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Abstract
The boreal forest consists of drier sunlit and moister-shaded habitats with varying moss abundance. Mosses control vascu-
lar plant–soil interactions, yet they all can also be altered by grazers. We determined how 2 decades of reindeer (Rangifer 
tarandus) exclusion affect feather moss (Pleurozium schreberi) depth, and the accompanying soil N dynamics (total and 
dissolvable inorganic N, δ15N), plant foliar N, and stable isotopes (δ15N, δ13C) in two contrasting habitats of an oligotrophic 
Scots pine forest. The study species were pine seedling (Pinus sylvestris L.), bilberry (Vaccinium myrtillus L.), lingonberry 
(V. vitis-idaea L.), and feather moss. Moss carpet was deeper in shaded than sunlit habitats and increased with grazer 
exclusion. Humus N content increased in the shade as did humus δ15N, which also increased due to exclusion in the sunlit 
habitats. Exclusion increased inorganic N concentration in the mineral soil. These soil responses were correlated with moss 
depth. Foliar chemistry varied due to habitat depending on species identity. Pine seedlings showed higher foliar N content 
and lower foliar δ15N in the shaded than in the sunlit habitats, while bilberry had both higher foliar N and δ15N in the shade. 
Thus, foliar δ15N values of co-existing species diverged in the shade indicating enhanced N partitioning. We conclude that 
despite strong grazing-induced shifts in mosses and subtler shifts in soil N, the N dynamics of vascular vegetation remain 
unchanged. These indicate that plant–soil interactions are resistant to shifts in grazing intensity, a pattern that appears to be 
common across boreal oligotrophic forests.
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Introduction

Across boreal and tundra biomes, mosses contribute to 
plant biodiversity, biomass, and productivity (Gjerde et al. 
2005; Nilsson and Wardle 2005; Cornelissen et al. 2007) 
and control ecosystem characteristics (Turetsky et al. 2012). 
For instance, water retaining and insulating mosses control 

soil microclimate and microclimate-dependent nitrogen 
(N) mineralization (Gornall et al. 2007; Bernier et al. 2011; 
Elumeeva et al. 2011; Soudzilovskaia et al. 2013). Mosses 
also trap N directly from deposition, support biological N 
fixation and N uptake from soil (DeLuca et al. 2002; Rousk 
et al. 2013), and supply soil with litter of varying decompos-
ability that may all influence soil N availability, organic mat-
ter pools, and, ultimately, vascular vegetation N availability 
(van der Wal et al. 2001; Bengtsson et al. 2018; Chiapusio 
et al. 2018; Philben et al. 2018). Additionally, moss effects 
on ecosystem functions may also vary due to environmen-
tal conditions such as changes in air temperature and pre-
cipitation (De Long et al. 2016a; Lett et al. 2020). Today, 
mosses are one of the more susceptible life forms to the on-
going global environmental changes (Elmendorf et al. 2012; 
Fraser et al. 2014; Becker Scarpitta et al. 2017). Since global 
changes—year-round warming, changes in snow depth and 
changes in land use—are pronounced and rapidly occur-
ring in the North (IPCC 2019), unravelling the interactions 

Communicated by Tim Seastedt.

 *	 Maria Väisänen 
	 maria.vaisanen@oulu.fi

1	 Ecology and Genetics Research Unit, University of Oulu, 
Oulu, Finland

2	 Arctic Centre, University of Lapland, Rovaniemi, Finland
3	 Department of Arctic and Marine Biology, UiT The Arctic 

University of Norway, Tromsø, Norway
4	 Department of Biological Science, University of Alaska 

Anchorage, Anchorage, AK, USA
5	 UArctic, Rovaniemi, Finland

http://orcid.org/0000-0001-9055-8443
http://crossmark.crossref.org/dialog/?doi=10.1007/s00442-021-04957-0&domain=pdf


840	 Oecologia (2021) 196:839–849

1 3

among mosses, their environment, and ecosystem functions 
is urgent.

Mosses together with lichens and ericaceous dwarf shrubs 
form the boreal forest (taiga) floor vegetation, which is partly 
controlled by wildfires and consequent succession where 
lichens dominate early and mosses and dwarf shrubs later 
in the successional sequence (Nilsson and Wardle 2005). 
However, at smaller scales, these plants alternate depending 
on microclimate: in comparison to mosses and dwarf shrubs, 
lichens are more abundant in drier microclimatic habitats 
sustained by soil properties and forest canopy structure 
(Haughian and Burton 2018; Vitt et al. 2019). Furthermore, 
mosses and lichens respond to ungulate grazers, such as 
reindeer (Rangifer tarandus L. caribou in North America), 
whose decimating impacts on lichens are well established 
across taiga and tundra (Bernes et al. 2015; Köster et al. 
2015; Horstkotte and Moen 2019; Uboni et al. 2019). On 
the contrary, the impact of ungulate grazers on tundra and 
taiga mosses can range from negative to neutral and positive 
(Väre et al. 1996; van der Wal and Brooker 2004; Olofsson 
et al. 2010; Chollet et al. 2013; Bernes et al. 2015; Köster 
et al. 2015) pointing towards contextual ungulate impact 
on mosses and, consequently, moss-mediated ecosystem 
functions.

