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Abstract. We examined variation in the composition of six freshwater organismal groups 28 

across various drainage basins in Finland. We first modelled spatial structures within each 29 

drainage basin using Moran eigenvector maps. Second, we partitioned variation in 30 

community structure among three groups of predictors using constrained ordination: (1) local 31 

environmental variables, (2) spatial variables, and (3) dummy variable drainage basin 32 

identity. Third, we examined turnover and nestedness components of multiple-site beta 33 

diversity, and tested the best fit patterns of our datasets using the “elements of 34 

metacommunity structure” analysis. Our results showed that basin identity and local 35 

environmental variables were significant predictors of community structure, whereas within-36 

basin spatial effects were typically negligible. In half of the organismal groups (diatoms, 37 

bryophytes, zooplankton), basin identity was a slightly better predictor of community 38 

structure than local environmental variables, whereas the opposite was true for the remaining 39 

three organismal groups (insects, macrophytes, fish). Both pure basin and local 40 

environmental fractions were, however, significant after accounting for the effects of the 41 

other predictor variable sets. All organismal groups exhibited high levels of beta diversity, 42 

which was mostly attributable to the turnover component. Our results showed consistent 43 

Clementsian type metacommunity structures, suggesting that subgroups of species responded 44 

similarly to environmental factors or drainage basin limits. We conclude that aquatic 45 

communities across large scales are mostly determined by environmental and basin effects, 46 

which leads to high beta diversity and prevalence of Clementsian community types. 47 

 48 

Keywords. Bryophytes, diatoms, fish, invertebrates, lakes, macrophytes, metacommunities, 49 

streams.  50 
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Introduction 51 

 52 

Biogeography and community ecology are two disciplines that combine history, dispersal, 53 

biotic interactions and environmental filtering as determinants of the structure of biotic 54 

assemblages. However, a better understanding of the determinants of biotic assemblages 55 

might benefit from a closer conceptual unification of these disciplines (Jenkins and Ricklefs 56 

2011; Ricklefs and Jenkins 2011). Biotic assemblages can be understood to comprise either 57 

regional biotas or local communities, depending on the grain size under investigation (Beck 58 

et al. 2012; Pinel-Alloul et al. 2013). One means to investigate biogeographic and ecological 59 

influences is to compare the effects of regional, spatial and environmental drivers of local 60 

communities over large spatial extents (Shurin et al. 2009; Bini et al. 2014; Gonçalves-Souza 61 

et al. 2014). 62 

 A major aim of biogeography is to consider evolutionary, historical and climatic 63 

influences on regional biotas. One typically finds a strong relationship between present-day 64 

climate and species richness (e.g. Hawkins and Porter 2003) or composition (e.g. Heino and 65 

Alahuhta 2015) of regional biotas. The same is true for historical effects on regional biotas, 66 

which can be investigated as phylogenetic patterns (e.g. Wiens 2012) or using various 67 

statistical approaches as proxies of historical effects (e.g. Hortal et al. 2011). The degree to 68 

which the influences of these broad-scale factors remain important when the focus is on local 69 

communities is still elusive. Some studies have suggested that regional and historical 70 

influences remain significant even when the focus is on local communities (Hoeinghaus et al. 71 

2007; Vyverman et al. 2007), but others have shown that local environmental factors account 72 

for significant variation in local community structure even over broad spatial extents (Van 73 

der Gucht et al. 2007; Gonçalves-Souza et al. 2014; Souffreau et al. 2015). The influence of 74 
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regional characteristics on local communities can be studied as an overall “region effect” on 75 

local communities (Fig. 1), and it indirectly relates to historical effects and climatic forcing 76 

on local community structure (Declerck et al. 2011; Viana et al. 2015). 77 

Metacommunity ecology is a recently emerged subdiscipline of ecology, where 78 

dispersal among sites is considered a key to understand biotic assemblages (Leibold et al. 79 

2004; Jocque et al. 2010). Metacommunity ecology emphasises the idea that dispersal among 80 

sites within a region is an important process affecting the structure of local communities 81 

(Leibold et al. 2004). Dispersal may be limiting or homogenizing local communities, the 82 

effects of which may not be easily distinguishable because both may induce spatial 83 

structuring in the biological data (e.g. Ng et al. 2009). However, those effects can be at least 84 

partly separated by focusing on nested spatial scales (Declerck et al. 2011; Silva and 85 

Hernándes 2015), where differences among regions may denote dispersal limitation and 86 

spatial structures within a region mainly relate to homogenising effects of dispersal that can 87 

happen via mass effects (e.g. Mouquet and Loreau 2003). For freshwater organisms, regions 88 

can be individual drainage basins (e.g. Heino 2011), whereby dispersal is more likely to take 89 

place within such regions than between regions (e.g. Heino et al. 2015a). Regions could also 90 

be delineated based on drainage basin boundaries, major landscape configurations or 91 

ecoregions in terrestrial studies.  92 

Metacommunity theory also predicts that species sorting, i.e. filtering of species by 93 

local abiotic and biotic factors, is most pronounced when dispersal rates are intermediate 94 

(Leibold et al. 2004). Such intermediate dispersal allows species to track variation in 95 

environmental conditions among sites within a region (e.g. a drainage basin), resulting in a 96 

relatively good match between environmental conditions and community structure (Leibold 97 

et al. 2004). True species sorting may be disrupted by both limiting and high dispersal rates 98 

(Ng et al. 2009; Winegardner et al. 2012), although understanding their relative importance 99 
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may be masked by spatially-structured environmental variation (Pinel-Alloul et al. 1995; 100 

Heino et al. 2015a). Spatially-autocorrelated environmental variables are a typical 101 

phenomenon in observational studies, often making it difficult to infer the relative roles of 102 

species sorting and dispersal effects on community structure (Pinel-Alloul et al. 1995; 103 

Bonada et al. 2012; Heino et al. 2015b). Hence, heuristic approaches across different scales 104 

should be used to disentangle those effects on community structure.  105 

In addition to explaining variation in local community structure, a major aim of both 106 

biogeography and metacommunity ecology is to quantify the degree of variation (e.g. beta 107 

diversity, Baselga 2010) or describe predominant patterns (e.g. elements of metacommunity 108 

structure, Leibold and Mikkelson 2002) in biological survey data. While beta diversity has 109 

been quantified at various spatial grains and extents (Soininen et al. 2007, Anderson et al. 110 

2011), the elements of metacommunity structure have mostly been tested using data from 111 

local communities within relatively small regions (Leibold and Mikkelson 2002; Heino et al. 112 

2015c; but see Presley and Willig 2010; Meynard et al. 2013). Recently, Heino and Alahuhta 113 

(2015) applied the elements of metacommunity structure approach to encompass large spatial 114 

grain and geographical extent. They found, as opposed to sets of local communities within 115 

small regions where various patterns are typically detected (Heino et al. 2015c; Tonkin et al. 116 

2015a), that regional beetle faunas across a broad geographical gradient showed consistent 117 

Clementsian type variation (Heino and Alahuhta 2015). Clementsian type variation 118 

emphasises discrete ‘community types’ along ecological gradients, such that subgroups of 119 

species replace other subgroups in space (Clements 1936). Such variation also suggests that 120 

subgroups of species either responded similarly to environmental variation or are affected by 121 

similar historical effects (Heino and Alahuhta 2015; Tonkin et al. 2015b). We here expanded 122 

this approach from single drainage basins to encompass local communities of six aquatic 123 

organismal groups surveyed across three drainage basins. 124 
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We first expected the predominance of environmental factors in affecting 125 

metacommunity organization (Cottenie 2005; Van der Gucht et al. 2007). Such patterns have 126 

been found in many stream (Göthe et al. 2013; Grönroos et al. 2013; Tonkin et al. 2015b) and 127 

lake studies (Soininen et al. 2011; Alahuhta and Heino 2013; Heino 2013). Second, we 128 

expected that basin identity and its associated biogeographical and climatic aspects, would 129 

show the strongest effect on variation in community structure. This is because 130 

biogeographical factors, including regional variation in climate, should be most important at 131 

large spatial extents (Gonçalves-Souza et al. 2014; Viana et al. 2015). We had data for three 132 

groups of organisms surveyed in streams (i.e. diatoms, bryophytes, insects) and three groups 133 

of organisms surveyed in lakes (i.e. macrophytes, zooplankton, fish). These organismal 134 

groups show wide variation in ecological and biological characteristics, including life form, 135 

body size and dispersal mode (Heino et al. 2015c). Hence, we examined whether different 136 

organismal groups would show different patterns, with (a) lake organisms being more 137 

dispersal limited than stream organisms, the communities of the latter which are better 138 

connected by dispersal that those of the former, (b) passively dispersing organisms with small 139 

propagules (i.e. diatoms, bryophytes, macrophytes, zooplankton) showing less 140 

biogeographical variation than more actively dispersing large organisms (i.e. insects, fish), 141 

and (c) passively dispersing organisms should show stronger environmental control than 142 

actively dispersing organisms across the biogeographical scales of the three drainage basins. 143 

