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Abstract
Mother vaginal microbes contribute to microbiome of vaginally delivered neonates. Child microbiome can be associated 
with autoimmune diseases, such as type 1 diabetes (T1D). We collected vaginal DNA samples from 25 mothers with a 
vaginally delivered child diagnosed with T1D and samples from 24 control mothers who had vaginally delivered a healthy 
child and analyzed bacteriome and mycobiome of the samples. The total DNA of the samples was extracted, and riboso-
mal DNA regions (16S for bacteria, ITS2 for fungi) were amplified, followed by next-generation sequencing and machine 
learning. We found that alpha-diversity of bacteriome was increased (P < 0.002), whereas alpha-diversity of mycobiome 
was decreased (P < 0.001) in mothers with a diabetic child compared to the control mothers. Beta-diversity analysis sug-
gested differences in mycobiomes between the mother groups (P = 0.001). Random forest models were able to effectively 
predict diabetes and control status of unknown samples (bacteria: 0.86 AUC, fungi: 0.96 AUC). Our data indicate several 
fungal genera and bacterial metabolic pathways of mother vaginal microbiome to be associated with child T1D. We suggest 
that early onset of T1D in a child has a relationship with altered mother vaginal microbiome and that both bacteriome and 
mycobiome contribute to this shift.
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Introduction

Mother vaginal microbiome contributes to the microbial 
community (i.e., microbiome, including bacteria and fungi) 
of gut, oral cavities and skin of vaginally delivered chil-
dren [1–3]. The child gut microbiome, on the other hand, is 

associated with autoimmune diseases, such as type 1 diabe-
tes (T1D), during childhood or later in life [4]. Restoration 
of gut microbiota with Bifidobacterium infantis in early life 
could protect a child from development of T1D [5]. Children 
born by cesarean section (CS) have altered microbial com-
munities in the gut compared to vaginally delivered children 
[1, 6, 7] and CS has been considered as a risk factor for 
the early onset of T1D [8]. Regardless of such associations, 
the connection between the vaginal microbiome and child 
microbiome in the development of T1D may be complex 
[9, 10]. In a case–control-type pilot study, Tejesvi et al. [11] 
found that the mother vaginal microbiome and child T1D 
may be associated. The results by Tejesvi et al. suggested 
that mothers who gave birth to a child with T1D had a more 
diverse vaginal microbiome than control mothers.

The full microbiome, which has concerned only bacterial 
species in the large majority of studies, but includes also 
human fungal communities, i.e., mycobiomes that were long 
neglected but have lately caught attention [12]. Specifically, 
the role of human mycobiome and association of the dysbio-
sis between bacteriome and mycobiome with autoimmune 
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diseases has been under investigation [4, 13, 14]. Fungal and 
bacterial dysbiosis and intestinal inflammation of neonates 
was recently associated with beta-cell autoimmunity, as chil-
dren who developed T1D had high amounts of Saccharomy-
ces and Candida yeasts in their gut [4]. Vaginal mycobiome 
has been relatively little studied to date. However, studies 
by Drell et al. [15] and Bradford and Ravel [16] suggest 
that the vaginal mycobiome is more diverse than previously 
assumed. Drell et al. noted that the low quality of refer-
ence libraries and poor knowledge of fungal taxonomy may 
complicate the analyses. Nevertheless, interactions between 
bacterial and fungal communities, especially between Lac-
tobacillus spp. and Candida spp., have been considered fun-
damental for future research [16, 17].

We compared bacteriome and mycobiome samples of 
mothers who had delivered at least one child diagnosed with 
T1D by the age of 11 (N = 25, group hereafter named as 
Diabetes group) with similar samples from control moth-
ers with children without diabetes (N = 24, group hereafter 
named as Control group) using next-generation sequencing 
and machine learning approach. The aim of this study was 
(1) to find out whether association of mother vaginal micro-
biome and child T1D found by Tejesvi et al. [11] can be 
corroborated to a larger sampling from the same research 
population. We also aimed (2) to find out whether further 
differences in vaginal mycobiomes exist with respect to the 
mother groups (Diabetes group vs. Control group). Finally, 
(3) we analyzed the predicted metabolic pathways to find 
out whether child T1D-specific signatures were detectable 
in this study population.