In boreal forests, locally occurring variations in mosses 
due to microclimate and grazing may couple with complex 
changes in ecosystem functions. For instance, ceased graz-
ing could deepen moss carpet, which could in turn enhance 
N mineralization and thus improve vascular plant growth 
(Ohtonen and Väre 1998; De Long et al. 2016b; Pacé et al. 
2018). Yet, these effects could vary depending on whether 
deepening mosses have a beneficial (e.g., increased mois-
ture) or unfavorable (e.g., soil cooling) impact on soil micro-
climate (Väre et al. 1996; van der Wal and Brooker 2004; 
Olofsson et al. 2010). In addition to the moss-mediated 
pathways, grazing affects N cycling through nutrient-rich 
excreta (Bardgett and Wardle 2003) and through trampling 
that affects soil redox potential and thus N mineralization 
(Schrama et al. 2013). Indeed, ungulate effects on soil N 
have been deemed controversial in boreal forests (Stark et al. 
2000, 2003; Kolstad et al. 2018). It remains unknown how 
grazing alters mosses, whether these alterations cascade 
down to vascular plant–soil interactions in boreal dry and 
sunlit patches vs. moist and shaded habitats, and how these 
shifts, in turn, compare with the inherent differences due to 
habitat alone. Resolving these processes could inform on 
the extent and underlying mechanisms of grazer relative to 
habitat controls over boreal ecosystem functioning.

Stable N (δ15N) and carbon (C, δ13C) isotope ratios of 
plants and soils can reveal the mechanistic interactions 
between above- and below-ground systems (Dawson et al. 
2002; Craine et al. 2009; Elmore et al. 2017). Changes in 
δ15N can reflect differences in soil N availability and plant N 

acquisition strategies (Welker et al. 2003; Barthelemy et al. 
2017). N-rich conditions sustain soil processes (e.g., leach-
ing, gaseous losses) that induce 15N enrichment of the soil 
(inorganic) N pool from which plants draw their N, resulting 
in foliar δ15N enrichment; N-poor conditions sustain more 
conservative N processing, where N is mostly in organic 
forms that are 15N depleted and lead to depleted foliar δ15N 
values (Högberg 1997; Hobbie and Colpaert 2003). Further-
more, in N-limited systems, plant species differentiate in 
the timing, depth, and chemical form of N uptake to enable 
species co-existence (Nadelhoffer et al 1996; McKane et al. 
2002). This induces divergence in their foliar δ15N compo-
sition that may also change due to mycorrhizal symbionts 
that discriminate the 15N isotope differently (Michelsen 
et al. 1998; Hobbie and Colpaert 2003; Hobbie et al. 2008). 
Changes in foliar δ13C reflect plant water relations, stoma-
tal conductance, and photosynthetic activity that could shift 
due to altered environmental conditions (Welker et al. 2003; 
Gavazov et al. 2016). For example, since plant production 
in boreal forests is often N-limited (Högberg et al. 2017), 
increased soil N may increase plant N, which boosts pho-
tosynthesis enriching foliar δ13C values, while drier condi-
tions may also lead to foliar δ13C enrichment (Dawson et al. 
2002; Wei et al. 2015). In boreal forests, foliar and soil N 
and C isotopes differ along post-fire successional gradients 
(Hyodo and Wardle 2009; Hyodo et al. 2013), yet whether 
habitat and grazers also alter the isotopic signature remains 
uncertain.

To improve our mechanistic understanding about herbi-
vore–plant–soil interactions in boreal systems, we studied 
plant and soil characteristics in dry sunlit and moist shaded 
habitats (herein: “sunlit” and “shaded”) of a boreal pine for-
est that was either grazed by ungulates or had been protected 
from ungulates for over 2 decades. Specifically, we test the 
hypotheses that: (1) Moss carpet is deeper in the shaded 
than in the sunlit habitats, and deepens by grazer exclusion 
in both habitats. (2a) Soil N availability and mineralization 
are greater in the shaded than in the sunlit habitats and they 
increase by grazer exclusion in both habitats, and (2b) these 
increases associate with increasing moss depth. (3) Chemi-
cal composition varies among plant species, with vascu-
lar plant foliar N, δ15N, and δ13C values increasing in the 
shaded habitats and after grazer exclusion (higher soil N), 
whereas mosses exhibit weaker responses, since they are 
more independent of soil N relative to vascular plants.

