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ABSTRACT42

Different species’ niche breadths in relation to ecological gradients are infrequently examined43

within the same study and, moreover, species niche breadths have rarely been averaged to account44

for variation in entire ecological communities. We investigated how average environmental niche45

breadths (climate, water quality and climate-water quality niches) in aquatic macrophyte46

communities are related to ecological gradients (latitude, longitude, altitude, species richness and47

lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and48

Wisconsin) on two continents. We found that correlations between the three different measures of49

average niche breadths and ecological gradients varied considerably among the study regions, with50

average climate and average water quality niche breadth models often showing opposite trends.51

However, consistent patterns were also found, such as widening of average climate niche breadths52

and narrowing of average water quality niche breadths of aquatic macrophytes along increasing53

latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in54

relation to temperature variations at higher latitudes and altitudes, whereas species in southern,55

lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern56

nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted57

to low-productivity conditions and are found in highland lakes. Our results emphasize that species58

niche breadths should not be studied using only coarse-scale data of species distributions and59

corresponding environmental conditions, but that investigations on different kinds of niche breadths60

(e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.61

62

Keywords: Aquatic plants, Climate, Lakes, Latitude, Niche width, Water quality63

64
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66

Understanding ecological phenomena in complex systems has posed a significant challenge to67

researchers (Low-Decarie et al. 2014), despite the availability of massive amounts of high quality68

data. Coarse-scale (e.g., grid cell-based resolution at a regional, continental or global scale) data on69

species distributions has revealed many interesting patterns in biodiversity, such as the latitudinal70

gradient in species diversity (Willig et al. 2003). Such coarse-scale data have many restrictions71

related to, for example, false species presences and limited availability of local environmental72

variables that narrow the possibilities of studying variation in biodiversity at finer scales (Guisan73

and Thuiller 2005; Franklin 2010). Therefore, many scientists have emphasised the increasing need74

to examine biodiversity patterns by combining broad spatial extent (i.e., from regional to global75

extents) with local resolution data (i.e., empirical survey-based data) on species distributions and76

environmental conditions (Ackerly et al. 2010; Beck et al. 2012). However, our current assumptions77

about ecological patterns have been challenged (e.g., species diversity-latitude relationship),78

because accepted biodiversity gradients may not hold when examined through the lens of fine-79

resolution data spanning broad spatial extents (Heino et al. 2011). Comparative studies using fine-80

resolution data from multiple regions have further shown that species can respond differently to the81

same ecological gradients among the regions (Kraft et al. 2011; Alahuhta and Heino 2013;82

Henriques-Silva et al. 2013; Bini et al. 2014; Heino et al. 2015a; Alahuhta et al. 2016a). These83

conflicting results have especially been found in freshwater ecosystems, where, at broad spatial84

extents, habitat-level factors (i.e., water quality and habitat structure) contribute equally or more85

strongly than climate to species distributions and community structure (Heino 2011; Beck et al.86

2013; Alahuhta 2015; Beck and Alahuhta 2016).87

88
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One of the fundamental species characteristics is its niche breadth, which generally describes the89

suite of environments or resources that species can inhabit or use (Brown 1984; Dolodec et al.90

2000). The niche breadth hypothesis states that species that have broad tolerances of environmental91

gradients and are able to use a wide range of resources are also widely distributed (Morin and92

Lechowicz 2013; Slatyer et al. 2013). On the other hand, species occupying a small range of93

environmental conditions are specialists with narrower distributions (Botts et al. 2012; Heino and94

Grönroos 2014). The hypothesis further predicts that both regional distribution and local abundance95

mirror the degree to which local environmental conditions meet a species’ requirements (Brown96

1984). In addition, these patterns in the distribution of generalist and rare species are expected to97

persist across temporal scales, as abundant species are more consistently present through time than98

rare ones, and widely-distributed species are more consistently distributed through time, and vice99

versa (Brown 1984; Heino 2005). For ecological gradients other than range size, the relationship of100

species niche breadth with environmental gradients has often been variable depending on the101

methods and the ecosystem studied (Vazques and Stevens 2004; Cirtwill et al. 2015).102

103

Some studies have reported a positive relationship between niche breadth and latitude (Sunday et al.104

2011; Rasmann et al. 2014), and the latitudinal gradient in species diversity is one of the most105

commonly recognised ecological phenomena (Willig et al. 2003). This positive relationship106

postulates that species in the tropics are more specialised than temperate species due to lower107

variability in environmental conditions in the low-latitude ecosystems (MacArthur 1972). However,108

Vasquez and Stevens (2004) found no such correlation in their meta-analysis, and Cirtwill et al.109

(2015) found support for the latitude-niche breadth hypothesis only for freshwater species but not110

for terrestrial, marine or estuarine species. For brachyuran crabs, only temperate species111

demonstrated a positive relationship between niche breadth and latitude (Papacostas and Freestone112
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2016). Furthermore, Lappalainen and Soininen (2006) discovered a negative correlation between113

niche breadths of fishes and latitude.114

115

The latitude-niche breadth hypothesis has gained variable degrees of support over the years.116

However, the relationship between niche breadth and biodiversity is even more complex. Increase117

in biodiversity often enhances the number of mutualistic relationships (Bascompte et al. 2003), for118

which the correlation between diversity and niche breadth can be positive if mutualism enables co-119

occurrence of species. However, increased species richness also generally increases competition120

(MacArthur 1972), which can have either positive or negative effects on niche breadth. If increased121

competition drives a species to specialise its resource use, biodiversity has a negative correlation122

with niche breadth (MacArthur 1968). Chejanovski and Wiens (2014) found that species richness123

was negatively associated with mean climatic niche breadth for temperate tree frogs, as climatic124

zones with high species richness contained more species with narrower climatic niche breadths. In125

contrast, the relationship is positive when species begin to utilize wider environmental gradients,126

mimicking behaviour of a generalist species (MacArthur 1968). Biodiversity is also related to127

habitat size, as species diversity typically increases with habitat size (MacArthur 1972; Rørslett128

1991). However, little is known about how biodiversity, habitat size and their combination per se129

affect niche breadth of species.130

131

Species niche breadths can also be viewed from a community ecology perspective by averaging132

single species niche breadths to account for the whole community composition (Doledec et al.133