This is because small passively dispersing organisms (e.g. diatoms), which can disperse 144 

passively via air and animal vectors (Kristiansen 1996), may overcome drainage basin 145 

boundaries more easily than actively dispersing organisms restricted to dispersal via 146 

watercourses (De Bie et al. 2012). We also examined whether Clementsian metacommunity 147 

structures and high beta diversity would be evident for all organismal groups because our 148 
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surveys comprised relatively large geographical and environmental gradients (Heino and 149 

Alahuhta 2015; Tonkin et al. 2015b). 150 

 This study builds on our previous research on metacommunities in northern 151 

streams (e.g. Grönroos et al. 2013) and lakes (e.g. Soininen et al. 2011). Our present study 152 

provides new comparative information about the responses of different aquatic organismal 153 

groups to region identity, within-region spatial structuring and local environmental factors. 154 

We also show that the metacommunity structures are largely invariable at a biogeographic 155 

scale regardless of organismal and ecosystem-specific differences, which adds to research 156 

conducted within smaller geographic regions (e.g. Heino et al. 2015c). 157 

 158 

Materials and Methods 159 

 160 

Dataset characteristics and environmental variables 161 

 162 

We re-analysed some of our recently-collected data (Soininen et al. 2009; 2011; Grönroos et 163 

al. 2013; Alahuhta et al. 2012; 2015; Heino et al. 2015c) for three groups of stream organisms 164 

(i.e. diatoms, bryophytes, insects) and three groups of lake organisms (i.e. macrophytes, 165 

zooplankton, fish). However, in this study, we combined data such that they comprised 45 to 166 

60 sites across three drainage basins to facilitate comparative purposes. In all cases, datasets 167 

were carefully taxonomically harmonised to guarantee that they were comparable. The three 168 

drainage basins and sites surveyed generally differed between the organismal groups (Fig. 2), 169 

but stream diatoms and bryophytes were surveyed at the same sites. Each drainage basin 170 

drains into the sea (i.e. Arctic Ocean, White Sea or Baltic Sea). Due to limited resources, sites 171 
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were sometimes sampled in different years to avoid large seasonal variation. Moreover, our 172 

experience on northern freshwaters has shown that between-year variation is likely to be less 173 

pronounced than between-season variation. 174 

 175 

Stream diatoms 176 

We sampled 45 stream sites across three drainage basins in Finland. The drainage systems 177 

were: (1) Koutajoki (centered on 66°N, 29°E), (2) Kemijoki (67°N, 28°E), and (3) 178 

Muonionjoki (68°N, 24°E). The spatial extent (a rectangle encompassing all study sites) 179 

comprising the three study areas was 63,609 km2. Generally, 15 sites per region appeared to 180 

be a sufficient sample size, detecting the majority of the diatom species present in the 181 

regional species pool of a drainage basin (Soininen et al. 2009). Algal sampling was 182 

conducted once for each site during summer low-flows in August 2001 or 2004. Sampling 183 

was confined to near-pristine streams. All sampling was conducted by the same field crew 184 

using a strictly standardized field protocol. Each study site with a length of 10 m was divided 185 

into 5 or 10 cross-stream transects, depending on stream width. One or two stones were 186 

selected randomly in each transect, and diatoms were scraped off the stones from a 187 

predefined area (3.1 cm2), using a rubber template. Subsamples, 10 in total, were then pooled 188 

into a composite sample for each site. In the laboratory, fresh samples were carefully checked 189 

to guarantee that most diatom frustules were alive before acid combustion. We used acid 190 

combustion (HNO3: H2SO4, 2:1) to clean frustules of organic material. Cleaned diatoms were 191 

mounted in Naphrax and a total of 500 frustules per sample were identified and counted, 192 

using phase-contrast light microscopy (magnification 1000×) (for details, see Soininen et al. 193 

2009). In total, 96% of diatoms were identified to species. We also measured current velocity, 194 
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shading, particle size, moss cover, conductivity and pH in the field, and analyzed water 195 

samples for water colour and total phosphorus in the laboratory. 196 

 197 

Stream bryophytes 198 

Stream bryophytes were sampled at the same 45 sites as diatoms using a systematic sampling 199 

protocol. At each stream site, 10 50 × 50 cm plots were studied. The plots were placed at 200 

regular intervals of 2 m along the approximately 20 m long riffle section. The order of 201 

sampling proceeded from the stream margin to the center of the stream to cover habitat 202 

variation in the riffle section. Bryophytes were either identified in the field or samples of 203 

difficult-to-identify bryophytes were taken to laboratory for microscopic identification. 204 

Bryophytes were identified to species except for thalloid liverworts of genus Pellia. 205 

 206 

Stream insects 207 

We sampled 60 near-pristine to pristine streams across three drainage basins in Finland 208 

(Grönroos et al., 2013). Each drainage basin had 20 sampled streams. The drainage basins 209 

were Iijoki (centered on 65°N, 27°E), Koutajoki (centered on 66°N, 29°E) and Tenojoki 210 

(centered on 70°N, 27°E). The spatial extent comprising the three study areas was 87,101 211 

km2. Stream macroinvertebrates were sampled in the Iijoki drainage basin in the last week of 212 

May in 2009, in the Koutajoki drainage basin in the last week of May in 2008, and in the 213 

Tenojoki drainage basin in the second week of June in 2010. At each site, the field crew took 214 

a collective two-minute kicknet (net mesh size 0.3 mm) sample covering most microhabitats 215 

present in a riffle site (for details, see Grönroos et al. 2013). In total, 79% of insects were 216 

identified to species in the laboratory. Several riparian, in-stream habitat and water chemistry 217 

variables were also measured at each site (Grönroos et al., 2013). Cover (%) of deciduous 218 
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trees was assessed in a 50-meter section on both banks upstream of each sampling site. 219 

Shading was estimated visually as percent canopy cover at the whole study section. Current 220 

velocity (at 0.6 × depth) and depth were measured at 30 random locations along cross-stream 221 

transects, the number of which depended on stream width. More transects were sampled in 222 

narrow than wide streams. Mean wetted width of each stream reach was measured based on 223 

five cross-stream transects. Macrophyte cover (%) and substratum particle class cover (%) 224 

were assessed at 10 random randomly-spaced 50 cm × 50 cm plots. In addition, in each of the 225 

10 plots, visual estimates of the percentage cover of five particle size classes were made 226 

based on a modified Wentworth scale (see Grönroos et al. 2013). Water samples were 227 

collected simultaneously with the field sampling and were measured for pH and conductivity. 228 

 229 

Lake macrophytes 230 

Macrophytes were sampled in 57 lakes with variable environmental conditions in three 231 

drainage basins in Finland (Alahuhta et al. 2015). In each of the Kymijoki (62°N, 26°E) and 232 

Vuoksi (63°N, 29°N) drainage basins, 20 lakes were surveyed, whereas 17 lakes were 233 

investigated in the Kokemäki drainage basin (62°N, 24°N). The spatial extent comprising the 234 

three study areas was 132,060 km2. Lake macrophyte surveys were carried out during 235 

growing seasons between 2002 and 2008 in the Kymijoki and Vuoksi drainage basins, and 236 

between 2000 and 2011 in the Kokemäki drainage basin. Vascular plants, including 237 

helophytes and hydrophytes, were sampled using a main belt transect method, in which a 238 

varying number of 5-meter wide transects, depending on lake size, from the upper eulittoral 239 

to the outer limit of vegetation were examined. All macrophytes were identified to species. 240 

Ten hydro-morphological and water quality variables known to be important for aquatic 241 

plants were measured in each lake (Alahuhta et al. 2015). These variables consisted of lake 242 
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altitude, lake area, lake perimeter, alkalinity, turbidity, colour, Secchi depth, total 243 

phosphorus, total nitrogen and conductivity. Water quality variables represented median 244 

values for surface samples during the growing season over the period between 2000 and 2007 245 

for the Kymijoki and Vuoksi drainage basins, and between 2000 and 2011 for the 246 

Kokemäenjoki drainage basin. Water quality data was obtained from the Hertta database 247 

maintained by the Finnish Environment Institute (www.environment.fi). 248 

 249 

Lake zooplankton 250 

Zooplankton were sampled from 60 small lakes in Finland during July in 2008 or 2009. The 251 

sites were sampled in three drainage basins. We sampled 20 lakes both in the Kokemäenjoki 252 

(61°N, 24°E) and the Kymijoki (63°N, 25°E) drainage basins in 2008, and 20 lakes in the 253 

Koutajoki (66°N and 29°E) drainage basin in 2009. These drainage basins were chosen 254 

because they cover a relatively large geographical extent and because the nutrient 255 

concentrations of lakes vary from ultraoligotrophic to eutrophic (Soininen et al. 2011). The 256 

spatial extent comprising the three study areas was 125,190 km2. We sampled only small 257 

lakes to ensure that plankton sampling covers the site as adequately as possible. Most of the 258 

lakes within the drainage basins were not readily inter-connected to each other via water 259 

routes. For more information on the environmental characteristics of the lakes within the 260 

drainage basins, see Soininen et al. (2011). Plankton samples were collected with a tube 261 

sampler (V = 2.3 L) from three locations in the middle of the lake and pooled. We collected 262 

the samples in the middle of the lakes in order to avoid benthic taxa from the littoral entering 263 

the samples. The samples were collected at 0.5 m below the surface of the water. 264 