Materials and methods

Study site

The study site is located in a boreal coniferous forest in 
northeast Finland, close to the Oulanka research station 
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(66° 37.153′ N, 29° 31.535′ E, 166.5 m a.s.l., Suppl. Fig. 
S1a). Scots pine (Pinus sylvestris L., non-cultivated) is the 
canopy-forming tree species, which mostly survived from 
the most recent wildfire phase between 1912 and 1925 
(Mickleburgh 2006) and thus forms a mixed-aged forest 
dominated by older trees. The forest field layer consists 
of two different habitat types that alternate at 2–5 m dis-
tances: (1) the drier, more “sunlit habitat”, dominated by 
reindeer lichens (Cladonia sp.) growing over feather mosses 
(Pleurozium schreberi (Willd. ex Brid.) Mitt.), and (2) the 
moister, more “shaded habitat”, dominated by feather moss 
and ericaceous dwarf shrubs (Suppl. Fig. S1b, for vegetation 
community differences among habitats, see Suppl. Tables 
S1 and S2). The soil moisture at 5 cm depth was on aver-
age 174.3 ± 18.7 mV in the sunlit and 206.7 ± 34.9 mV 
(mean ± SE) in the shaded habitats during July 2019 (Delta 
T SM150T). The amount of photosynthetically active radi-
ation (PAR) was 424 ± 335 μmol photons m−2 s−1 in the 
sunlit and 341 ± 254 μmol photons m−2 s−1 (mean ± SE) in 
the shaded habitats during 22–31 Jul 2019. Soils are freely 
draining sandy tills and gravels classified as haplic pod-
zol, and the organic horizon, comprising litter and humus, 
is 0.5–5 cm. The long-term mean annual temperature is 
− 0.2 °C, July being the warmest (15.0 °C) and January the 
coldest (− 14.6 °C) month, and the mean annual precipita-
tion is 550.9 mm (1967–2018, Oulanka research station). 
The semi-domesticated reindeer (Rangifer tarandus L., wild 
caribou in North America) and elk (Alces alces L., moose in 
North America) are common local ungulates with reindeer 
population density being 1.3 individuals per km2 (https://​
palis​kunnat.​fi/​py/​palis​kunnat/​palis​kunti​en-​tiedot/​alaki​tka/) 
and elk population density 0.3 individuals per km2 (http://​
riist​ahava​innot.​fi/​hirvi​elaim​et/​hirvi​tiheys).

Grazing treatment and experimental setup

This study was conducted using a long-term fenced area 
where ungulate grazing has been excluded (hereafter 
referred to as “fenced”), as well as the adjacent grazed 
area (hereafter referred to as “grazed”) comprising a simi-
lar bedrock, topography, and slope. The fence (2 m high, 
mesh size 100 × 200 mm) was built in 1994 and covers a 
100 × 120 m area. The fence has been meticulously main-
tained since construction and provides an effective barrier 
to the local ungulate grazers while allowing smaller graz-
ers, such as hare and voles, to pass through. At the time 
of our study, the density of pine trees (diam. > 1 cm at 
1.3 m height) was 4331 ± 337 trees ha−1 in the fenced and 
4883 ± 561 trees ha−1 (mean ± SE) in the grazed area. The 
grazing treatment had not affected the composition of the 
vegetation community (Suppl. Tables S1, S2). Sampling was 
conducted following a setup that consisted of 12 blocks, six 
blocks in the fenced area and six blocks in the grazed area, 

sampled towards different directions around the fence. The 
distance of the blocks to the fence was ≥ 5 m to omit any 
fence effects and the distance between blocks was ≥ 20 m. 
Each block (5 × 5 m) covered both sunlit and shaded habitat 
that each formed an experimental plot, thus resulting in 24 
plots (Suppl. Fig. S1c). The ground vegetation of these plots 
consisted either of reindeer lichens growing over mosses 
(sunlit) or solely of mosses (shaded).