2000). In this community-based approach (Figure 1), species with varying niche breadths (from134

narrow to wide tolerances of environmental conditions) simultaneously co-occur in a community,135

emphasising the importance of competition among species (Ricklefs 2008). For example, a negative136
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relationship between average niche breadth and species richness results from increased competition137

among species that have a broader niche which in turn decreases species diversity (Doledec et al.138

2000). By taking competition into account, species niche breadth hypotheses can be applied to139

community-based average niche breadths. Although species niche breadths have been studied140

intensively across ecosystems (e.g., Morin and Lechowicz 2013; Slatyer et al. 2013; Heino &141

Grönroos 2014; Cirtwill et al. 2015), community-based average niche breadths have received less142

attention.143

144

Studies on species niche breadth in freshwater ecosystems have focused on a few well-known145

organism groups, such as fish and macroinvertebrates (Heino 2005; Lappalainen and Soininen146

2006; Heino and Grönroos 2014; McCauley et al. 2014; Faulks et al. 2015; Cirtwill et al. 2015;147

Tonkin et al. 2016). Much less is known about aquatic macrophytes, which are key primary148

producers in freshwaters in addition to providing habitat, shelter and breeding area for various other149

aquatic and terrestrial species (Garcia-Llorente et al. 2011). Considering ecological gradients, many150

aquatic macrophytes have wide distribution range sizes, suggesting that they have broad tolerance151

of environmental gradients (Chambers et al. 2008). Macrophyte species richness is shown to follow152

the classical latitudinal trend (Chappuis et al. 2012); however, species diversity has sometimes153

peaked at intermediate latitudes or shown no relationship with latitude (Crow 1993), depending on154

the study scale. Studies on the species richness–area relationship of aquatic macrophytes have often155

shown a positive correlation (Rørslett 1991; Alahuhta 2015), although disparate results have been156

reported (Hinden et al. 2005; Vestergaard and Sand-Jensen 2006). To our knowledge, however, no157

previous investigations have studied the relationship between average environmental niche breadths158

and ecological gradients for aquatic macrophyte communities across different study regions situated159

on different continents.160
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161

We examined how average environmental niche breadths (i.e., climate, water quality and combined162

climate-water quality) of aquatic macrophytes are related to ecological and spatial gradients (i.e.,163

latitude, longitude, altitude, species richness and lake area; hereafter ecological gradients) among164

four distinct regions (i.e., Finland, Sweden and Midwestern USA states of Minnesota and165

Wisconsin) on two continents (Europe and North America). Previous works have primarily166

investigated niche breadth of individual species in relation to ecological gradients. In contrast, only167

a handful of studies have examined average niche breadth pooled across species to comprise the168

whole community composition (e.g., Figure 5 in Doledec et al. 2000). Following the niche breadth169

model, we predicted (H1) that increasing latitude results in widening of average climate and water170

quality niche breadths across each study region. This is because climate conditions become harsher171

and lakes become more unproductive towards the northern latitudes (Heino and Toivonen 2008;172

Beck et al. 2013; Alahuhta 2015). We also assumed (H2) that longitude is positively correlated with173

average niche breadths in our study regions due to increasing influence of continental climate174

towards east in Fennoscandia (Sweden<Finland) and towards west in the midwestern USA175

(Minnesota>Wisconsin) (see Online Resource 1). In addition, a latitudinal gradient in average niche176

breadth may stem from the climatic variation from the Equator towards the Poles that is also177

mirrored in altitudinal gradient (Körner 2007). On the other hand, nutrient-rich geology is typically178

more common at low altitudes, for which highland lakes are often less productive (Elser et al. 2007;179

Matthews 2014). Thus, we hypothesised (H3) that increasing altitude also widens average climate180

and water quality niche breadths of aquatic macrophytes. Species richness is expected to have a181

negative effect on average niche breadth (H4), because competition forces species to specialise on182

different resources or environment when the number of species increases in a region (MacArthur183

1968; Cardinale 2011). Finally, increasing lake area is hypothesized  (H5) to be related to narrow184
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average niche breadths due to more diverse habitats with more environmental specialist species185

being found in larger lakes than in smaller ones (Rørslett 1991; Lappalainen and Soininen 2006).186

187

MATERIAL AND METHODS188

189

Study areas and macrophyte surveys190

191

Our study spanned over four different areas: Finland (338 000 km2), Sweden (450 000 km2) and the192

Midwestern USA states of Minnesota (225 000 km2, hereafter Minnesota) and Wisconsin (170 000193

km2, hereafter Wisconsin) (Figure 2). All of these study areas are generally characterised by similar194

climatic conditions with cold snowy winters and relatively warm summers. The influence of195

continental climate increases towards east in the Fennoscandia and towards west in the Midwestern196

USA. The majority of Finland and Sweden belong to the boreal region with coniferous forests197

dominating their landscapes. Minnesota and Wisconsin are situated in the northern edge of the198

temperate region, characterised mainly by a mixture of different forest types, prairie and199

agricultural landscapes. Water bodies created by the withdrawal of ice-age glaciers form a typical200

scenery in all four study areas, with inland surface waters covering 10 % of Finland, 9 % of201

Sweden, 8 % of Minnesota and 17 % of Wisconsin. The number of studied lakes was 50 in all the202

study areas. The study lakes were randomly selected from a larger database of lakes in Finland and203

Minnesota to maintain comparability with the numbers of study lakes of Sweden and Wisconsin.204

205

Lake macrophyte surveys were conducted between 2002 and 2008 in Finland, between 2008 and206

2010 in Sweden, between 1992 and 2003 in Minnesota, and between 2003 and 2005 in Wisconsin.207
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The surveyed aquatic plants included both hydrophytes (i.e., isoetids, floating-leaved, elodeids,208

ceratophyllids and lemnids) and helophytes (i.e., emergent) species. Lake macrophytes in all the209

study areas were surveyed during the growing season (June-September) using similar transect210

methods. Transects were distributed around the lakes and placed perpendicular to the shoreline,211

from the upper eulittoral to the outer limit of vegetation (or to the deepest point of the basin if212

vegetation covered the entire lake). Species were recorded from the entire transect in Finnish and213