Zooplankton samples (6.15 L) were filtered through a 50 µm net and preserved with 265 

formaldehyde in the field. The maximum depth of the lakes as well as surface water 266 

http://www.environment.fi/
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temperature was measured. The surface area of each lake was measured using Geographic 267 

Information System (MapInfo Version 6.5, MapInfo, Troy, NY, USA). Conductivity was 268 

measured in the field using a conductivity meter (Philips PW 9529). Samples for water 269 

chemistry analyses were collected simultaneously with the plankton sampling and analyzed 270 

in the laboratory for chlorophyll a, water colour, total nitrogen, and total phosphorus. In the 271 

laboratory, all zooplankton individuals were counted at magnification of 125-400× using an 272 

inverted microscope. Both crustacean zooplankton and rotifers were included in the counting. 273 

A total of 71% of zooplankton were identified to species.   274 

 275 

Lake fishes 276 

The lake fish data were based on postal inquiries sent to persons employed as chairmen or 277 

active members in regional fishing associations (Lappalainen and Malinen 2002). All fish 278 

were identified to species. The data were from three drainage basins: Vuoksi (centered on 279 

63°N, 28°E), Kymijoki (centered on 62°N, 26°E) and Kokemäenjoki (centered on 61°N, 280 

24°E). From each of the three drainage basins, 20 lakes were randomly selected for this 281 

study. The spatial extent comprising the three study areas was 150,869 km2. The 282 

environmental data of the lakes were based on the Hertta database (www.environment.fi). 283 

The environmental variables available were lake area, length of the shoreline, altitude, 284 

maximum lake depth, conductivity, pH, colour and total phosphorus. Average values of water 285 

chemistry incorporating the whole water column for a period between June and September 286 

were calculated. 287 

 288 

Spatial analysis 289 

 290 
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We used Moran’s eigenvector maps to model spatial structures among the sites within 291 

drainage basins and to provide spatial variables for community modelling (Borcard and 292 

Legendre 2002; Legendre and Legendre 2012). We thus obtained multiple spatial variables 293 

derived from geographical coordinates using Moran’s eigenvector maps (MEM). These 294 

variables describe spatial patterns in communities (Dray et al. 2012). In practice, this spatial 295 

analysis generated orthogonal spatial variables based on information about geographic 296 

coordinates, number of basins (i.e. blocks) and sites within each basin (Borcard et al. 2011; 297 

Declerk et al. 2011). Hence, as input data, we had site coordinates and indicated, in the R 298 

script, which sites to belong to which basin. Otherwise, the MEM analysis resembles that of 299 

the original MEM analysis without blocks. These multiple spatial variables describe within-300 

basin spatial structures in the data, such that the sites in the other two basins get zero values 301 

when the spatial structures within a focal basin are considered (Declerck et al. 2011; Silva 302 

and Hernández 2015). This analysis results in a staggered matrix of MEM eigenvectors, i.e., 303 

within-region spatial variables. These variables are efficient in modelling spatial structures of 304 

community composition data at multiple scales within each basin. Large-scale spatial 305 

structures among drainage basins were modelled by a dummy variable “basin identity” 306 

because Moran eigenvector maps do not work well when there are large gaps between 307 

regions, such as those between our drainage basins. The Moran’s eigenvector maps analysis 308 

was run using the function “create.MEM.model” (see Declerk et al. 2011).  309 

 Given the facts that we had three regions in the analysis and that not all lakes were 310 

connected by streams, we could not use more sophisticated methods taking into account 311 

hydrological connections among sites (Blanchet et al. 2008; Borcard et al. 2011; Liu et al. 312 

2013). Also, it has been previously shown for stream organisms that MEM eigenvectors 313 

based on either overland or watercourse distances between sites provide similar information 314 

about spatial effects on community structure (Landeiro et al. 2011; Grönroos et al. 2013). 315 
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Finally, it should be noted that the spatial component in variation partitioning analyses should 316 

be considered with certain caution (Gilbert and Bennet 2010; Smith and Lundholm 2010), 317 

and that large gradients in community composition may be challenging to model because of 318 

multiple changes in community composition (Tuomisto et al. 2012). 319 

 320 

Forward selection of explanatory variables 321 

 322 

The final sets of environmental and spatial variables were separately selected for the 323 

redundancy analysis (RDA; Rao 1964) models using a forward selection procedure with two 324 

stopping rules (Blanchet et al. 2008). Forward selection proceeds only if the global model, 325 

which is tested first, is significant. The first stopping rule entails exceeding the critical p-326 

value (α=0.05), and the second is related to the reduced model adjusted R2 value exceeding 327 

that of the global model.  328 

 329 

Variation partitioning 330 

 331 

We used the raw data approach (i.e. site-by-species matrix as response) to examine variation 332 

in community structure among sites (Legendre et al. 2005; Anderson et al. 2011) in each of 333 

the six datasets. Each dataset comprised all sites in all three drainage basins. We used 334 

redundancy analysis (RDA, Rao 1964) to analyse variation in presence-absence data, as 335 

comparable abundance data were not available for all organismal groups. RDA examines 336 

variation in species composition (Y) in relation to sets of predictor variables that were in our 337 

present study environmental variables (E), spatial variables (S) derived from Moran’s 338 
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eigenvector map analysis (see above) and dummy variable basin (B). Prior to the RDA, site-339 

by-species presence-absence data were Hellinger-transformed to make the data better 340 

analysable using linear methods (Legendre and Gallagher 2001) and because Hellinger 341 

transformation/Hellinger distance was deemed highly suitable for community composition 342 

data in a comparative analysis (Legendre and de Caceres 2013). The Hellinger transformation 343 

consists in transforming the site-by-species data into relative values per site, by dividing each 344 

value by the site sum, then taking the square root of the resulting values. Hellinger 345 

transformation can be used for both presence-absence and abundance data (Legendre et al. 346 

2005). We selected significant variables in the final RDA models of each set of variables (E 347 

or S) using the forward selection method with two stopping rules (Blanchet et al. 2008) with 348 

the function “ordiR2step” in the R package vegan (Oksanen et al. 2013). We used 349 

redundancy analysis (RDA) to partition variation in species composition (Y) between E, S 350 

and B following the widely-used variation partitioning approach (Borcard et al. 1992; 351 

Legendre and Legendre 2012). Variation partitioning of species composition (Y) between 352 

three sets of predictor variables results in pure environment (E│S+B), pure spatial (S│E+B) 353 

and pure basin (B│E+S) fractions, as well as their shared effects and unexplained variance 354 

(U). In many cases, spatial variables were not significant, and we thus ran the variation 355 

partitioning between E and B only. Variation partitioning was run using the function 356 

“varpart” in the R package vegan. We reported adjusted R2 values in all analyses because 357 

they are unbiased estimates of explained variation (Peres-Neto et al. 2006). We also tested for 358 

the significance of the total E, S and B fractions, and pure fractions E│S+B, S│E+B and 359 

B│E+S using the function “anova” in the package vegan. Ecologically, we expected that E 360 

would be related to local environmental control, S to within-basin spatial dynamics and B to 361 

biogeographic effects. 362 

 363 
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Visual inspection of breakpoints in metacommunity structure 364 

 365 

We also ran Principal Components Analysis (PCA) based on Hellinger-transformed presence-366 

absence data for each organism group to visually examine breakpoints in community 367 

structure. If those breakpoints are related to among-region differences, they should be easily 368 

detectable by plotting regions using different symbols. In contrast, if the breakpoints are 369 

related to gradients in local environmental factors, they should not be related to regions. PCA 370 

based on Hellinger-transformed data was chosen among the various unconstrained ordination 371 

methods to retain comparability with the variation partitioning in RDA (see above). 372 

 373 

 374 

Testing for different metacommunity structures 375 

 376 

Elements of metacommunity structure (EMS) analyses were based on instructions given in 377 

Leibold and Mikkelson (2002) and Presley et al. (2010). We followed the “range perspective” 378 

in our EMS analyses (Leibold and Mikkelson 2002). Below, we describe the flow of analyses 379 

following previous studies (Leibold and Mikkelson 2002; Heino et al. 2015b, 2015c). 380 

The EMS analysis is based on three metrics: coherence, turnover and boundary 381 

clumping. In this analysis, prior to calculating those metrics, a raw data site-by-species 382 

presence-absence matrix for each organismal group was ordinated using reciprocal averaging 383 

(Leibold and Mikkelson, 2002). Using this ordination method, the sites having similar species 384 

composition occur close to each other and the species that have similar occurrence among the 385 

sites are located close to each other along an axis (Gauch 1982). Reciprocal averaging 386 
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analyses may be sensitive to very rare species, and we thus ran the EMS analysis for each 387 

organismal group with either all species or without singletons (i.e. species occurring at a 388 

single site only were removed prior to the analysis).  389 

 Coherence is based on calculating the number of embedded absences (EAbs) in the 390 

ordinated matrix and then comparing the observed value to a null distribution of embedded 391 

absences (i.e. gaps in a species range) from simulated matrices (Leibold and Mikkelson 2002; 392 