Plant and soil sampling

For foliar chemistry analysis, we sampled pine (P. sylvestris) 
seedlings (15–20 cm height), lingonberry (Vaccinium vitis-
idaea), and bilberry (V. myrtillus) on 9–10 Jul 2018, and on 
26–27 Sep 2018, we additionally sampled feather mosses 
(P. schreberi). Lingonberry and mosses were found from 
all plots (n = 24), bilberry from 20 plots, and pine seedlings 
from 15 plots. Whenever the study plant was present in the 
plot, several shoots of a vascular plant species and several 
samples of mosses were collected. In September 2018, we 
also collected reindeer feces from six random locations in 
the grazed area to be used as a reference of nutrient input 
levels. After sampling, vascular plant leaves were sorted 
from stems; for pine seedling and lingonberry, the green 
fully developed leaves from top of the stem were collected, 
and green biomass of mosses was separated from brown 
necromass. Due to logistics, we pooled moss samples by 
forming pairs of the adjacent spatial blocks but still retain-
ing the grazing and habitat treatments. We considered these 
pooled moss samples (n = 12) to represent yet another six 
blocks. All samples were air-dried (18 °C).

For soil chemistry analysis, we collected a representa-
tive soil sample (11–13 Aug 2018) at each plot (6–12 cores 
per plot, corer diam. 3 cm) down to a maximum depth of 8 
cm after pushing aside mosses. The number of cores varied 
depending on the depth of humus horizon (Suppl. Table S4), 
and when very shallow, more cores were needed to secure 
enough material for analyses. All cores reached mineral 
horizon, which included a mix of eluviated bleaching and 
illuviated enrichment horizons. In line with soil sampling, 
moss layer thickness was measured at 4–9 locations in each 
plot to an accuracy of 0.1 cm. Lichen layer thickness was 
not measured as lichens were abundant only in the sunlit 
habitats and we considered their effect to be integrated with 
the effect of habitat. Each soil core was split into humus and 
mineral horizon, and the thickness of horizons was recorded, 
after which all soil cores were pooled by horizon to a com-
posite humus and a composite mineral soil sample for each 
plot. Samples were stored cool (+ 5 °C), and organic (2 mm 
mesh size) and mineral (1.4 mm mesh size) samples were 
homogenized. Soils were analyzed for moisture (+ 105 °C, 
24 h), and loss on ignition (+ 475 °C, 4 h), and soil slurries 
(10 mL fresh soil, 50 mL MilliQ) were analyzed for pH 

https://paliskunnat.fi/py/paliskunnat/paliskuntien-tiedot/alakitka/
https://paliskunnat.fi/py/paliskunnat/paliskuntien-tiedot/alakitka/
http://riistahavainnot.fi/hirvielaimet/hirvitiheys
http://riistahavainnot.fi/hirvielaimet/hirvitiheys
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(Schott-Geräte pH-Meter CG 832) and conductivity (ATI 
Orion model 170 Conductivity Meter). The known dry 
weight and sampled soil volumes were used to calculate dry 
bulk density. Fresh soils were extracted with MilliQ (dry 
weight-to-total water ratio 1: 52, 2 h, 420 min−1), filtered 
(MN619eh, Macherey Nagel), and analyzed for NH4-N and 
NO3-N + NO2-N (FIA Lachat) that were summed for total 
dissolvable inorganic nitrogen (DIN).

Sample preparation and elemental and stable 
isotope analyses

The elemental composition and stable isotopes were ana-
lyzed from all vascular plant samples (n = 59), pooled moss 
samples (n = 12), droppings (n = 6), and humus soil (n = 24). 
Plant and dropping samples were dried (+ 50 °C, 72 h) and 
homogenized into a fine powder (Tissue Lyser). The humus 
soil samples were dried (+ 50 °C, 24 h) and homogenized 
into a fine powder with a ball mill. The C and N contents (% 
dry weight, used to obtain C:N ratios) and stable isotopes, 
13C and 15N, were analyzed with Carlo Erba Flash EA1112 
elemental analyzer connected to a Thermo Finnigan DELTA 
plus Advantage continuous flow stable isotope-ratio mass 
spectrometer (CF-IRMS). Results are expressed as ratios 
using the standard δ notation as parts per thousand (‰) 
difference from the international standards: Vienna Pee Dee 
belemnite (for C) and atmospheric N2 (for N). Precision was 
always better than 0.06‰ for C and 0.31‰ for N based 
on the standard deviation of replicates of the standards run 
repeatedly after every five samples in each sequence.

