enough to
check positivity forT = 0, —2.4, anda = 27+/3/(3N?), 1. Again, the verification is
elementary.

Finally, if T < —2.4, we useL(P) > Lp. Itis clear that

AP)> -T/2r/to0+e(N,1, T) >0.

This completes our discussion of the case [27+/3/(3N?), %1].

The rest of Section 8 is devoted to the case %1. We pick a lower bound (N, «, X)
for L(P) from the stock of lower bounds developed in Section 6, according to the
schematic in th€N, X) plane shown in Fig. 7.

The boundary betweeh, (1) and L(N, -) is the curveX{; = 1 — n/ay > 0,
determined by the conditioh (1) = L(N, 1, X}}). (ForN = 3, we setX] = 0.177,
instead of 1— 7 /m3.) Also, setXy = (—m + nn)/(—27 + mn) < 0, which satisfies
L_(L Xy) = L(N,1 Xy). WhenX < 0, we haveX = X;, andL_(a, X;) =

3
-
+

L+

X=-2.4

Fig. 7
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0.3 0.2 eI I 01 0.2 0.3
Fig. 8. The graph ofL(6, 1, X) + &(6, 1, X).

L_(a, X). We omit the details of a routine calculation that shows
LN, o, X) +&(N, or, X) > L(N, 1, X) +&(N, 1, X),

for N > 4.

The functionL (N, 1, X)+e&(N, 1, X) is piecewise analytic and has a negative second
derivative in X. This makes it trivial to check that this function is positive on a given
analytic interval by checking the values at the endpoints. The fundtioh, o, X) +
(N, a, X), for N = 3, 4, is also easily checked to be positive. We find that

A(P) > L(N, &, X) +&(N,a, X) > 0,

except in the following two situations that will be treated below:

(1) N =6, € [0.996 1], andX e [-0.119 0.1],
(2) N =7, € [0.996 1], andX e [—0.082, 0.0684].

Figures 8 and 9 show(N, 1, X) + (N, 1, X), for N = 6, 7.

-0.15 -0.1\/-0/95/ 0.05 0.1 0.15

Fig.9. Thegraphofl (7,1, X) +&(7, 1, X).
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For the rest of the argument, we assume we are in one of these two situations. If the
lengths of the chord$; are at most 1, we have

A(P) > L'(N, &, X) + &(N, &, X) > 0.

The inequality on the left is Proposition 6.1.

The inequality on the right was checked by taking a Taylor approximatioh-at0
(and by taking the worst-case values &r We give a few details of the approximation
in the special casdl = 6, | X| < 0.06. The constant satisfies O< o < 1. We also
assume that & 6 < 0.5, wheref is a variable defined below. The function takes the
form

L'(6, o, X) + &(6, o, X) = v/12(2q(0)Vor — X — 2 + X),
whereq(0) = 6/ sin 0, andd > 0 is defined implicitly by the equation

0 —sino cost 2| X|
sifd Ja— XY12

(This formula forL’ is presented in greater detail in the Appendix.) We show that

p@) =

29@)vVa — X =20 + X > 0,

with equality exactly wherX = 0. The following inequalities are easily verified, when
the variables lie in the indicated intervals:

X
VI-X>1- 5= 0.22X2;

2|X| 2| X]
<
Y12/1+006 ~ V12J/a = X
92 4X2

0 1+—>1 ;
a6 = 1+ 6 - 6(0.872)(1.06)v/12

= p(®) < 0.879;

20(0)vVa — X — 20 + X

4x2 X ) 5
>2(1+ 1— 2 —0.22X?%) — 2+ X = X?f,
6(0.872)(1.06)4/12 2

wheref is a quadratic polynomial iXX taking positive values fgrX| < 0.06. It follows
that if the function vanishes, thext = 0. This implies? = 0, andq(9) = 1. We then
have

L(6, a, 0) + £(6, o, 0) = V/12(2/ax — 201).

If this vanishes, thep = 1.

This completes the hardest case. Similar calculations are left to the reader when
N = 7,|X| > 0.06, or6 > 0.5. The result is thatn(P) = 0, if and only if X = 0 and
P is a regular hexagon with area 1. This is the tight case of the hexagonal isoperimetric
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inequality. (The graph of = L’(6, 1, X) lies between the graphs gf= L (Px) and
y = —¢(6,1, X) inFig. 5.)

Now assume that some chofdhas length at least 1. The area of the polydgon=
(fy,..., fy) is at leastx — X. A lower bound onL (P) is the perimeteL (Ps) of this

polygon.

Lemma8.1. L(P;)+ e(N, a, X) > 0, in situations(1) and(2).

Proof. We develop an isoperimetric inequality for polygons of area at leastX,
constrained so that one of the edges has length at least 1. We may assume that the area is
0.996 — X. By well-known principles, the optimal polygon is inscribed in a circle with
unconstrained edge lengthsnd constrained edge length niaxt). The areaAn(r)
and perimeter mad, t) + (N — 1)t are monotonic increasing functions of the circle’s
radiusr .

Now X = Xn(r) = 0.996— An(r), so

A(P) = gn(r) :=max(d,t) + (N — Dt + e(N, 1, Xn()).