Presley et al. 2010). A small number of embedded absences (i.e. EAbs is significantly lower 393 

than expected by chance) mean positive coherence, whereas a large number of embedded 394 

absences (i.e. EAbs is significantly larger than expected by chance) mean negative coherence. 395 

Significantly negative coherence thus suggests a checkerboard distribution of species, non-396 

significant coherence refers to randomness, and significantly positive coherence refers to 397 

nestedness, evenly-spaced gradients, Gleasonian structure or Clementsian structure (Leibold 398 

and Mikkelson 2002). Turnover is evaluated only if coherence is positive. Turnover is 399 

measured as the number of times one species replaces (Rep) another between two sites in an 400 

ordinated matrix (Presley et al. 2010). Significant negative turnover (i.e. Rep is significantly 401 

lower than expected by chance) refers to nestedness, whereas significantly positive turnover 402 

(i.e. Rep is significantly larger than expected by chance) refers to evenly-spaced, Gleasonian 403 

or Clementsian structures (Leibold and Mikkelson 2002). Furthermore, the cases of 404 

significant positive coherence and non-significant turnover can be regarded as quasi-405 

structures (Presley et al. 2010). The evenly-spaced, Gleasonian and Clementsian 406 

metacommunity structures can be separated based on boundary clumping (Leibold and 407 

Mikkelson 2002). This metric is assessed using Morisita’s dispersion index and a subsequent 408 

chi-square test comparing observed and expected distributions of range boundary locations. 409 

Index values significantly less than 1 indicate hyperdispersed range boundaries (i.e. evenly-410 

spaced metacommunity structure), values that are not different from 1 indicate randomly 411 
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distributed range boundaries (i.e. Gleasonian metacommunity structure), values significantly 412 

greater than 1 indicate clumped range boundaries (i.e. Clementsian metacommunity 413 

structure). Similarly, Quasi-evenly-spaced, Quasi-Gleasonian and Quasi-Clementsian 414 

metacommunity structures can be separated by boundary clumping (Presley et al. 2010). 415 

We assessed the significance of the index values for coherence (EAbs) and turnover 416 

(Rep) using the fixed-proportional null model, where row sums are fixed (i.e. the species 417 

richness of each site was maintained), but column marginal frequencies (i.e. species 418 

frequencies of occurrence) were considered probabilities. Random matrices were produced 419 

using the “r1” method for the fixed-proportional null model as implemented in the R package 420 

vegan (Oksanen et al. 2013). This method is the default in the R package we used (Dallas 421 

2013), and it has been previously used in several other studies (e.g. Heino et al. 2015c). 422 

Although a stricter fixed-fixed null model might provide slightly different results from those 423 

of fixed-proportional null model, such fixed-fixed null model was not used because it is 424 

overly conservative and because we could not have then compared our results with those 425 

from single drainage basins (e.g. Heino et al. 2015e). We used 999 simulations to provide 426 

simulated matrices. Statistical significance of EAbs or Rep was subsequently estimated by 427 

comparing the observed index value from the original matrix to the distribution of values 428 

derived from the 999 simulated matrices. Metacommunity structure was examined for each 429 

organismal group based on axis 1 of reciprocal averaging because we were interested in the 430 

most important species compositional gradient (Gauch 1982). All EMS analyses were run 431 

using the R package metacom (Dallas 2013), with the “r1” method borrowed from the R 432 

package vegan (Oksanen et al. 2013).  433 

 434 

Quantifying beta diversity 435 
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 436 

We quantified beta diversity following the ideas presented by Baselga (2010). We thus 437 

partitioned total beta diversity (i.e. multiple-site beta diversity based on Sørensen coefficient) 438 

in each data set (i.e. across three drainage basins) into turnover (i.e. multiple-site beta 439 

diversity based on Simpson coefficient) and nestedness components (i.e. that resulting from 440 

nestedness-related species richness differences among sites) using the function 441 

“nestedbetasor” in the R package vegan (Oksanen et al. 2013). 442 

 443 

Results 444 

 445 

Overall, our results showed that basin identity and local environmental variables were 446 

significant predictors of variation in community structure, whereas within-basin spatial 447 

effects were typically negligible (Table 1). In half of the cases (diatoms, bryophytes, 448 

zooplankton), basin identity was a slightly better predictor of community structure compared 449 

with local environmental variables, whereas the opposite was true for the remaining three 450 

organismal groups (insects, macrophytes, fish). Both pure basin and local environmental 451 

fractions were, however, significant after accounting for the effects of the other predictor 452 

variable set (p < 0.05). Only for lake macrophytes were pure within-region spatial effects 453 

significant, but their pure effects were slightly smaller than those for local environmental and 454 

basin variables. All three pure components (i.e., pure environmental, pure within-region 455 

spatial and pure region identity components) were significant for macrophytes (p < 0.05). 456 

Much of the explained variation was shared between the two or three predictor variable sets. 457 

Also, our overall RDA models explained only a small fraction of variation in community 458 

structure, varying between 10 and 20 %. Total variation explained or pure environmental 459 
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fraction were not significantly related to spatial extent of the entire study regions (Spearman 460 

rank correlation, p > 0.200). The environmental variables selected in the RDA models were 461 

those which are often influential in aquatic metacommunity studies (Table 1). For streams, 462 

the most common environmental variable, occurring in all models, was water pH. For lakes, 463 

lake area was selected in the models of all organismal groups. 464 

 Of the organismal groups, diatoms, insects and zooplankton showed clear regional 465 

differences in two-dimensional PCA ordination plots (Fig. 3). This suggest that breakpoints 466 

in community composition are mainly related to among-region differences. In contrast, 467 

bryophytes, macrophytes and fish showed less clear regional separation of community 468 

composition, suggesting that potential breakpoints were related to variations in local 469 

environmental factors (Fig. 3). 470 

 All organismal groups showed high levels of beta diversity irrespective of the levels 471 

of gamma diversity and mean alpha diversity (Table 2). High beta diversity was largely 472 

attributable to the turnover component, whereas the nestedness component was rather high 473 

only for fishes. Such high levels of beta diversity were also reflected in coherent 474 

metacommunity structures, higher turnover than expected by chance and clear boundary 475 

clumping (Table 3). Hence, in the majority of the cases, the datasets fitted best with 476 

Clementsian metacommunity structures, with Quasi-Clementsian structures being found only 477 

for stream bryophytes and lake zooplankton (Table 3). It was notable that the beta diversity 478 

measures or the EMS analysis were not sensitive to the exclusion of rare taxa (i.e. when 479 

singletons were removed from the analyses) (Tables 2 and 3). 480 

 481 

Discussion 482 

 483 
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We examined three sources of variation in community structure, namely drainage basin 484 

effect, spatial effect and environmental effect, which can be translated into mechanisms 485 

related to biogeography, spatial dynamics and environmental filtering, respectively. We 486 

found that (1) mainly basin identity and local environmental factors were significant 487 

determinants of community structure in all organismal groups, whereas spatial relationships 488 

between sites were influential only for lake macrophytes. We also observed (2) that all 489 

organismal groups showed high beta diversity, turnover component in particular, across the 490 

basins (this study) and within each basin (Heino et al. 2015c), and (3) fitted best with 491 

Clementsian structures.  492 

 493 

Determinants of community structure of aquatic organisms 494 

 495 

Environmental control often dominates over all spatial effects on metacommunity 496 

organization (Cottenie 2005; Soininen 2014). We found support for this expectation in three 497 

of the six organismal groups (i.e. insects, macrophytes, fish), which corroborates many 498 

findings from streams (Landeiro et al. 2012; Grönroos et al. 2013; Alahuhta et al. 2015) and 499 

lakes (Cottenie et al. 2003; Alahuhta and Heino 2013; Heino 2013). These findings suggest 500 

that environmental filtering is the main mechanism structuring metacommunities (Cottenie 501 

2005; Van der Gucht et al. 2007), at least if the spatial extent of a region under study is not 502 

very broad (Mykrä et al. 2007; Heino et al. 2015a). Although the maximum spatial extent in 503 

our datasets was more than 150,000 km2, we did not find that basin identity (i.e. the 504 

biogeographical effect) would overcome the effect of local environmental factors on the 505 

community structure of insects, macrophytes or fish. This finding may be due to two main 506 

reasons. First, environmental ranges typically increase with increasing spatial extent, thus 507 
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providing more scope for environmental filtering provided that dispersal remains adequate 508 