Statistical analyses

To test our hypotheses, we employed linear mixed mod-
els in R (package nlme, Pinheiro et al. 2018) using spa-
tial block as a random intercept to account for the spatial 
structure of the experimental design. The replication of 
spatial blocks was 12 for moss depth and soil parameters 
and 18 for foliar parameters. First, to test the effects of 
treatments on moss depth (hypothesis 1), we used addi-
tive and interactive effects of habitat and grazing as the 
model fixed terms. To test our second hypothesis, we 
modelled the additive and interactive effects of habitat 
and grazing (treatment model) on five soil response vari-
ables (humus N%, C:N, δ15N, humus and mineral horizon 
DIN), each in separate models. In addition, we tested how 
moss depth explained each of these soil response vari-
ables. To this end, we fitted models with moss depth as 
the model fixed term (moss model) and compared treat-
ment models with moss models based on information cri-
teria (Burnham and Anderson 2002; Brewer et al. 2016), 
and thereafter modelled effects of moss depth on our soil 
response variables. To test our third hypothesis, we used 

a three-way interaction of grazing, habitat, and species—
P. sylvestris, V. myrtillus, V. vitis-idaea, and moss–as a 
fixed term to model differences in foliar chemistry (N%, 
C:N ratio, δ13C, δ15N). To evaluate significant interactions, 
we compared species-treatment contrasts using a Tukey’s 
post hoc test (emmeans-package, Lenth 2020). Model fit 
was confirmed visually by inspecting residual plots, and 
Log10-transformed data were used for soil DIN and foliar 
C:N ratio to ensure model fit. Full model summary tables 
for soil and plant chemistry are reported in the electronic 
supplementary materials (Suppl. Tables S3a, b, S5). Pack-
age ggplot2 (Wickham 2016) was used for data visualiza-
tions. All statistical analyses were conducted using the 
statistical software R (R Development Core Team, version 
3.5.0).

Results

Moss depth

Moss depth was twofold in the shaded in comparison to the 
sunlit habitats (significant effect of habitat, F1,10 = 96.93, 
P < 0.0001), and grazer exclusion deepened moss car-
pet 80% compared to the grazed area (significant effect 
of grazing, F1,10 = 42.14, P = 0.0001, Fig. 1). Effects of 
habitat and grazing on moss depth did not interact (habi-
tat × grazing–interaction, F1,10 = 2.703, P = 0.1311, Fig. 1).

Fig. 1   Depth of moss carpet in the boreal forest sunlit (light-grey 
points) and shaded (dark-grey points) habitats either with (grazed; 
triangles) or without (fenced; circles) ungulate grazing. Replication 
for each habitat-grazing combination was six (6). Larger symbols and 
error bars represent group means with 95% CI estimated by the linear 
mixed model, whereas smaller symbols indicate observations from 
individual sampling plots. Significance levels are ***P < 0.0001, NS 
non-significant
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Soil chemistry

Humus and mineral horizon N chemistry varied both due to 
habitat and grazing (Table 1). Humus N was 28% and humus 
C:N ratio was 17% higher in the shaded than in the sunlit 
habitats (Table 1, Fig. 2a, b). The concentration of DIN in 
the humus and the mineral soil horizons did not differ due 
to habitat but tended to vary due to grazing (Table 1). In the 
humus horizon, grazing increased DIN twofold, yet with 
high between-block variability (Fig. 2c, Suppl. Table S3a), 
whereas in the mineral horizon grazing decreased DIN 32% 
in comparison to the fenced treatment (Fig. 2d). Humus 
δ15N was more enriched in the shaded than in the sunlit 
habitats (Table 1). Grazing tended to interact with habitat 
(P = 0.0683, Table 1, Suppl. Table S3a), and humus δ15N 
values were the most depleted in the grazed sunlit habitats 
while being more similar (enriched) in the fenced sunlit 
habitats and in the shaded habitats (Fig. 2e). Notably, soil 
parameters were closely correlated with variation in the 
moss depth (see Suppl. Table S3b), as all variables except 
for DIN in humus layer increased significantly with increas-
ing moss depth. Models including moss as the only fixed 
term performed consistently better compared to models with 
grazing and habitat treatments, based on information criteria 

comparison (Suppl. Table S3c). The other soil properties are 
available in Suppl. Table S4.