Methods

Description of samples and sampling protocol

Material for this study was collected in the Northern Ostro-
bothnia Hospital District 2018–2020 covering population in 
Oulu area, Northern Finland. Institutional Ethics Commit-
tee approved the study and the patient consent (Statement 
of the regional Ethics committee 21.6.2017). All research 
was performed in accordance with relevant regulations, and 
informed consent was obtained from all participants. The 
material for the study was collected from 25 mothers with 
at least one child with T1D by vaginal delivery (child age 
less than 11 years at the time of sampling) and 24 control 
mothers with at least one vaginal delivery and no diagnosed 
child/children with diabetes. The age of the mothers was 
set to be between 22 and 40 years at the time of sampling. 
Mothers included in this study did not have hormonal birth 
control or constant medication. No other background data 
on mothers were collected in this study. The samples were 
collected in a normal protocol of vaginal surface sampling. 

Sampling was carried out by two specialist doctors with one 
mainly taking samples from Diabetes group and one tak-
ing samples from Control group, by following exactly same 
protocol in sampling. After sampling, the tip of the swab 
was immediately placed into a sterile Eppendorf tube and 
preserved at  – 20 °C. Data is deposited in GenBank https://​
www.​ncbi.​nlm.​nih.​gov/​genba​nk/ under the bioproject num-
bers PRJNA751475 for bacteria https://​datav​iew.​ncbi.​nlm.​
nih.​gov/​object/​PRJNA​751475?​revie​wer=​jia44​284el​ai976​
f8b5o​tp063r and PRJNA751714 for fungi https://​datav​iew.​
ncbi.​nlm.​nih.​gov/​object/​PRJNA​751714?​revie​wer=​h1oai​tfif9​
38522​cmfv3​r5frq

PCR amplification, DNA extraction, and sequencing

DNeasy Power Soil® Pro DNA isolation kit (Qiagen) and 
Qiacube robotic workstation (Qiagen) were used to extract 
genomic DNA from frozen cotton swabs to identify bac-
terial and fungal communities. Before PCR amplification, 
genomic DNA was diluted to a concentration of 10 ng/µl and 
analyzed using a Nanodrop spectrophotometer.

The Primers 519F (5'-CAGCMGCC​CGC​GGT​AAT​
WC-3') and 926R (5'-CCG​TCA​ATT​CCT​TTR​AGT​TT-3') 
were used to amplify a portion of the bacterial 16S small 
ribosomal unit gene in bacterial Polymerase chain reactions 
(PCR). The 519F primer had a 30-bp long adapter sequence 
A, a 9-bp specific barcode sequence for each sample, and a 
single nucleotide linker A at the beginning of the Ion Tor-
rent sequencing method. The Ion Torrent adapter series trP1 
was present at the beginning of the 926R primer. 1 × Phusion 
Flash High-Fidelity Master Mix (ThermoFisher Scientific), 
0,5 M forward and reverse primers, and 10 ng template 
DNA were used in duplicate polymerase chain reactions in 
a 15 µl volume. After a 3-min denaturation period at 98 °C, 
the following conditions were used for 22 cycles: 98 °C, 
10 s; 64 °C, 10 s; 72 °C, 30 s. The final extension was done 
for 5 min at 72 °C.

With primers ITS4 (5'-TCC​TCC​GCT​TAT​TGA​TAT​
GC-3') and fITS7 (5'- GTG​ART​CAT​CGA​ATC​TTT​G -3'), 
the ITS2 region of the ribosomal RNA gene was amplified 
for fungal community analysis. The ITS4 primer had a 30-bp 
long adapter sequence A and a 10-bp unique multiplex iden-
tifier sequence (MID) at the beginning, while the fITS7B 
primer had a 30-bp long adapter sequence A and a 10-bp 
unique multiplex identifier sequence (MID) at the beginning. 
PCR amplification was performed in the same manner as for 
16S rRNA products, with an initial denaturation at 98 °C for 
2 min, followed by 32 cycles of 10 s at 98 °C, 20 s at 54 °C, 
and 30 s at 72 °C, and a final extension for 7 min at 72 °C.

Both PCR reactions were done in triplicate, and the PCR 
products were analyzed on an agarose gel. Following that, 
the triplicate reactions were mixed, cleaned with a Beckman 
Coulter Agencourt AMPure XP PCR purification system, 
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and quantified with an Agilent Bioanalyzer using the DNA-
1000 analysis package (Agilent). Individual 16S and ITS 
samples were then pooled at equimolar ratios for sequenc-
ing, and the pools were purified with Ampure XP, tested for 
purity with a bioanalyzer, and concentration was measured 
with a picogreen assay. Sequencing was performed using Ion 
Torrent PGM sequencer, 316 v2 chip, Ion PGM Hi-Q View 
template kit (400 bp templating program) and Ion PGM 
Hi-Q View Sequencing kit (850 cycles).