(e.g. Soininen 2014). Second, in lowland regions, such as our present study area, different 509 

drainage basins may harbour rather similar biotas. This result is in contrast with findings 510 

from more topographically separated drainage basins (e.g. Hoeinghaus et al. 2007). Such 511 

small differentiation in regional faunas or floras between our drainage basins leads to 512 

apparent patterns that mainly environmental filtering drives variation in local community 513 

structure of insects, macrophytes and fish. This also suggests that biogeographic effects, such 514 

as historical influences and climatic forcing, have rather minor effects on local aquatic 515 

communities in lowland regions. 516 

 We expected that environmental conditions would overcome the effects of within-517 

region spatial structuring. We found clear support for this expectation for the three stream 518 

organismal groups, but lake macrophytes showed significant spatial structuring along with 519 

significant environmental effects. This might result from stronger dispersal limitation in lake 520 

organisms compared to stream organisms. However, despite being significant, spatial effects 521 

on lake macrophytes were minor at best, supporting the role of environmental filtering in 522 

driving variation in community structure. Similar studies conducted across multiple regions 523 

have found corresponding results, whereby within-region spatial effects are less important 524 

than environmental control (Declerck et al. 2011; De Bie et al. 2012; Viana et al. 2015). It is 525 

interesting to note that our study regions were of intermediate size in comparison to Declerck 526 

et al.’s (2011) wetland pond study and Viana et al.’s (2015) lake study that extended over 527 

large regions in most of western Europe, and that our findings were rather similar to those 528 

studies. This suggests some similarities across broad spatial scales when there are multiple 529 

separate regions under study. 530 

 We also predicted that basin identity would overcome the effects of local 531 

environmental factors and spatial relations within drainage basins. This prediction proved to 532 
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be partly correct. Although basin effects were significant for all organismal groups, the 533 

amount of explained variation of pure basin effect was higher than that of local 534 

environmental variables for diatoms, bryophytes and zooplankton. It is possible that such 535 

region effects become even more important with increasing spatial extents, and previous 536 

findings at a large spatial extent have found similar effects on lake macrophytes and 537 

zooplankton (Viana et al. 2015). Our result that diatoms, bryophytes and zooplankton showed 538 

stronger basin effects than environmental effects is surprising, however, because small 539 

passively dispersing organisms or their tiny propagules should be able to follow variation in 540 

local environmental variables and cross drainage basin boundaries easily (Kristiansen 1996; 541 

De Bie et al. 2012). It is hence likely that some unmeasured, yet potentially influential 542 

environmental variables (e.g. temperature or geology) vary between the drainage basins, 543 

which translated into basin effect on community structure for diatoms, bryophytes and 544 

zooplankton. Moreover, Alahuhta et al. (2016) found that melting of ice sheet after the last 545 

ice age created variable local environmental conditions along even modest altitudinal 546 

gradient, further affecting present-day community composition. However, it would be very 547 

difficult to examine those effects further with the present data, as climatic, geological and 548 

historical (e.g. time since glaciation) conditions vary clearly among the basins, but are clearly 549 

less variable or not measurable within each basin. This means that those effects are hardly 550 

discernible from the effects of basin identity on aquatic communities. 551 

 We expected that lake organisms should be more dispersal limited than stream 552 

organisms, and thus the former should show more spatial structuring than the latter. This 553 

finding was partly supported, as none of the stream organismal groups exhibited significant 554 

within-region spatial structuring, whereas lake macrophytes and fish showed significant 555 

spatial structuring. This finding largely corroborates previous findings, where spatial 556 

structuring within small drainage basins is often negligible for headwater stream organisms 557 
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(Heino et al. 2012; Landeiro et al. 2012), whereas statistically significant spatial structuring 558 

has been found for some groups of lake organisms (Beisner et al. 2006; Heino 2013). This 559 

pattern may be due to the fact that stream systems are more connected than lake systems, 560 

which results in differences in the likelihood of dispersal limitation between lotic and lentic 561 

systems. However, some studies have found that species sorting through environmental 562 

heterogeneity among sites drives variation in the community structure of both riverine and 563 

lake macrophytes, whereas spatial effects are negligible (Alahuhta et al. 2015). These 564 

discrepancies in findings may be related to differences in spatial extent and the connectivity 565 

between the sites actually used in the analyses. 566 

 Dispersal may also potentially account for biogeographical variation in community 567 

structure. We hypothesised that small passively dispersed organisms would surpass all 568 

geographical barriers and would thus show no evidence of basin identity, whereas the 569 

opposite should be true for large actively dispersing organisms. As a related hypothesis, we 570 

expected small passive dispersers to show stronger environmental control (De Bie et al. 571 

2012). We found at best little support for these conjectures, as all organismal groups showed 572 

a significant pure region effect, and pure environmental effects did not vary consistently 573 

between the passive and active dispersers. While such region effects might potentially be 574 

related to limited dispersal between the three regions (Viana et al. 2015), they may equally 575 

likely arise from climatic forcing on species distributions. However, as already indicated, it is 576 

almost impossible to disentangle overall basin effects and present-day climate or historical 577 

dispersal on our results because climate varies clearly among the drainage basins, but is 578 

largely invariable among sites within our small and predominantly lowland drainage basins. 579 

Low explanatory power was common for the environmental, spatial and basin models. 580 

This is a typical finding in most freshwater bacterial (e.g. Souffreau et al. 2015), 581 

phytoplankton (e.g. Nabout et al. 2009), insect (e.g. Heino et al. 2015d), macrophyte (e.g. 582 
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Alahuhta and Heino 2013) and fish (e.g. Beisner et al. 2006) metacommunity studies based 583 

on adjusted coefficient of determination (Peres-Neto et al. 2006) and presence-absence data 584 

(Vilmi et al. 2016). There are at least five reasons for the low amount of explained variation: 585 

(1) there are influential missing environmental variables, (2) modelling of dispersal routes 586 

and rates is inadequate, or (3) variation in community structure just happens to be difficult to 587 

explain owing to various deterministic and stochastic factors varying simultaneously (Heino 588 

et al. 2015d). Also, (4) very low amounts of explained variation could simply emerge by 589 

chance (T. Dallas, pers. com.). Finally, (5) the low amounts of variation explained might be 590 

related to methodological difficulties in modelling high beta diversity in a dataset, which may 591 

be due to multiple turnovers in species composition (see Tuomisto et al. 2012). Despite these 592 

low amounts of explained variation, we could test our hypotheses about the relative roles of 593 

environmental control, spatial effects and region constraints by basing conclusions on 594 

significance testing and additional evidence on beta diversity and metacommunity structures. 595 

 596 

Elements of metacommunity structure 597 

 598 

Many previous studies on metacommunity structures using the EMS analysis have found 599 

highly variable patterns, varying from random through nested to Gleasonian (i.e. where 600 

species show individualistic responses to ecological gradients) and Clementsian (i.e. where 601 

subgroups of species show similar responses to ecological gradients) structures (Leibold and 602 

Mikkelson 2002; Presley and Willig 2010; Presley et al. 2012; Dallas and Drake 2014; Heino 603 

et al. 2015c). However, many of these studies have focused on metacommunities within small 604 

regions, which might increase variability in the results (Heino et al. 2015c).  605 
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In the present study, we expected that Clementsian gradients would emerge when 606 

metacommunity structures were analysed across multiple drainage basins because this 607 

potentially means crossing multiple species pools and covering large environmental 608 

gradients. On the one hand, different species pools should result in different local 609 

communities, owing to a strong regional influence on local community structure (Heino et al. 610 

2003; Soininen et al. 2009). On the other hand, environmental gradient lengths should 611 

increase with increasing spatial extent, resulting in stronger species composition-environment 612 

correlations among sites (Vetaas and Chaudhary 1998; Soininen 2014). Although we cannot 613 

decisively distinguish between the two main drivers of Clementsian structures because, for 614 

example, different organismal groups may show different regional vs local environmental 615 

influences on breakpoints in community composition (Fig. 3), we found strong support for 616 

such Clementsian structures. This finding is similar to those in a study of bat faunas on 617 

Caribbean islands (Presley and Willig 2010), a study of beetle faunas over northern European 618 

biogeographical provinces (Heino and Alahuhta 2015), a study on riverine invertebrates of 619 

two central German drainage basins (Tonkin et al. 2015b) and a study on wetland crustacean 620 

communities in Spanish wetlands (Gascón et al. 2016). However, this finding partly disagrees 621 

with studies conducted within small regions, including the individual drainage basins 622 

incorporated in this study. Heino et al. (2015c) found that the stream and lake 623 

metacommunities of individual drainage basins showed variable (i.e. random, nested, 624 

Gleasonian, Clementsian and quasi structures) metacommunity patterns (Table 4). This 625 

suggested some degree of scale-dependency in metacommunity structures. We hence propose 626 

that Clementsian structures are common in large-scale studies of local communities, i.e., a 627 

combination of small-grained data with broad spatial extents (Beck et al. 2012; Bini et al. 628 

2014; Dallas and Drake 2014), whereas various patterns may be detected in small-scale 629 

studies (Heino et al. 2015e; Tonkin et al. 2015). Further indirect support for Clementsian 630 
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structures at large scales was provided by the high levels of beta diversity, turnover 631 

component in particular. This is because it is likely that high turnover results in Clementsian 632 

gradients rather than, for example, nested structures (Heino et al. 2015c). 633 

 634 

Conclusions 635 

 636 

The simple yet heuristic approach we used here is easily adaptable to situations where there 637 

are two spatial scales and two or more individual regions (e.g. drainage basins), providing a 638 

useful starting point for more sophisticated analyses of variation in community structure. We 639 

suggest that by analysing simultaneously three sources of variation, environmental (E), 640 

spatial (S) and basin effects (B), we can reveal interesting patterns and suggest some 641 

underlying processes for variation in metacommunity organization across broad 642 

biogeographic regions. Our findings also increase understanding of biogeographical patterns 643 

of community structure in aquatic environments by combining beta diversity analysis with 644 

multivariate models (i.e. variation partitioning) and general ecological pattern detection (i.e. 645 

the EMS analysis). Indeed, our findings strongly suggest that aquatic organisms typically 646 

show high levels of beta diversity and Clementsian gradients at broad spatial extents even 647 

when the focus is on local aquatic communities. 648 

 649 

Acknowledgements. Financial support was provided by the Academy of Finland (to JH, JS). 650 