Minnesota lakes. Wisconsin plants were recorded within 0.25 m2 squares placed every 2-3 m along214

a transect. In Sweden, macrophytes were identified along transects in 20-cm depth intervals and in215

plots of ca. 25 × 50 cm running in parallel with the transect along the plots’ long side. The inter-216

distance between plots varied depending on lake morphology in Sweden. In Swedish lakes with217

steep shorelines, plots were placed consecutively to meet the requirement of 20-cm depth intervals,218

while in shallow lakes, inter-distance between consecutive plots was tens of meters. Transect widths219

were 6-m in Finland, 0.5-m in Sweden and Wisconsin and 5-m in Minnesota. Number of transects220

depended on lake size and the average number of transects per lake was 15 (Min. = 10, Max. = 26,221

SD = 4.14) in Finland, nine (Min. = 5, Max. =14, SD = 1.98) in Sweden, 25 in Minnesota (Min. =222

10, Max. = 42, SD = 10) and 14 (Min. = 14, Max. = 20, SD = 1.43) in Wisconsin. Sampling effort223

did not influence the community composition of aquatic plants in the previous studies using a224

subset of the same data (Sass et al. 2010; Alahuhta et al. 2014; Alahuhta 2015). Macrophytes were225

surveyed or observed by wading, diving, snorkelling or by boat, using rakes and hydroscopes.226

Macrophyte survey methods are described in detail for Finland in Alahuhta et al. (2013), for227

Sweden in Naturvårdsverket (2010), for Minnesota in Alahuhta (2015), and for Wisconsin in Sass et228

al. (2010). We want to emphasise that the survey methods were identical within each study area229

(and similar among the regions), enabling us to compare general patterns across the areas (see e.g.230

Heino et al. 2015b). With these survey methods, mean number of species per region ranged from 82231

in Finland and 48 in Sweden to 45 in Minnesota and 66 in Wisconsin.232



11

233

Niche breaths of macrophytes and descriptions of explanatory variables234

235

We investigated whether average niche breadths (i.e., climate, water quality and climate-water236

quality) varied among the macrophyte communities across each study area (Figure 1). We first used237

Outlying Mean Index analysis (OMI, Dolédec et al. 2000) to obtain a measure of niche breadth for238

each species in each study area (see Figure 1). This method quantifies ecological niches with regard239

to niche breadth of species along multiple environmental gradients. The niche breadth is the extent240

of the distribution of species along measured environmental gradients. Generalist species have a241

wide niche breadth, occurring in wide variety of habitats, whereas specialist species are confined to242

a narrow range of environmental conditions (Dolédec et al. 2000; Heino and Grönroos 2014). The243

OMI analysis measures the niche breadth (i.e., tolerance) for each individual species. In our study,244

we averaged species-level niche breadths over a lake to account for the variation in niche breadth in245

macrophyte community composition within each lake (Figure 1). Niche breadth was calculated246

using ADE4 package in the R environment (Dray and Dufour 2007).247

248

We calculated average niche breadths of macrophyte communities in each study region based on249

three explanatory variable groups: climate, water quality and combined climate-water quality250

variables (i.e., all the variables in climate and water quality together). Climate variables were251

comprised of mean annual temperature (°C), minimum temperature of the coldest month (°C) and252

maximum temperature of the warmest month (°C) (Online Resource 1). The minimum temperature253

of the coldest month was used as a proxy for harsh winter conditions, such as ice erosion, depth of254

snow and ice cover and freezing of sediments, which strongly affect aquatic macrophytes (Lind et255

al. 2014; Alahuhta et al. 2016b). These climate variables with a single value per variable were256
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derived from the WorldClim database (Current Conditions 1960-1990) for each lake by delineating257

temperatures for lake surface area with the resolution of ca. 1 km2 (30 arc seconds, Hijmans et al.258

2005), and all the climate variables were processed using ArcGIS 10 (ESRI, Redlands, CA, USA).259

Water quality variables consisted of water colour (mg Pt l-1), alkalinity concentration (mg l-1), and260

total phosphorus concentration (mg l-1) that have well-known effects on aquatic macrophytes.261

Alkalinity is related to use of carbon by aquatic vegetation, whereas total phosphorus concentration262

reflects directly trophic status of lakes (Rørslett 1991; Vestergaard and Sand-Jensen 2000; Alahuhta263

2015). Water colour mainly mirrors water transparency, which is important determinant of264

macrophyte growth in catchments dominated by peatlands, such as in our study regions (Sass et al.265

2010; Alahuhta et al. 2013; Beck et al. 2013). The used variables also correlate strongly with other266

water quality variables missing from our data, such as total nitrogen, Secchi depth, chlorophyll-a,267

turbidity and conductivity (Heegaard et al. 2001; Elser et al. 2007;  Alahuhta et al. 2012; Beck et al.268

2013). Thus, the variables used provided a good overall representation of water quality in our study269

lakes. These water quality variables were based on a single water sample per lake and were sampled270

simultaneously with the macrophytes in Sweden and Wisconsin. Water quality variables obtained271

for each lake in Finland comprised of median values of 1-m surface water samples taken during the272

growing season (June–September) over the period 2000–2008. In Minnesota, water quality was273

based on the average value of multiple samples (mean number of taken samples was 10 for274

alkalinity, seven for colour and 13 for TP per lake) taken in 2004 that correlated strongly (rSpearman >275

0.8) with the long-term water quality averages (Alahuhta 2015). In the final variable group, we276

combined climate and water quality variables together by using all explanatory variables in average277

niche breadth models (i.e., average climate-water quality niche breadth).278

279

Three different average niche breadths of species for each lake (climate, water quality and climate-280

water quality) were studied in relation to ecological gradients representing latitude and longitude281
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(based on lake centroids), lake altitude (m a.s.l.), observed macrophyte species richness per lake and282

lake surface area (m) within each study region (Figure 1). In addition to these ecological283

explanatory variables, we used proportion of urban and arable land within 250m buffer zone284

surrounding a lake to control for human impact on average niche breadths in our study (hereafter285