Foliar chemistry

Foliar chemistry varied due to species identity in interaction 
with habitat (Table 2, Suppl. Table S5). Foliar N content 
was the lowest in mosses, intermediate in V. vitis-idaea, 
the highest in Pinus seedling and V. myrtillus, and varied 
between the habitats depending on the species (Table 2). 
Foliar N contents of Pinus seedlings and V. myrtillus were 
25 and 7.5% higher in the shaded than in the sunlit habitats, 
respectively (Fig. 3a). Following the patterns in the foliar N 
content, foliar C:N ratios were the highest in mosses, inter-
mediate in V. vitis-idaea, and the lowest in Pinus seedling 
and V. myrtillus and varied between the habitats depend-
ing on the species, as the C:N ratio of Pinus seedling was 
20% lower in the shaded than in the sunlit habitats (Table 2, 
Fig. 3b). Foliar δ13C values varied due to species and were 
more depleted in V. myrtillus and mosses in comparison to 
Pinus seedling and V. vitis-idaea (Fig. 3c, Table 2). In addi-
tion, foliar δ13C values showed significant responses to both 
grazing and habitat depending on the species (Table 2). The 
foliar δ13C values of Pinus seedling were more enriched in 
the fenced than in the grazed treatment especially in the 
shaded habitat; however, replication was only two for both 
grazing treatments, questioning the generality of this pat-
tern (Fig. 3c). In addition, the foliar δ13C values of mosses 
were more depleted in the shaded than in the sunlit habi-
tats (Fig. 3c). Foliar δ15N values also varied due to species 
and were more depleted in Pinus seedlings in comparison 
to the other two vascular plant species and mosses that did 
not differ from each other (Fig. 3d, Table 2). Foliar δ15N 
varied in response to habitat depending on the species, and 
Pinus seedlings had more depleted foliar δ15N values in the 
shaded than in the sunlit habitats, while V. myrtillus had 
more enriched foliar δ15N values in the shaded than in the 
sunlit habitats (Fig. 3d).

Discussion

We examined how the inherent variation between sunlit and 
shaded habitats and over 2 decades of ungulate grazer exclu-
sion affected boreal forest’s understory vegetation and soil 
N dynamics. The magnitude and direction of the impacts 
of habitat and grazing varied depending on the ecosystem 
component and measured variable: for instance, the depth 
of moss carpet responded to both habitat and grazing, soil 
inorganic N responded to grazer exclusion, while foliar δ15N 
showed species-dependent responses to habitat.

Feather mosses formed deeper carpets in the shaded 
than in the sunlit habitats and, moss carpets were deeper 

Table 1   The ANOVA results for nitrogen content (N%), carbon-to-
nitrogen (C:N) ratio, and δ15N in humus horizon and for dissolved 
inorganic N (DIN, the sum of ammonium, nitrate, and nitrite) in 
humus and mineral horizon

Grazing (grazed vs. fenced), habitat (sunlit vs. shaded), and their 
interactions were used as the fixed terms, and spatial block (n = 12) 
as the random term. The replication was always six for each habitat-
grazing combination except for N, C:N ratio, and δ15N, which rep-
lication was only five for sunlit-grazed and sunlit-fenced treatment 
combinations. Bold denotes statistically significant (P < 0.050) and 
italics marginally (P < 0.100) significant effects. Log10-transformed 
data were used for DIN

Fixed effects Df F value P value

N% Grazing 1, 10 0.101 0.7572
Habitat 1, 8 16.02 0.0039
Graz × Hab 1, 8 0.936 0.3616

C:N ratio Grazing 1, 10 2.490 0.1456
Habitat 1, 8 12.93 0.0070
Graz × Hab 1, 8 0.114 0.7440

δ15N Grazing 1, 10 1.247 0.2901
Habitat 1, 8 11.01 0.0105
Graz × Hab 1, 8 4.436 0.0683

Log10
(DINhumus)

Grazing 1, 10 3.490 0.0913
Habitat 1, 10 2.218 0.1672
Graz × Hab 1, 10 0.039 0.8459

Log10
(DINmineral)

Grazing 1, 10 3.806 0.0796
Habitat 1, 10 2.823 0.1238
Graz × Hab 1, 10 2.414 0.1513
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after grazer exclusion, in support of our first hypothesis. 
In tundra, exclusion of ungulate grazing also deepens moss 
carpets most likely due to ceased trampling (Tuomi et al. 
2020). In the sunlit habitats, the deepening resulted in 
moss depths that were nearly the same as in the (grazed) 
shaded habitats and, thus, sunlit habitats without grazing 
became more shaded-like with respect to their moss carpet 
(Fig. 1). It is plausible that grazing-induced declines in 
moss depth may cascade into moss-mediated soil water 
availability, and could even amplify the differences that 

exist among drier and moister microclimatic habitats in 
(oligotrophic) boreal forests (Haughian and Burton 2018).