We thank Tad Dallas, Jamie Kneitel and an anonymous reviewer for comments on an earlier 651 

version of this manuscript. 652 

 653 



28 

 

References 654 

 655 

Alahuhta J, Heino J (2013) Spatial extent, regional specificity and metacommunity 656 

structuring in lake macrophytes. J Biogeogr 40:1572-1582 657 

Alahuhta, J, Hellsten S, Kuoppala, M, Riihimäki, J (2016) Regional and local determinants of 658 

macrophyte community compositions in high-latitude lakes of Finland. 659 

Hydrobiologia, in press 660 

Alahuhta J, Rääpysjärvi J, Hellsten S, Kuoppala M, Aroviita J (2015) Species sorting drives 661 

variation of boreal lake and river macrophyte communities. Comm Ecol 16:76-662 

85 663 

Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders N., 664 

Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, 665 

Swenson NG (2011) Navigating the multiple meanings of β diversity: a 666 

roadmap for the practicing ecologist. Ecol Lett 14:19–28 667 

Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. 668 

Global Ecol Biogeogr 19:134–143 669 

Beisner BE, Peres-Neto PR, Lindström E, Barnett A, Longhi ML (2006) The role of dispersal 670 

in structuring lake communities from bacteria to fish. Ecology 87:2895-2991 671 

Beck J, Ballesteros-Mejia L, Buchmann CM, Dengler J, Fritz SA, Gruber B, Hof C, Jansen F, 672 

Knapp S, Kreft H, Schneider A-K, Winter M, Dormann CF (2012) What’s on 673 

the horizon for macroecology? Ecography 35:673–683 674 



29 

 

Bini LM, Landeiro VL, Padial AA, Siqueira T, Heino J (2014) Nutrient enrichment is related 675 

to two facets of beta diversity for stream invertebrates across the United States. 676 

Ecology 95:1569-1578 677 

Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. 678 

Ecology 89:2623–2632 679 

Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, New York. 680 

Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of 681 

principal coordinates of neighbour matrices. Ecol Model 153:51–68 682 

Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological 683 

variation. Ecology 73:1045–1055 684 

Clements FE (1936) Nature and Structure of the Climax. J Ecol 24:252-284 685 

Cottenie K (2005) Integrating environmental and spatial processes in ecological community 686 

dynamics. Ecol Lett 8:1175-1182 687 

Dallas T (2013) metacom: Analysis of the “elements of metacommunity structure”. R 688 

package version 1.2. http://CRAN.R-project.org/package=metacom 689 

Dallas T, Drake JM (2014) Relative importance of environmental, geographic, and spatial 690 

variables on zooplankton metacommunities. Ecosphere 5:art104 691 

da Silva PG, Hernández MIM (2015) Scale-dependence of processes structuring dung beetle 692 

metacommunities using functional diversity and community deconstruction 693 

approaches. PLoS ONE 10:e0123030 694 

De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Hampel H, 695 

Denys L, Vanhecke L, Van der Gucht K, Van Wichelen J, Vyverman W, 696 

http://cran.r-project.org/package=metacom


30 

 

Declerck SAJ (2012) Body size and dispersal mode as key traits determining 697 

metacommunity structure of aquatic organisms. Ecol Lett 15:740–747 698 

Declerck SAJ, Coronel JS, Legendre P, Brendonck L (2011) Scale dependency of processes 699 

structuring metacommunities of cladocerans in temporary pools of High-Andes 700 

wetlands. Ecography 34:296-305 701 

Diniz-Filho JAF, Bini LM (2005) Modelling geographical patterns in species richness using 702 

eigenvector-based spatial filters. Glob Ecol Biogeogr 14:177–185 703 

Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R, 704 

Blanchet FG, De Cáceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, 705 

Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of 706 

multivariate multiscale spatial analysis. Ecol Monogr 82:257-275 707 

Gascón, S, Cañedo-Argüelles M, Nebra A, Ruhí A, Rieradevall M, Caiola N, Sala J, Ibàñez 708 

C, Quintana XD, Boix D (2016) Environmental filtering determines 709 

metacommunity structure in wetland microcrustaceans. Oecologia, in press. 710 

Gauch HG (1982) Multivariate Analysis in Community Ecology. Cambridge University 711 

Press, Cambridge 712 

Gilbert B, Bennett JR (2010) Partitioning variation in ecological communities: do the 713 

numbers add up? J Appl Ecol 47:1071-1082 714 

Gonçalves-Souza T, Romero GQ, Cottenie K (2014) Metacommunity versus biogeography: 715 

A case study of two groups of neotropical vegetation-dwelling arthropods. 716 

PLoS ONE 9:e115137 717 

Göthe E, Angeler DG, Sandin L (2013) Metacommunity structure in a small boreal stream 718 

network. J Anim Ecol 82:449–458 719 

Grönroos M, Heino J, Siqueira T, Landeiro VL, Kotanen J, Bini LM (2013) Metacommunity 720 

structuring in stream networks: roles of dispersal mode, distance type and 721 

regional environmental context. Ecol Evol 3:4473-4487 722 

Hawkins BA, Porter EE (2003) Water–energy balance and the geographic pattern of species 723 

richness of western Palearctic butterflies. Ecol Entomol 28:678–686 724 



31 

 

Heino J (2013) Does dispersal ability affect the relative importance of environmental control 725 

and spatial structuring of littoral macroinvertebrate communities? Oecologia 726 

171:971-980 727 

Heino J, Alahuhta J (2015) Elements of regional beetle faunas: faunal variation and 728 

compositional breakpoints along climate, land cover and geographical 729 

gradients. J Anim Ecol 84:427–441 730 

Heino J, Grönroos M, Soininen J, Virtanen R, Muotka T (2012) Context dependency and 731 

metacommunity structuring in boreal headwater streams. Oikos 121:537-544. 732 

Heino J, Melo AS, Bini LM, Altermatt F, Al-Shami SA, Angeler D, Bonada N, Brand C, 733 

Callisto M, Cottenie K, Dangles O, Dudgeon D, Encalada A, Göthe E, 734 

Grönroos M, Hamada N, Jacobsen D, Landeiro VL, Ligeiro R, Martins RT, 735 

Miserendino ML, Md Rawi CS, Rodrigues M, Roque FO, Sandin L, Schmera 736 

D, Sgarbi LF, Simaika J, Siqueira T, Thompson RM, Townsend CR (2015d) A 737 

comparative analysis reveals weak relationships between ecological factors and 738 

beta diversity of stream insect metacommunities at two spatial levels. Ecol Evol 739 

5:1235-1248 740 

Heino J, Melo AS, Siqueira T, Soininen J, Valanko S, Bini LM (2015a) Metacommunity 741 

organisation, spatial extent and dispersal in aquatic systems: patterns, processes 742 

and prospects. Freshw Biol 60:845-869 743 

Heino J, Muotka, T, Paavola R (2003) Determinants of macroinvertebrate diversity in 744 

headwater streams: regional and local influences. Journal of Animal Ecology 745 

72:425-434 746 

Heino J, Nokela T, Soininen J, Tolkkinen M, Virtanen L, Virtanen R (2015e) Elements of 747 

metacommunity structure and community-environment relationships in stream 748 

organisms. Freshw Biol 60:973-988 749 

Heino J, Soininen J, Alahuhta J, Lappalainen J, Virtanen R (2015c) A comparative analysis 750 

of metacommunity types in the freshwater realm. Ecol Evol 5:1525-1537 751 

Hoeinghaus DJ, Winemiller KO, Birnbaum JS (2007) Local and regional determinants of 752 

stream fish assemblage structure: inferences based on taxonomic vs. functional 753 

groups. J Biogeogr 34:324–338 754 



32 

 

Hortal J, Diniz-Filho JAF, Bini LM, Rodríguez MÁ, Baselga A, Nogués-Bravo D, Rangel 755 

TF, Hawkins BA, Lobo JM (2011) Ice age climate, evolutionary constraints and 756 

diversity patterns of European dung beetles. Ecol Lett 14:741–748 757 

Jenkins DG, Ricklefs RE (2011) Biogeography and ecology: two views of one world. Proc R 758 

Soc Lond Ser B 366:2331-2335 759 

Jocque M, Field R, Brendonck L, de Meester L (2010) Climatic control of dispersal – 760 

ecological specialization trade-offs: a metacommunity process at the heart of 761 

the latitudinal diversity gradient? Glob Ecol Biogeogr 19:244–252 762 

Kristiansen J (1996) Dispersal by freshwater algae – a review. Hydrobiologia 336:151–157 763 