‘human impact’). Land use in the vicinity of the lake shoreline has been evidenced to have a286

stronger effect on water quality and aquatic biota than land use within whole topographic catchment287

area (Akasaka et al. 2010; Alahuhta et al. 2012).288

289

Statistical analysis290

291

We used linear regression models to examine the relationship between average niche breadths and292

explanatory variables within each study area. If the response variables were not normally293

distributed, we transformed them using log, square or square root transformations prior to further294

analysis. We then removed explanatory variables showing bivariate correlation of r > |0.7|,295

following (Dormann et al. 2013), to other explanatory variables with higher importance to average296

niche breadths. As a result, longitude and altitude were excluded from further analysis in Wisconsin297

(Online Resource 2). In addition, an outlier lake was deleted from Finnish average climate niche298

breadths models. The models with the most important explanatory variables influencing the average299

niche breadths were selected based on the second order Akaike Information Criterion (AICc)300

among all model combinations. AICc takes into account sample size by increasing the relative301

penalty for model complexity with small data sets, and its use is recommended if, as in our case, the302

ratio between sample size and model parameters is less than 40 (Burnham and Anderson 2004). In303

addition, we calculated AIC differences (∆), which can be used to rank different models in order of304

importance (AICi – AICmin, with AICmin representing the best model with respect to expected305
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Kullback-Leibler information lost). Akaike weights derived from AIC differences were estimated306

for each model to extract additional information on model ranking. A value of ∆ < 2.0 was used as307

the threshold for deviation of AICc values among candidate models (i.e., difference between model308

i and the model with the smallest AICc), because models with AICc differing by < 2.0 are typically309

considered to have similar statistical support (Burnham & Anderson, 2002). We also produced310

adjusted R2 values, which provide unbiased estimates of the explained variation (Borcard et al.311

2011). The variable selection was done using the MuMin package (Bartoń 2016) in the R.312

313

To further analyse collinearity among explanatory variables in regression models, we used314

commonality analysis to decompose (linear) regression effects to unique and common components315

(Nathans et al. 2012). The unique effects indicate how much variance is exclusively explained by a316

single explanatory variable, whereas common effects represent how much variance is shared by an317

explanatory variable set (i.e., attributed to two or more explanatory variables, Ray-Mukherjee et al.318

2014). Thus, a higher value of common effect (i.e., the sum of all commonalities associated with a319

predictor) compared to unique effect indicates a greater collinearity among explanatory variables320

(Nathans et al. 2012; Ray-Mukherjee et al. 2014). Negative commonalities can occur if some of the321

correlations among predictor variables have opposite trends (Ray-Mukherjee et al. 2014).322

Compared to other similar statistical methods, commonality analysis is independent of variable323

order that can bias stepwise regression and can efficiently address multicollinearity unlike324

hierarchical regression (Petrocelli 2003; Nathans et al. 2012; Ray-Mukherjee et al. 2014). We used325

commonality analysis on full models including all explanatory variables to gain complementary326

information in addition to best linear models using AICc variable selection method. Beside of327

commonality effects, we calculated beta and structure coefficients. Beta coefficients measure an328

explanatory variable’s total contribution to the regression equation (Ray-Mukherjee et al. 2014).329

Structure coefficients are bivariate correlations between an explanatory variable and the predicted330
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dependent variable’s score resulting from the regression model (Nathans et al. 2012). Unlike beta331

coefficients, structure coefficients are independent of collinearity among explanatory variables332

(Ray-Mukherjee et al. 2014). Commonality analysis was executed using the yhat package (Nimon333

et al. 2013) in the R program.334

335

Finally, we used Moran’s I coefficients on 10 distance classes to account for spatial autocorrelation336

in the response variable and residuals of the best models based on AICc. Spatial autocorrelation was337

assessed using pgirmess package (Giraudoux 2016) in the R program.338

339

RESULTS340

Average climate niche breadths341

342

Mean values of average niche breadths varied from 1.92 (SD: 0.29) in Finland and 1.34 (0.38) in343

Sweden to 1.75 (0.42) in Minnesota and 1.69 (0.35) in Wisconsin. The best average niche breadth344

models explained 31-38 % of variation in Finland and Minnesota, 45-47 % of variation in345

Wisconsin and 67 % of variation in Sweden (Table 1). Among the best average niche breadth346

models, latitude was selected in all the models in all the study regions (Figure 3, Online Resource347

3). Climate niche breadths of Finland, Sweden and Minnesota widened with increasing latitude,348

whereas the relationship was negative in Wisconsin (Table 1, Figure 4). However, latitude showed349

collinearity to other explanatory variables in Sweden and Minnesota, as common effect explained350

almost all variation in the regression models (Table 2, Online Resource 4). Human impact was also351

included in almost all the best models in each region. The correlation between average niche352

breadths and human impact was positive in Wisconsin and negative in all other study regions.353
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Similarly to latitude, however, the contribution of common effect was high for human impact in354

Sweden, Minnesota and Wisconsin. Lake altitude, together with lake area, was among the most355

important explanatory variables only in Sweden, showing a positive relationship with average niche356

breadths. Although both of these explanatory variables showed some degree of unique effect, large357

amounts of common effects indicated collinearity. Species richness was selected in the topmost358

average niche breadth models solely in Wisconsin, as average niche breadths widened with359

increasing species richness. Unique effects contributed the majority of variation for species richness360

in Wisconsin.361

362

Spatial autocorrelation was detected in the average climate niche breadths, as two distance classes363

in Finland and Minnesota, and three distance classes in Sweden and Wisconsin were statistically364

significant (p<0.05, Online Resource 5). However, no spatial structure was found from the residuals365

of best models in Sweden and Wisconsin. In Finland, the first distance class of residuals of the best366

model showed significant spatial autocorrelation. A spatial autocorrelation was found from the367

residuals of other best model in Minnesota; however, the amount of spatial structure was markedly368

lower (coefficient value 0.17) compared with the original response variable (0.26 and 0.10).369

370

Average water quality niche breadths371

372

Among the lakes, average water quality niche breadths were 1.15 (0.22) in Finland, 0.91 (0.34) in373

Sweden, 0.86 (0.20) in Minnesota and 0.78 (0.22) in Wisconsin. The amount of explained variation374

among the best water quality niche breadth varied from 75 % in Finland and 46-51 % in Sweden to375

18-20 % in Minnesota and 40-42 % in Wisconsin (Table 2). Latitude was among the best average376
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water quality niche breadth models in our study regions, with the exception of Minnesota (Figure 3,377