The functiongyn (r) is easily estimated because of the monotonicity ahd Ay. For
a < b, we write

on(a, b) = maxd,t(a) + (N — Dt(@) + (N, 1,0.996— Ay (b)).
ThenA(P) > gn(r) > gn(a, b), forr € [a, b]. In situation (1),
X6(0.671) < —0.119< X < 0.1 < X5(0.61).
Thus, it can be seen that(P) > 0, by computing the constants
06(0.61+ 0.001k, 0.611+ 0.001k) > O,

fori =0,...,60. (The constants are all at leadd®.) Situation (2) is similar. O

Appendix. A Proof of Proposition 6.1

Let P have chordsf; of length¢;. In this appendix we give a proof of the following
result.

Proposition 6.1-A. Choose constants s addso thatl; <s < ¢ <> ¢, foralli.If
IX(P)| < ws?/8, then

L(P) = Cards, | X(P)|/?).
We obtain the version of the proposition that is stated in Section 6 by takirgl,

¢ =L(N,a, X(P)), N(P) <7, andx € [0.996, 1]. Note that under these conditions,
0.119 < s?/8 and¢ arqg(s, | X(P)|/£) = L'(N, «, X).
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Fig. 10

Proof. We flatten out the perimeter of the polygon by arranging its edgedong a

line as shown in Fig. 10. Without loss of generality, we may assume thaf{elhave

the same sign. (See Section 5, noting that the truncagi@not used in this appendix.)
Next we analyze two particular edges of lengthsv) = (4, ¢;). Let the lengths of

the two circular arcs bedd, and 206,, where ¥ p is common curvature of the two arcs

(see Section 6.1). That ig, is the angle subtended by the arc and its chord (Fig. 11).
Set

t — sin(t) coqt)

pt) = SiP(t)
t
at) = sin(t)
We have

bi+4 = u+v, (A.1)
A(Ix(e)] + IX()]) = u*p(By) + v?p(6,), (A2)
perim(e ) + perim(g)) = uq(6y) + vq(b,), (A.3)
0 = using, — vsing,. (A.4)

These four equations give the length of the chords, the enclosed area, the arc length of
the circular arcs, and the equal curvature condition for the two edges(Wdte the area
Ix(&)|+|x(g)|, viewed as a function af by fixing the combined length +¢;, perimeter
perim(e) + perim(gj), and the equal curvature condition. It is defined implicitly by
(A.1)—(A.4).

Lemma A.1.
£'(u) = p(cosh, — cosby).

In particular, £’(u) > 0,if0< 0, <6, <.

Ou m

Fig. 11
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Proof. We compute the derivativg(u) by implicit differentiation of (A.1)—(A.4). The
differentials of these four equations give four homogeneous linear relations afpng
dv, df,, db,, andd&. Solving the linear system fatt /du, we obtain the result. O

Remark A.2. Johnsonand Morgan have observed thatthe ineqgality > p cos, —

p €0sd, can be seen geometrically without a calculation. This inequality is all that is
needed for the proof of Proposition 6.1-A. (In fagt,> 0 is all that is needed.) The
heights of the two bumps in Fig. 11 anéd,), h(6,), whereh(6) = p — p cos. We can
increase the area by

(h(6w) —h(6,))Au,

by cutting a vertical slice of areh(6,)Au from the middle of the small bump, and
adding a vertical slice of ard®6,) Au to the middle of the large bump. To first order,
this keeps the length of the perimeter constant. The optimal increase i&reaat
least the increase in area obtained by this strategy. Hence the inequality.

The lemma leads to a proof of the proposition. By the equal curvature condition
(Section 6.1), ifu > v, theng, > 6,, so lengthening longer chords decreases the
perimeter for fixed areas.

By continuity, itis enough to prove the proposition whesa a/bis a rational number.

We apply the lemma to pairs of chords, increasing the longer aherd and decreasing
the shorter chora > 0, keeping the surn + v fixed, continuing until every segment
has length 0 os, except for one of length between 0 asnd

7s?/8 is the area of a semicircle with diamegeiBy the equal curvature condition
(Section 6.1), any circular arc greater than a semicircle must lie along a chord of length
s. The area under such an arc is greater thaty8, contrary to hypothesis.

If Y ¢ > ¢, pick an edge of lengtls. The arce along that edge is less than a
semicircle. Decreasing the diametgrwhile fixing x(g) will decrease the length of
g. (This is a standard argument: decrease the obtuse angle of the triangle joining the
midpoint of g to the endpoints off;. This increases the area of the triangle, keeping
the perimeter fixed.) Continuing in this manner, we can decr®ageuntil £ = ) ¢;.
Again, we may assume that all lengths but onesaoeO.

We replicateb times these arcs and chords, enclosing a total area of atme’t8.

We continue to apply the lemmato pairs of chords until all edges have length Ataro
stage do the circular arcs along the chords of lesdicome semicircles. The perimeter
of the replicated version Bards, b| X|/a), so the perimeter of the unreplicated version
is £arqs, | X(P)|/¢) as desired. O
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