Lappalainen J, Malinen T (2002) Effects of area and location on pikeperch yields in Finnish 764 

lakes. In: Cowx IG (ed) Management and Ecology of Lake and River Fisheries. 765 

Blackwell. pp. 35-45 766 

Landeiro VL, Bini LM, Melo AS, Pes AMO, Magnusson WE (2012) The roles of dispersal 767 

limitation and environmental conditions in controlling caddisfly (Trichoptera) 768 

assemblages. Freshw Biol 57:1554–1564 769 

Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the 770 

spatial variation of community composition data. Ecol Monogr 75:435-450 771 

Legendre P, De Cáceres M (2013) Beta diversity as the variance of community data: 772 

dissimilarity coefficients and partitioning. Ecol Lett 16:951-963 773 

Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of 774 

species data. Oecologia 129:271-280 775 

Legendre P, Legendre L (2012) Numerical Ecology. Third Edition. Elsevier, Amsterdam 776 

Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, 777 

Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The 778 

metacommunity concept: a framework for multi-scale community ecology. Ecol 779 

Lett 7:601-613 780 

Leibold MA, Mikkelson GM (2002) Coherence, species turnover, and boundary clumping: 781 

elements of meta-community structure. Oikos 97:237–250 782 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2427.2012.02816.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2427.2012.02816.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2427.2012.02816.x/abstract


33 

 

Liu J, Soininen J,Han B-P, Declerck SAJ (2013) Effects of connectivity, dispersal 783 

directionality and functional traits on the metacommunity structure of river 784 

benthic diatoms. J Biogeogr 40:2238-2248 785 

Logue JB, Mouquet N, Peter H, Hillebrand H, The Metacommunity Working Group (2011) 786 

Empirical approaches to metacommunities: a review and comparison with 787 

theory. Trends in Ecology and Evolution 26:482-491 788 

Meynard CN, Lavergne S, Boulangeat I, Garraud L, Van Es J, Mouquet N, Thuiller W (2013) 789 

Disentangling the drivers of metacommunity structure across spatial scales. J 790 

Biogeogr 40:1560-1571 791 

Mouquet N, Loreau M (2003) Community patterns in source‐sink metacommunities. Am Nat 792 

162:544-557 793 

Mykrä H, Heino J, Muotka T (2007) Scale-related patterns in the spatial and environmental 794 

components of stream macroinvertebrate assemblage variation. Glob Ecol 795 

Biogeogr 16:149–159 796 

Nabout JC, Siqueira T, Bini LM, Nogueira IS (2009) No evidence for environmental and 797 

spatial processes in structuring phytoplankton communities. Acta Oecologica 798 

35:720-726 799 

Ng ISY, Carr C, Cottenie K (2009) Hierarchical zooplankton metacommunities: 800 

distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 801 

619:133-143 802 

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, 803 

Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology 804 

Package. R package version 2.0-10. http://CRAN.R-project.org/package=vegan 805 

Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data 806 

matrices: estimation and comparison of fractions. Ecology 87:2614–2625 807 

Pinel-Alloul B, André A, Legendre P, Cardille JA, Patalas K, Salki A (2013) Large-scale 808 

geographic patterns of diversity and community structure of pelagic crustacean 809 

zooplankton in Canadian lakes. Glob Ecol Biogeogr 22:784–795 810 

Pinel-Alloul B, Niyonsenga T, Legendre P (1995) Spatial and environmental components of 811 

freshwater zooplankton structure. Écoscience 2:1–19 812 

http://cran.r-project.org/package=vegan


34 

 

Presley SJ, Cisneros LM, Patterson BD, Willig MR (2012) Vertebrate metacommunity 813 

structure along an extensive elevational gradient in the tropics: a comparison of 814 

bats, rodents and birds. Glob Ecol Biogeogr 21:968-976 815 

Presley SJ, Higgins CL, Willig MR (2010) A comprehensive framework for the evaluation of 816 

metacommunity structure. Oikos 119:908-917 817 

Presley SJ, Willig MR (2010) Bat metacommunity structure on Caribbean islands and the 818 

role of endemics. Glob Ecol Biogeogr 19:185-199 819 

Rao CR (1964) The use and interpretation of principal component analysis in applied 820 

research. Sankhyā: The Indian J Stat Ser A 26:329–358 821 

R Core Team (2013) R: A language and environment for statistical computing. R Foundation 822 

for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ 823 

Ricklefs RE, Jenkins DG (2011) Biogeography and ecology: towards the integration of two 824 

disciplines. Proc R Soc Lond Ser B 366:2438–2448 825 

Rundle SD, Bilton DT, Foggo A (2007) By wind, wings or water: body size, dispersal and 826 

range size in aquatic invertebrates. In: Hildrew AG, Raffaelli DG, Edmonds-827 

Brown R (eds) Body size: The Structure and Function of Aquatic Ecosystems, 828 

pp. 186-209. Cambridge University Press, Cambridge 829 

Shurin JB, Cottenie K, Hillebrand H (2009) Spatial autocorrelation and dispersal limitation in 830 

freshwater organisms. Oecologia 159:151-159 831 

Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche 832 

and neutral processes. Ecography 33:648-655 833 

Soininen J (2014) A quantitative analysis of species sorting across organisms and 834 

ecosystems. Ecology 95:3284-3292 835 

Soininen J, Heino J, Kokocinski M, Muotka T (2009) Local-regional diversity relationship 836 

varies with spatial scale in lotic diatoms. J Biogeogr 36:720-727 837 

Soininen J, Korhonen JJ, Karhu J, Vetterli A (2011) Disentangling the spatial patterns in 838 

community composition of prokaryotic and eukaryotic lake plankton. Limnol 839 

Oceanogr 56:508-520 840 

http://www.r-project.org/


35 

 

Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological 841 

communities. Ecography 30:3-12 842 

Souffreau C, Van der Gucht K, van Gremberghe I, Kosten S, Lacerot G, Lobão LM, de 843 

Moraes Huszar VL, Roland F, Jeppesen E, Vyverman W, De Meester L (2015) 844 

Environmental rather than spatial factors structure bacterioplankton 845 

communities in shallow lakes along a > 6000 km latitudinal gradient in South 846 

America. Env Microbiol 17:2336–2351 847 

Tonkin JD, Stoll S, Jähnig SC, Haase P (2015) Contrasting metacommunity structure and 848 

beta diversity in a river-floodplain system. Oikos in press 849 

Tonkin JD, Sundermann A, Jähnig SC, Haase P (2015) Environmental controls on river 850 

assemblages at the regional scale: an application of the Elements of 851 

Metacommunity Structure framework. PLOS ONE 10:e0135450 852 

Tuomisto H, Ruokolainen L, Ruokolainen K (2012) Modelling niche and neutral dynamics: 853 

on the ecological interpretation of variation partitioning results. Ecography 854 

35:961-971 855 

Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S, Jeppesen E, 856 

Conde-Porcuna J-M, Degans H, Vyverman W, De Meester L (2007) The power 857 

of species sorting: local factors drive bacterial community composition over a 858 

wide range of spatial scales. Proc Natl Acad Sci USA 104:20404-20409 859 

Vetaas OR, Chaudhary R. (1998) Scale and species-environment relationships in a central 860 

Himalayan oak forest, Nepal. Plant Ecol 134:67-76  861 

Viana DS, Figuerola J, Schwenk K, Manca M, Hobæk A, Mjelde M, Preston CD, Gornall RJ, 862 

Croft JM, King RA, Green AJ, Santamaría L (2015) Assembly mechanisms 863 

determining high species turnover in aquatic communities over regional and 864 

continental scales. Ecography in press 865 

Vilmi, A, Karjalainen, SM, Hellsten, S, Heino, J (2016) Bioassessment in a metacommunity 866 

context: are diatom communities structured solely by species sorting? Ecol Ind 867 

62:86-94 868 

Vyverman W, Verleyen E, Sabbe K, Vanhoutte K, Sterken M, Hodgson DA, Mann DG, 869 

Juggins S, Van de Vijver B, Jones V, Flower R, Roberts D, Chepurnov VA, 870 



36 

 

Kilroy C, Vanormelingen P, De Wever A (2007) Historical processes constrain 871 

patterns in global diatom diversity. Ecology 88:1924-1931 872 

Wiens JJ (2012) Why biogeography matters: historical biogeography versus phylogeography 873 

and community phylogenetics for inferring evolutionary and ecological 874 

processes. Front Biogeogr 4:128-135 875 

  876 



37 

 

Tables and Figures 877 

 878 

Table 1. Results of variation partitioning for each organismal group. For each organismal 879 

group, the response data were Hellinger-transformed (presence-absence) site-by-species 880 

matrix. E = environmental effects, B = basin effect and S = within-region spatial effect. 881 

Significance of shared effects (∩) cannot be tested. Global models of spatial effects were 882 

never significant for these organismal groups except for lake macrophytes and lake fishes. 883 

Stream diatoms    

Fraction Df Adj. R2 p Variables in the model 

E 3 0.039 0.001 Moss cover, pH, total phosphorus 

B 2 0.069 0.001 Dummy variable basin 

E+B 5 0.085 0.001 All variables above 

     