Online Resource 3). The relationship between average niche breadths and latitude was negative in378

study regions where it was selected as an important explanatory variable (Table 2, Figure 5).379

However, unique effect of latitude was considerable only in Wisconsin (Table 4, Online Resource380

4). Human impact was also included in the best models in Finland, Sweden and Wisconsin,381

showing a positive association with average niche breadths. Unique effect of human impact was382

large in Finland and Sweden. Longitude explained average niche breadths in Sweden and383

Minnesota, where it was independent of collinearity. Average water quality niches widened with384

increasing longitude in both the study regions. Altitude was selected among the best average niche385

breadth models in Finland, Sweden and Minnesota. The correlation between average niche breadths386

and altitude was negative in Fennoscandia and positive in Minnesota. Lake area was an important387

variable in Finland, Sweden and Wisconsin and this explanatory variable showed both unique and388

common effects on average niche breadths. An increase in lake area resulted in decreased average389

niche breadths in Sweden and Wisconsin, whereas the opposite trend was found in Finland. Species390

richness influenced average water quality niche breadths in Finland, Minnesota and Wisconsin. This391

relationship was positive in Finland and Wisconsin as well as in Minnesota, and the common effect392

explained the majority of variation for species richness in these study regions.393

394

Evaluation of spatial autocorrelation revealed that average water quality niche breadth variables395

were spatially structured, as two distance classes in Finland and Sweden, one distance class in396

Minnesota and three distance classes in Wisconsin showed significant spatial autocorrelation397

(Online Resource 5). However, residuals of the best regression models displayed less spatial398

autocorrelation in all four study regions.399

400
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Average climate-water quality niche breadths401

402

Average climate-water quality niche breadths across the lakes were 1.75 (0.17) in Finland, 1.20403

(0.21) in Sweden, 1.58 (0.32) in Minnesota and 1.93 (0.40) in Wisconsin. The best models404

explained 22-23 % of variation in Finland, 7-14 % of variation in Sweden, 35-40 % of variation in405

Minnesota and 44-47 % of variation in Wisconsin (Table 3). The controlling factor, human impact,406

was among the most important explanatory variables in all four study regions (Figure 3, Online407

Resource 3). The correlation between average niche breadth and human impact was positive across408

the regions, with the exception of Minnesota, where the relationship was negative. Human impact409

showed collinearity to other variables in three of the four regions (Table 4, Online Resource 4).410

Latitude was included in one or more of the best models in Finland, Minnesota and Wisconsin, but411

the pattern varied from positive in Finland and Minnesota to negative in Wisconsin (Figure 6). The412

unique effect of latitude was large in Finland and Wisconsin, indicating that the role of collinearity413

was minor. Longitude explained average climate-water quality niche breadths in Finland and414

Minnesota with opposite signs (negative in Finland and positive in Minnesota). Both unique and415

common effects were present for longitude in both the study regions. Altitude was included in the416

best models in Fennoscandia and Minnesota. Average niche breadths narrowed with increasing417

altitude in Finland and widened with increasing altitude in Sweden and Minnesota. In Finland,418

altitude showed strong collinearity but unique effects were large in Sweden and Minnesota. Lake419

area contributed to average niche breadths in Sweden and Minnesota, with the relationship between420

average niche breadth and lake area being positive in the former region and negative in the latter421

region. Collinearity to other explanatory variables was indicated for lake area in Minnesota.422

423
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Detection of spatial autocorrelation varied among the study regions (Online Resource 5). However,424

spatial structuring was found in model residuals of the best models only in Finland and Sweden,425

where absolute coefficients were lower or equal (but only in the first-ranked model) in model426

residuals (0.08-0.48 and 0.16) compared to original response variable (0.56 and 0.17), respectively.427

In the Midwestern USA, no or only a modest amount of spatial autocorrelation was found in the428

residuals of the best regression models.429

.430

431

DISCUSSION432

433

The patterns between three different average niche breadths and ecological gradients were generally434

variable across our four study regions. The importance of the ecological gradients varied between435

average climate and water quality niche breadth models, often showing opposing patterns. For436

example, altitude had a considerable influence on the water niche breadth models, while the437

opposite was discovered for the climate models. On the other hand, different study regions438

displayed similar patterns for some ecological gradients. For example, latitude had a significant439

effect on the climate and water quality niche breadth models across the study regions, and a similar440

universal pattern was discovered for human impact. Below, we consider the patterns in average441

niche breadths and ecological gradients in relation to our a priori hypotheses.442

443

Our first two hypotheses (H1 and H2) stated that increasing latitude should result in increasing444

average climate and water quality niche breadths of aquatic macrophytes across each study region445

(Sunday et al. 2011; Alahuhta 2015). In addition, we also expected that increasing longitude446
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increases average climate niche breadths. We found support for latitude-originated hypotheses, but447

not for longitude. Average climate niche breadths were mostly positively associated with latitude.448

Agreeing with MacArthur (1972), this finding indicates that aquatic macrophytes growing in lower449

latitudes are more specialized to warmer temperatures, whereas northern generalist species are more450

tolerant of a wider variation in climatic conditions. At high latitudes, macrophytes endure shorter451

growing seasons and ice-related impediments, such as ice cover restricting light and carbon452

availability in water, ice erosion and freezing of the sediments (Lind et al. 2014; Alahuhta et al.453

2016b). Because the environmental conditions are harsh and competition in this narrower gradient454

is greater, widening of a species niches enables the species to remain viable in such conditions.455

456

In contrast to temperature, water quality niche breadths showed, quite unexpectedly, opposite457

relationships with latitude. This finding suggests that aquatic macrophytes growing in lower458

latitudes maybe specialised species adapted to nutrient-rich waters, whereas northern generalist459

species may tolerate wider variation in water quality. This reasoning received further support from460

the positive relationship between average water quality niche breadths and human impact across461

study regions. In all the study regions, anthropogenic influences are strongest in the southern lakes462

resulting in increased nutrient and alkalinity concentrations and decreasing water transparency (Sass463

et al. 2010; Alahuhta et al. 2013; Beck et al. 2013; Alahuhta et al. 2015). In addition, a longitudinal464

pattern in soil type is found in Minnesota, where glacial-originated nutrient-poor soils of eastern465

ecoregions change to fine-grained nutrient-rich soils in the western parts of the state (Omernik466