Humus N content was higher in the shaded than in the 
sunlit habitats, whereas excluding grazing increased inor-
ganic N concentration in the mineral soil horizon in both 
habitats and enriched humus δ15N values in the sunlit habi-
tats. These patterns are also associated with deepening moss 
carpet, thus supporting our second hypothesis that soil N 
availability and mineralization would increase in the shade 
as well as in response to grazer exclusion, and that these 

Fig. 2   Soil nitrogen in the boreal forest sunlit (light-grey points) 
and shaded (dark-grey points) habitats either with (grazed; trian-
gles) or without (fenced; circles) ungulate grazing. Larger symbols 
and error bars represent group means with 95% CI estimated by the 
linear mixed model, whereas smaller symbols indicate observations 
from individual sampling plots. a Total N content (% dry matter) in 

the humus horizon, b C:N ratio in the humus horizon, c inorganic N 
(the sum of ammonium, nitrate, and nitrite) in the humus and d and 
in the mineral soil horizon, and e δ15N in the humus horizon. Note a 
truncated y-axis in panel (b), as well as Log10-scaled y-axis in panels 
(c) and (d). Significance levels are **P < 0.01, †P < 0.100, NS non-
significant
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changes are mediated via mosses. In the shade, the increased 
humus N content was diluted into greater amount of C (i.e., 
humus C:N ratio increased); we suggest that this N likely 
originates from the C-rich moss necromass, which is ample 
in all but grazed sunlit habitats, if moss depth is used as a 
proxy of necromass. Consequently, the patterns in the humus 
C:N ratio closely parallel those in the moss depth as do the 
patterns in humus δ15N (Figs. 1, 2b, e). This latter could 
stem from the beneficial effects of (deepening) mosses on 
litter decay and soil microbial N mineralization (Gornall 
et al. 2007; De Long et al. 2016b). Increasing mineraliza-
tion sustains processes, such as leaching, that discriminate 
against 15N, thus inducing higher δ15N values (Amundson 

et al. 2003). The higher inorganic N concentration in the 
mineral horizon due to the grazer exclusion (and moss depth 
increase) supports the postulate of increased N leaching 
from the humus. In addition to these moss-linked patterns, 
grazers increased inorganic N concentration in the humus 
horizon, plausibly via a direct fertilization effect (Stark and 
Väisänen 2014). Large grazers may have weak and or site-
dependent effects on soil N in boreal forests (Stark et al. 
2003; Kolstad et al. 2018). Yet, our findings indicate that 
at least in dry oligotrophic forests, grazing effects may be 
easily missed if habitat variation and co-occurring grazer-
induced changes in the moss layer are not considered.

Foliar N contents of the ectomycorrhizal evergreen Pinus 
seedling and the ericaceous deciduous dwarf shrub, V. myr-
tillus, were higher in the shaded than in the sunlit habitat 
(Fig. 3a). This may correspond with the higher humus N 
content observed in the shade, and could also be driven 
by the deeper moss carpets that benefit N uptake of pine 
seedlings under harsh conditions (Lett et al. 2017). All vas-
cular plants had depleted foliar δ15N values in comparison 
to humus as found previously (Michelsen et al. 1998; Bar-
thelemy et al. 2017) and caused by their mycorrhizal sym-
bionts that accumulate 15N isotope (Hobbie and Colpaert 
2003). In addition, foliar δ15N values of Pinus seedlings 
and V. myrtillus varied with habitat, whereas habitat did not 
affect δ15N values in the ericaceous evergreen dwarf shrub, 
V. vitis-idaea, and non-mycorrhizal mosses (Fig. 3d). These 
findings partly support our third hypothesis of stronger 
responses in vascular than non-vascular plants to environ-
mental drivers. The coupled increases in foliar N content 
and δ15N values in V. myrtillus followed our prediction that 
higher plants can shift their relative proportions of N sources 
that are enriched and more abundant in soil (Högberg 1997; 
Hobbie and Colpaert 2003; Barthelemy et al. 2017). To the 
contrary, Pinus δ15N values decreased as foliar N content 
increased in the shaded (N-rich) habitats. Consequently, the 
foliar δ15N values of these two plant species were more simi-
lar in the sunlit than in the shaded habitats. Indeed, boreal 
trees and dwarf shrubs can have similar foliar δ15N values, 
which suggests similar proportions of divergent N sources 
(Hyodo et al. 2013). Our findings expand this understanding 
and suggest that the similarity of plant species’ δ15N val-
ues in boreal oligotrophic forests may be driven by resource 
availability and plant uptake strategies and capabilities.

More specifically, plant species δ15N values are simi-
lar when resources are limited, such as in sunlit habitats 
where drought limits microbes (Ohtonen and Väre 1998)—
including mycorrhizae—and thus reduced mycorrhizae-
dependent discrimination of 15N (Michelsen et al 1998). 
Furthermore, shallow humus limits the amount of organic-
bound N as well as space for roots and microbes, thus forc-
ing all vascular plants to scavenge for N from the mineral 
zone that is 15N enriched in boreal forests (Lindahl et al. 