E│B 3 0.016 0.002  

E∩B 0 0.023   

B│E 2 0.046 0.001  

U  0.915   

Stream insects    

Fraction Df Adj. R2 p Variables in the model 

E 8 0.155 0.001 pH, shading, deciduous trees, stream width, depth, velocity, macrophytes, sand   

B 2 0.132 0.001 Dummy variable basin 

E+B 10 0.187 0.001 All variables above 

     

E│B 8 0.055 0.001  

E∩B 0 0.100   

B│E 2 0.032 0.001  

U  0.813   

Stream bryophytes    

Fraction Df Adj. R2 p Variables in the model 

E 2 0.049 0.001 pH, total phosphorus 

B 2 0.057 0.001 Dummy variable basin 

E+B 4 0.097 0.001 All variables above 

     

E│B 2 0.039 0.002  

E∩B 0 0.010   

B│E 2 0.048 0.001  

U  0.903   

    

 884 

Table 1. Continues on the next page… 885 
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Lake zooplankton    

Fraction Df Adj. R2 p Variables in the model 

E 2 0.075 0.010 Water temperature, lake area 

B 2 0.078 0.001 Dummy variable basin 

E+B 4 0.089 0.001 All variables above 

     

E│B 2 0.010 0.073  

E∩B 0 0.065   

B│E 2 0.014 0.020  

U  0.911   

Lake macrophytes    

Fraction Df Adj. R2 p Variables in the model 

E 4 0.173 0.001 Conductivity, secchi depth, altitude, lake area 

S 3 0.061 0.001 MEM.15, MEM.8, MEM.2 

B 2 0.027 0.008 Dummy variable basin 

E+S 7 0.189 0.001 Conductivity, secchi depth, altitude, lake area, MEM.15, MEM.8, MEM.2 

E+B 6 0.190 0.001 Conductivity, secchi depth, altitude, lake area, dummy variable basin 

S+B 5 0.092 0.001 MEM.15, MEM.8, MEM.2, dummy variable basin 

E+S+B 9 0.207 0.001 All variables above 

     

E│S+B 4 0.116 0.001  

S│E+B 3 0.017 0.013  

B│S+E 2 0.018 0.004  

E∩S 0 0.048   

S∩B 0 -0.001   

E∩B 0 0.012   

E∩S∩B 0 -0.003   

U  0.793   

Lake fish      

Fraction Df Adj. R2 p Variables in the model 

E 4 0.101 0.001 Lake area, altitude, colour, conductivity 

S 2 0.036 0.001 MEM.1, MEM.12 

B 2 0.028 0.011 Dummy variable basin 

E+S 6 0.110 0.001 Lake area, altitude, colour, conductivity, MEM.1, MEM.12 

E+B 6 0.118 0.001 Lake area, altitude, colour, conductivity, dummy variable basin 

S+B 4 0.066 0.001 MEM.1, MEM.12, dummy variable basin 

E+S+B 8 0.128 0.001 All variables above 

     

E│S+B 4 0.063 0.001  

S│E+B 2 0.011 0.121  

B│S+E 2 0.018 0.037  

E∩S 0 0.028   

S∩B 0 -0.001   

E∩B 0 0.012   

E∩S∩B 0 -0.001   

U  0.872   
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Table 2. Multiple site beta diversity for each organismal group. Singletons were either included (yes) in or omitted (no) from the calculations of 889 

gamma, alpha and beta diversity. Total beta diversity (Sorensen) was also decomposed into turnover (Simpson) and nestedness components 890 

(Nested). S.D. = standard deviation of alpha diversity. The numbers of sites surveyed varied from 45 to 60 among the datasets. 891 

 892 

  Gamma diversity Alpha diversity  Beta diversity  

Organismal group Singletons  Mean S.D. Sorensen Simpson Nested 

Stream diatoms Yes 305 50.8 15.5 0.939 0.916 0.023 

Stream diatoms No 225 49.0 14.2 0.935 0.912 0.023 

Stream bryophytes Yes 49 6.13 3.3 0.949 0.914 0.036 

Stream bryophytes No 31 5.73 3.0 0.944 0.905 0.039 

Stream insects Yes 203 28.6 9.86 0.956 0.938 0.018 

Stream insects No 144 27.6 9.59 0.954 0.935 0.019 

Lake macrophytes Yes 101 26.6 9.36 0.934 0.894 0.041 

Lake macrophytes No 88 26.3 9.14 0.933 0.892 0.041 

Lake zooplankton Yes 55 8.3 3.04 0.952 0.929 0.023 

Lake zooplankton No 37 8.0 2.91 0.949 0.924 0.025 

Lake fish Yes 25 12.7 2.88 0.879 0.770 0.109 

Lake fish No 24 12.6 2.87 0.878 0.768 0.110 

 893 
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Table 3. Results of the elements of metacommunity structure analysis. EAbs = embedded absences, Rep = replacements, I = Morisita’s index, 

Mean Sim = Mean index value from 999 randomisations. Q-Clementsian = Quasi-Clementsian. The numbers of sites surveyed varied from 45 to 

60 among the datasets. 

  Coherence   Turnover   Clumping    

Organismal group Singletons EAbs p Mean Sim Rep p Mean Sim I p df Interpretation 

Stream diatoms Yes 7432 < 0.001 9407 767451 < 0.001 272374 1.98 < 0.001 302 Clementsian 

Stream diatoms No 5945 < 0.001 6606 287325 0.003 144143 2.14 < 0.001 222 Clementsian 

Stream bryophytes Yes 709 < 0.001 1051 51751 0.669 45242 4.48 < 0.001 46 Q-Clementsian 

Stream bryophytes No 501 < 0.001 656 35036 0.025 22932 1.93 < 0.001 28 Clementsian 

Stream insects Yes 5988 < 0.001 8217 992307 < 0.001 284808 3.12 < 0.001 200 Clementsian 

Stream Insects No 4461 < 0.001 5562 422762 < 0.001 151359 2.38 < 0.001 141 Clementsian 

Lake macrophytes Yes 2325 < 0.001 3303 125361 0.001 63488 7.08 < 0.001 98 Clementsian 

Lake macrophytes No 2037 < 0.001 2812 88138 < 0.001 44729 6.74 < 0.001 85 Clementsian 

Lake zooplankton Yes 1427 0.003 1778 75124 0.662 64798 2.02 < 0.001 52 Q-Clementsian 

Lake zooplankton No 1085 0.427 1136 40136 0.383 31481 1.69 < 0.001 34 Random 

Lake fish Yes 411 0.003 518 7318 0.020 3722 2.22 < 0.001 22 Clementsian 

Lake fish No 369 < 0.001 494 6846 0.006 3297 2.12 < 0.001 21 Clementsian 
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Table 4. A comparison of elements of metacommunity structures (EMS) at the within-basin 

(Heino et al. 2015c; two to five different basins per organismal group) and across-basins (this 

study) spatial extents. Q = Quasi. The results suggest a clear shift from various different 

structures to Clementsian structures at large spatial extents. 

 

   

Organismal group Within basins (Heino et al. 2015c) Across basins (this study) 

Stream diatoms Gleasonian, Q-Gleasonian, Clementsian Clementsian 

Stream bryophytes Q-Gleasonian, Q-Clementsian, Clementsian Q-Clementsian 

Stream insects Q-Gleasonian, Gleasonian, Clementsian Clementsian 

Lake macrophytes Clementsian, Q-Clementsian Clementsian 

Lake zooplankton Random, Q-nested, Q-Gleasonian Q-Clementsian 

Lake fish Q-Nested, Q-Clementsian, Clementsian Clementsian 
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Fig. 1. Our model systems encompass three metacommunities, each with several local 

communities indicated by black dots (e.g. a stream site). Black arrows connecting the 

metacommunities denote among-region dispersal and other region effects (a). Statistical 

approach includes Moran’s eigenvector maps, redundancy analysis (RDA), calculation of 

multiple site beta diversity and definition of metacommunity structures (b). B = basin effect, 

E = environmental effect and S = spatial effect. 

 

  

MC-1 MC-2 MC-3

Among-basin differences (B) resulting from historical and climatic influences

a)

b) Statistical models and analyses

RDA analysis and associated variation partitioning: 
Y ~ B + E + S  

→ B|E+S or E|B+S or S|B+E

Multiple site beta diversity:
Total beta diversity

→ turnover + nestedness

Elements of metacommunity structure:
Coherence + Turnover + Boundary clumping

→ Checkerboard or Random or Gleasonian or Clementsian or Evenly-spaced

Within-basin dispersal (S) and local environmental (E) influences



43 

 

Fig. 2. Drainage basin boundaries in the datasets studied. Shown are the drainage basins 

sampled for diatoms and bryophytes (A), insects (B), macrophytes and fish (C) and 

zooplankton (D). Drainage basins are delineated to include only areas within the Finnish 

borders, because all surveys were done in Finland despite some drainage basins exceed 

national borders. 
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Fig. 3. PCA ordination plots for each organismal group. Different drainage basins are denoted by different symbols. 
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