1987). These natural and anthropogenic influences lead to a widening of the water quality gradient467

towards southern lakes and also towards the west in Minnesota. Thus, species need to have wide468

niche breadths to tolerate extreme nutrient enrichment, which is common in the fine-grained soils469

used for agricultural activities in the southern parts of these study areas.470
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471

Our third hypothesis (H3) stated that increasing altitude should lead to wider average climate and472

water quality niches of aquatic macrophytes. We found no evidence to support this assumption. In473

contrast, water quality niche breadths of aquatic macrophytes narrowed with increasing altitudes in474

Fennoscandia, suggesting that species are specialists to nutrient enrichment in water at lower475

altitudes, while highland species are generalists capable of growing in wider water quality476

gradients. This pattern may reflect the fact that more productive soil types are found at lower477

altitudes within each of our study regions (Sass et al. 2010; Alahuhta et al. 2011; Alahuhta 2015). In478

addition, anthropogenic pressures dominate landscapes at lower altitudes, and together with479

nutrient-rich soils, may further increase the length of the water quality gradient for lowland lakes in480

Finland and Sweden. Altitude might be related to lake order, with species in headwater lakes481

exhibiting different niche breadths than those in downstream lakes. However, an opposite pattern482

was discovered for Minnesota (but not for Wisconsin), as water quality niche breadths widened483

with increasing altitude. For climate niche breadths, altitude contributed to models only in Sweden,484

whereas it was not selected among important variables explaining climate niche breadths in other485

study regions. This finding suggests that variation in temperature along with the altitudinal gradient486

was probably too modest to influence average climate niche breadths of aquatic macrophytes in487

most of the study regions, and a larger variation in altitude may have resulted in clearer488

relationships between average climate niche breadths and altitude.489

490

Our fourth hypothesis (H4) predicted that species richness would have a negative effect on average491

niche breadth, because competition forces a species to specialise in their resource utilization when492

the number of species increases in a lake (MacArthur 1968; Cardinale 2011). However, we found493

only a marginal support for this hypothesis. Species richness had little effect on average climate494
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niche breadths of aquatic macrophytes, and the relationship was positive for a few average niche495

breadths in some study regions. At regional scales, species richness shows opposite patterns496

between the continents, as regional and local species richness follows a latitudinal gradient in497

Fennoscandian lakes (Heino and Toivonen 2008; Alahuhta et al. 2011), whereas a reversed498

latitudinal gradient is observed in the lakes of Midwestern USA (Sass et al. 2010; Beck et al. 2013).499

However, species richness responded differently to average niche breadths even between study500

regions within each of the two continents. For example, species richness was positively associated501

with average climate breadths in Wisconsin and negatively in Minnesota. These results suggest that502

it is difficult to find universal trends between average niche breadths and species richness for503

aquatic macrophytes. Following the reasoning behind assessing variation in average niche breadths504

(Doledec et al. 2000), this may be due to variable degrees of competition among species in lakes505

found in the different study regions.506

507

Our last hypothesis (H5) assumed that increasing lake area leads to narrower average niche breadths508

due to more diverse habitats with more environmentally specialised species being found in larger509

lakes compared to smaller ones (Rørslett 1991; Lappalainen and Soininen 2006). We found little510

evidence for this hypothesis, as lake area was included in the topmost climate model in Sweden and511

in the best water quality models in Finland, Sweden and Wisconsin. Lake area is typically512

positively correlated with aquatic macrophytes in northern latitudes (Rørslett 1991; Alahuhta et al.513

2013; Alahuhta 2015); however, the direction of the effect in water quality models varied among514

the study regions within the continents in our study (i.e., Finland vs. Sweden). Because lake area515

varied strongly among the study lakes, we considered that it is not linked coherently to either516

climate or water quality niche breadths of aquatic macrophytes. Competition among species with517

different abilities to colonise available habitats in a lake may also have resulted in the absence of518

congruent patterns between average niche breadths and lake area.519
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520

Evaluation of the hypotheses related to average niche breadths and ecological gradients proved to521

be highly challenging due to variable patterns found in the different four study regions. We were522

able to find consistent support only for the average niche breadth –latitude relationships. This may523

be due to the fact that many of the ecological gradients examined showed collinearity, posing524

difficulty in explaining the role of a particular gradient in the average niche breadth of aquatic525

macrophytes. However, the processes behind these ecological gradients are often similar. For526

example, the climatic effect typically governs latitudinal, longitudinal and altitudinal gradients.527

Therefore, we did not consider collinearity among the ecological gradients to be a severe issue in528

our study. Instead, competition among species with variable niche breadths in a community and529

different degrees of competitive effects for the same species among regions probably resulted in the530

absence of clear patterns between average niche breadths and the ecological gradients examined.531

Interestingly, climate and water quality showed reverse patterns in the majority of study regions that532

was further reflected in lower overall explained variations in climate-water quality models533

compared to individual climate or water quality niche breadth models. Kockemann et al. (2009)534

discovered that niche breadth was positively related to range size in the case of temperature, but not535

in the case of soil-related variables. Their finding supports our conclusion that researchers cannot536

rely on studying only one type of niche breadth when making strong conclusions about the537

relationship of species niche breadths to ecological gradients. This also highlights the importance of538

the availability of high-quality data, as different measures of niche breadths cannot be examined539

using only coarse-scale data. Rather, information on species distributions and related environmental540

conditions are needed at finer resolutions combined with broad spatial extents to better understand541

how different species niche breadths respond to ecological gradients.542

543
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Table 1. Best models on the relationship between average climate niche breadth and explanatory variables (lake coordinates, lake area, lake

altitude, species richness and human impact) based on linear regression with second order Akaike’s Information Criterion (AICc) variable

selection algorithm and delta (∆) < 2 for each study area. AICc difference between model i and the model with the smallest AICc, Weight:

Akaike weight, adj.R2: adjusted R2. ↑ indicates positive and ↓ negative correlation between niche breadth and the selected explanatory variable.

Variables AICc ∆ Weight adj.

R2

Variables AICc ∆ Weight adj.