Table 2   The ANOVA results for the foliar nitrogen content (N%), car-
bon-to-nitrogen (C:N) ratio, and δ13C and δ15N for plants

Grazing (grazed vs. fenced), habitat (sunlit vs. shaded), species (lin-
gonberry, bilberry, pine seedling, moss), and their interactions were 
used as the fixed terms, and spatial block (n = 18) as the random term. 
Foliar samples were replicated as follows: lingonberry (n = 24), bil-
berry (n = 20), pine seedlings (n = 15), and moss (n = 12, see Methods 
for more details). Bold denotes statistically significant (P < 0.050) and 
italics marginally (P < 0.100) significant effects. Log10-transformed 
data were used for C:N ratio

Fixed effects Df F value P value

N% Grazing 1, 16 0.783 0.3893
Habitat 1, 39 1.526 0.2242
Species 3, 39 215.6 < 0.0001
Graz × Hab 1, 39 0.426 0.5179
Graz × species 3, 39 1.809 0.1615
Hab × species 3, 39 4.900 0.0055
Graz × Hab × species 3, 39 0.603 0.6170

Log10
(C:N ratio)

Grazing 1, 16 0.03 0.8635
Habitat 1, 39 0.14 0.7139
Species 3, 39 280.5 < 0.0001
Graz × Hab 1, 39 0 0.9633
Graz × species 3, 39 2.30 0.0919
Hab × species 3, 39 2.97 0.0433
Graz × Hab × species 3, 39 1.53 0.2214

δ13C Grazing 1, 16 2.83 0.1122
Habitat 1, 39 9.93 0.0031
Species 3, 39 161.5 < 0.0001
Graz × Hab 1, 39 0.36 0.5512
Graz × species 3, 39 2.86 0.0492
Hab × species 3, 39 2.92 0.0459
Graz × Hab × species 3, 39 1.05 0.3818

δ15N Grazing 1, 16 0.096 0.7607
Habitat 1, 39 1.857 0.1808
Species 3, 39 18.96 < 0.0001
Graz × Hab 1, 39 0.000 0.9854
Graz × species 3, 39 0.474 0.7021
Hab × species 3, 39 4.757 0.0064
Graz × Hab × species 3, 39 2.149 0.1095
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2007). However, plant species δ15N values may start to 
diverge from each other when resources are not in demand, 
as in shaded habitats. There, deeper horizons of moss nec-
romass and humus may provide more moisture, space, and 
a greater proportion of organic-bound N sources in addi-
tion to inorganic N (Fig. 2a, c, d) that consequently allow 
greater variation in the plant’s N acquisition strategies.

In contrast with the foliar N attributes, foliar δ13C val-
ues of the studied vascular plants did not vary with habitat 
but only with species, as found previously in boreal for-
ests (Brooks et al. 1997; Hyodo et al. 2013). Compared 
to vascular plants, the water relations of mosses are more 
sensitive to environmental factors (Dawson et al. 2002), 
and indeed, we found mosses to be more enriched in δ13C 
values in the sunlit habitats compared to the shaded, 
indicative of a drier microclimate and or higher irradiance 

(Williams and Flanagan 1996; Brooks et al. 1997; Prentice 
et al. 2011).

To conclude, by considering the inherent sunlit ver-
sus shaded habitat variation of oligotrophic boreal forest 
understories, we found that ungulate grazing rivals the 
role of habitat type in controlling moss layer depth but 
has minimal direct effects on soil N pools and dynamics. 
These effects do not cascade down to the N attributes and 
ecophysiology of understory vascular vegetation, which 
instead is primarily dictated by species identity and, to 
a lesser extent, by habitat type. These findings highlight 
how in addition to large-scale boreal forest fire-induced 
successional phases (Nilsson and Wardle 2005), smaller 
scale habitat-driven processes also contribute to plant–soil 
interactions.

Fig. 3   Plant foliar chemistry in the boreal forest sunlit (light-grey 
points) and shaded (dark-grey points) habitats either with (grazed; 
triangles) or without (fenced; circles) ungulate grazing. Larger sym-
bols and error bars represent group means with 95% CI estimated by 
the linear mixed model, whereas smaller symbols indicate observa-
tions from individual sampling plots. Foliar a N content, b C:N ratio, 
c δ13C, and d δ15N of vascular plants and mosses. Note that in (d), 

for reindeer feces, a value of δ15N is shown as a reference of N input 
in sunlit and shaded habitats. The uppercase letters indicate signifi-
cant (at P < 0.05) differences between plant species within the sunlit 
and the shaded habitats and the lowercase letters indicate significant 
(at P < 0.10) differences due to habitat and grazing within a species, 
based on post hoc tests
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