R2

Finland Sweden

Human(↓)+Y(↑) -29.6 0.00 1 0.31 Altitude(↑)+Area(↑)+Human(↓)+Y(↑) 0.6 0.00 1 0.67

Minnesota Wisconsin

Human(↓)+Y(↑) 37.5 0.00 0.68 0.38 Richness(↑)+Y(↓) 12.6 0.00 0.29 0.47

Human(↓) 39 1.55 0.32 0.34 Human(↑)+Richness(↑)+Y(↓) 12.6 0.06 0.28 0.48

Y(↓) 12.8 0.25 0.25 0.45

Human(↑)+Y(↓) 13.5 0.92 0.18 0.46



35

Table 2. Best models on the relationship between average water quality niche breadth and explanatory variables (lake coordinates, lake area, lake

altitude, species richness and human impact) based on linear regression with second order Akaike’s Information Criterion (AICc) variable

selection algorithm and delta (∆) < 2 for each study area. AICc difference between model i and the model with the smallest AICc, Weight:

Akaike weight, adj.R2: adjusted R2. ↑ indicates positive and ↓ negative correlation between niche breadth and the selected explanatory variable.

Variables AICc ∆ Weight adj.

R2

Variables AICc ∆ Weight adj.

R2

Finland Sweden

Altitude(↓)+Area(↑)+Human(↑)+Richness(↑) -68.7 0 0.61 0.75 Altitude(↓)+Area(↓)+Human(↑)+Y(↓) 8.5 0.00 0.26 0.51

Area(↑)+Human(↑)+Richness(↑)+Y(↓) -67.8 0.92 0.39 0.75 Altitude(↓)+Human(↑)+Y(↓) 9.1 0.59 0.20 0.49

Area(↓)+Human(↑)+Y(↓) 10.0 1.52 0.12 0.48

Area(↓)+Human(↑)+X(↑)+Y(↓) 10.3 1.76 0.11 0.50

Altitude(↓)+Area(↓)+Human(↑) 10.3 1.80 0.11 0.48

Altitude(↓)+Area(↓)+Human(↑)+X(↓) 10.4 1.90 0.10 0.50

Human(↑)+Y(↓) 10.4 1.93 0.10 0.46

Minnesota Wisconsin

X(↑) -24.5 0.00 0.36 0.18 Area(↓)+Richness(↑)+Y(↓) -60.2 0 0.35 0.42
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Richness(↓)+X(↑) -24.0 0.50 0.28 0.19 Richness(↑)+Y(↓) -60.1 0.15 0.30 0.40

Altitude(↑)+X(↑) -23.3 1.21 0.20 0.18 Area(↓)+Human(↑)+Richness(↑)+Y(↓) -59.2 1.02 0.20 0.42

Altitude(↑)+Richness(↓)+X(↑) -23.0 1.49 0.17 0.20 Human(↑)+Richness(↑)+Y(↓) -59.0 1.21 0.18 0.40



37

Table 3. Best models on the relationship between average climate-water quality niche breadth and explanatory variables (lake coordinates, lake

area, lake altitude, species richness and human impact) based on linear regression with second order Akaike’s Information Criterion (AICc)

variable selection algorithm and delta (∆) < 2 for each study area. AICc difference between model i and the model with the smallest AICc,

Weight: Akaike weight, adj.R2: adjusted R2. ↑ indicates positive and ↓ negative correlation between niche breadth and the selected explanatory

variable.

Variables AICc ∆ Weight adj.

R2

Variables AICc ∆ Weight adj.

R2

Finland Sweden

X(↓)+Y(↑) -41.3 0.00 0.43 0.22 Altitude(↑)+Human(↑) -15.8 0.00 0.45 0.12

Human(↑)+X(↓)+Y(↑) -40.3 0.50 0.34 0.23 Altitude(↑)+Area(↑)+Human(↑) -15.3 0.49 0.35 0.14

Altitude(↓)+X(↓)+Y(↑) -40.1 1.22 0.23 0.22 Altitude(↑) -14.3 1.53 0.21 0.07

Minnesota Wisconsin

Altitude(↑)+Human(↓)+X(↑) 11.0 0.00 0.27 0.39 Human(↑)+Y(↓) 19.9 0.00 0.43 0.47

Human(↓) 12.0 1.99 0.16 0.35 Human(↑)+Richness(↑)+Y(↓) 20.7 0.75 0.30 0.47

Altitude(↑)+Area(↓)+Human() 12.0 1.01 0.16 0.38 Y(↓) 20.9 0.96 0.27 0.44

Altitude(↑)+Human(↓) 12.1 1.12 0.15 0.36
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Altitude(↑)+Area(↓)+Human(↓)+X(↑) 12.3 1.34 0.14 0.40

Human(↓)+Y(↑) 12.7 1.70 0.12 0.36
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Table 4. Results of commonality analysis for each predictor variable based on regression models for average climate niche breadths (A), average

water quality niche breadths (B) and average climate-water quality niche breathds (C) for each region. β = beta coefficients, SE = standard

estimations, SC = structure coefficients, Unique = unique effect of variation for each predictor in the regression models, Common = shared effect

of variation for each predictor in the regression models, and Total = combined effect (i.e., sum of unique and common effects) of variation for

each predictor in the regression models. See Material and Methods for details.

A) Finland Sweden
Predictors β SE SC Unique Common Total β SE SC Unique Common Total
X -0.29 4.44E-07 0.32 0.04 0.01 0.05 -0.04 4.07E-07 0.13 0.00 0.01 0.01
Y 0.63 3.53E-07 0.84 0.15 0.18 0.33 0.29 1.70E-07 0.72 0.02 0.35 0.36
Altitude -0.02 1.53E-03 0.76 0.00 0.27 0.27 0.48 3.35E-04 0.88 0.07 0.47 0.54
Area -0.20 4.93E-03 -0.26 0.02 0.01 0.03 0.21 4.43E-03 0.43 0.04 0.09 0.13
Richness 0.01 5.18E-03 -0.37 0.00 0.06 0.07 0.05 7.68E-03 -0.30 0.00 0.06 0.06
Human -0.40 2.74E-03 -0.54 0.09 0.05 0.14 -0.25 2.06E-03 -0.55 0.05 0.16 0.21

Minnesota Wisconsin
Predictors β SE SC Unique Common Total β SE SC Unique Common Total
X 0.06 0.056 0.32 0.00 0.04 0.04 0.00 0.000 0.00 0.00 0.00 0.00
Y 0.22 0.067 0.87 0.02 0.29 0.32 -0.62 0.038 -0.94 0.20 0.26 0.46
Altitude 0.15 0.001 0.44 0.01 0.07 0.08 0.00 0.000 0.00 0.00 0.00 0.00
Area -0.08 0.023 0.36 0.00 0.05 0.06 -0.06 0.130 -0.31 0.00 0.05 0.05
Richness 0.09 0.010 0.63 0.00 0.16 0.17 0.21 0.006 -0.21 0.04 -0.01 0.02
Human -0.37 0.005 -0.92 0.05 0.31 0.36 0.21 0.004 0.75 0.03 0.27 0.29

B) Finland Sweden
Predictors β SE SC Unique Common Total β SE SC Unique Common Total
X -0.36 3.02E-07 -0.35 0.00 0.29 0.29 0.03 4.40E-07 -0.15 0.00 0.01 0.01
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Y 0.61 2.40E-07 0.62 0.00 0.12 0.13 -0.27 1.83E-07 -0.65 0.02 0.22 0.23
Altitude -0.18 1.04E-03 0.05 0.01 0.49 0.50 -0.27 3.62E-04 -0.75 0.02 0.29 0.31
Area -0.06 3.35E-03 0.10 0.04 0.12 0.16 -0.18 4.79E-03 -0.41 0.03 0.07 0.10
Richness -0.05 3.52E-03 0.15 0.04 0.40 0.44 -0.07 8.31E-03 0.22 0.00 0.02 0.03
Human 0.13 1.86E-03 0.44 0.14 0.38 0.51 0.43 2.23E-03 0.75 0.16 0.15 0.31

Minnesota Wisconsin
Predictors β SE SC Unique Common Total β SE SC Unique Common Total
X 0.57 0.030 0.88 0.20 0.00 0.20 0.00 0.000 0.00 0.00 0.00 0.00
Y -0.02 0.036 0.17 0.00 0.01 0.01 -0.58 0.018 -0.82 0.17 0.15 0.32
Altitude 0.18 0.001 -0.05 0.02 -0.02 0.00 0.00 0.000 0.00 0.00 0.00 0.00
Area 0.05 0.012 -0.16 0.00 0.01 0.01 -0.18 0.061 -0.43 0.03 0.06 0.09
Richness -0.16 0.005 -0.19 0.01 0.00 0.01 0.39 0.003 0.06 0.12 -0.12 0.00
Human 0.08 0.003 -0.11 0.00 0.00 0.00 0.17 0.002 0.63 0.02 0.17 0.19

C) Finland Sweden
Predictors β SE SC Unique Common Total β SE SC Unique Common Total
X -0.04 2.23E-07 -0.62 0.07 -0.03 0.03 0.12 3.55E-07 0.01 0.00 0.00 0.00
Y -0.05 1.77E-07 -0.40 0.14 -0.03 0.11 -0.18 1.48E-07 0.37 0.01 0.02 0.03
Altitude -0.15 7.68E-04 -0.80 0.01 -0.01 0.00 0.45 2.92E-04 0.66 0.06 0.03 0.09
Area 0.25 2.47E-03 0.45 0.00 0.00 0.00 0.20 3.87E-03 0.47 0.04 0.01 0.04
Richness 0.26 2.60E-03 0.75 0.00 0.01 0.01 -0.07 6.70E-03 -0.43 0.00 0.03 0.04
Human 0.50 1.38E-03 0.81 0.01 0.05 0.06 0.30 1.80E-03 0.32 0.08 -0.06 0.02

Minnesota Wisconsin
Predictors β SE SC Unique Common Total β SE SC Unique Common Total
X 0.19 0.041 0.38 0.02 0.04 0.06 0.00 0.000 0.00 0.00 0.00 0.00
Y 0.07 0.050 0.76 0.00 0.26 0.26 -0.55 0.041 -0.94 0.16 0.30 0.45
Altitude 0.33 0.001 0.53 0.06 0.07 0.13 0.00 0.000 0.00 0.00 0.00 0.00
Area -0.15 0.017 0.32 0.01 0.03 0.05 -0.06 0.141 -0.32 0.00 0.05 0.05
Richness 0.03 0.008 0.48 0.00 0.10 0.10 0.16 0.007 -0.28 0.02 0.02 0.04
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Human -0.45 0.004 -0.90 0.07 0.29 0.36 0.27 0.004 0.81 0.04 0.29 0.34
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Fig. 1. Conceptual model of our study using climate niche breadth as an example. Individual niche breadths are calculated for each species found

in a lake (only three species as an example given in the figure) and then averaged across the whole community. For other niche breadths (i.e.,

water quality and climate-water quality), the concept is identical using different variables in the OMI analysis (water colour, alkalinity

concentration and total phosphorus concentration for water quality models, and all seven climate and water quality variables for climate-water

quality models)

Fig. 2. Maps of the study regions with investigated lakes marked with different symbols (n=50 lakes per region)

Fig. 3. Number of times a particular explanatory variable was selected in the topmost models (∆ < 2) of average climate niche breadth (A),

average water quality niche breadth (B) and average climate-water quality niche breadth (C) in each study region. For climate niches, the number

of best models varied from one in Finland and Sweden to two in Minnesota and four in Wisconsin, whereas the number of best water quality

niche models was two in Finland, seven in Sweden and four in Minnesota and Wisconsin. For climate-water quality niches, the number of best

models was three in Finland, three in Sweden, six in Minnesota and three in Wisconsin

Fig. 4. The relationship between average climate niche breadths and latitude in Finland (A), Sweden (B), Minnesota (C) and Wisconsin (D)

Fig. 5. The relationship between average water quality niche breadths and latitude in Finland (A), Sweden (B), Minnesota (C) and Wisconsin (D)

Fig. 6. The relationship between average climate-water quality niche breadths and latitude in Finland (A), Sweden (B), Minnesota (C) and

Wisconsin (D). Note that the latitude values differ among the regions
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Fig. 1.
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