Bioinformatics: 16S sequence and ITS sequence 
preprocessing

Multiplexed 16S sequences were imported into Qiime2 (ver-
sion 2019.10) [18]. Barcode sequences were removed using 
the q2-cutadapt-plugin [19]. Primer sequences (f-primer: 
CAGCMGCC​GCG​GTA​ATW​C, r-primer: CCG​TCA​ATT​
CCT​TTR​AGT​TT) were removed using the q2-cutadapt-
plugin. Sequences were denoised to ASV's using the 
q2-dada2-plugin [20] with truncation length parameter set to 
391 base pairs. Naive-Bayes taxonomic classifier was trained 
using the SILVA (v138) database [21] trimmed to the for-
ward and reverse primers used in sequencing and truncated 
to 391 bp length. Chimeric sequences were detected and 
removed using the q2-vsearch-plugin [22]. Features found 
only in one sample and those with less than 10 frequency 
across all samples were removed. Taxonomy was assigned 
using the naive-bayes classifier. Non-bacterial ASV's, mito-
chondria, and chloroplast sequences were removed using the 
q2-taxa-plugin. At this point, samples that had a total feature 
frequency lower than 1000 were removed. Additionally, the 
ASV-table was then collapsed into a taxonomic level of gen-
era and the metabolic pathway composition was predicted 
using the q2-picrust2-plugin [23]. The q2-picrust–plugin 
outputted MetaCyc [24] metabolic pathways. ITS sequences 
were preprocessed similarly to 16S sequences, except 311 
was chosen as the q2-dada2 truncation length, and the 
R-package Decontam [25] was used to identify and remove 
features identified as contaminants. Taxonomy was assigned 
to ITS features using the UNITE (v8.2) database [26].

Diversity analyses and differential abundance

Alpha and beta diversity analyses were done using the 
q2-diversity-plugin and visualized with Matplotlib python 
package. Shannon index and Bray–Curtis dissimilarity were 
chosen as diversity metrices. ASV-tables were rarefied to 
the sampling depth of 1000, while metabolic pathway data 
were rarefied to a depth of 10,000. Principal coordinates 
analysis (PCoA) was performed using the q2-diversity-
plugin with bacteria, predicted pathways and fungi data 
independently. Statistical differences between diabetes and 
control samples were tested with Kruskal–Wallis H-test 

with Scipy and PERMANOVA with q2-diversity-plugin in 
alpha and beta diversity, respectively. Statistical differences 
in comparison of individual taxonomic groups were carried 
out using Kruskal–Wallis H-test in R environment (version 
4.1.0, [27]). Differentially abundant genera and predicted 
pathways were investigated using the q2-aldex2-plugin [28].

Machine learning

Random forest [29] and logistic regression models were 
trained to predict the diabetes status of the samples using 
scikit-learn package [30]. Nested cross-validation scheme 
with tenfolds in each layer was used. In tenfold cross-val-
idation, the whole data are first partitioned to ten different 
validation and training folds, where each sample is once in 
the validation fold. In nested cross-validation, a second ten-
fold cross-validation split is done on the training fold to tune 
optimal parameters. This way, the validation fold is unseen 
to the training process of the models. Default parameters 
were used for random forests, while parameter “C” was 
tuned using the training folds for logistic regression mod-
els. Feature importance values were gathered during model 
training, where random forest models outputted the normal-
ized gini importance and logistic regression the feature coef-
ficients. Area under the curve (AUC) of receiver operating 
characteristic (ROC) were chosen as the performance metric 
as it performs well with class unbalanced data. Nested cross-
validation process was repeated 40 times and the model per-
formances, feature importance’s and coefficient values from 
each cross-validation iteration were pooled together, aver-
aged, and finally plotted using Matplotlib.

Results

The total number of raw bacterial sequences was 1 526 318 
and fungal sequences 1 095 814. The total frequency, after 
all quality filtering steps, of bacterial sequences steps was 
435 993 (collapsed into 34 genera), 23 860 244 (290 path-
ways) predicted metabolic pathways, and 144 424 (col-
lapsed into 25 genera) fungal sequences. The bacterial and 
predicted pathway data had 49 samples in the final analy-
ses, while 44 samples remained in fungal data. The rela-
tive abundances of taxonomically assigned sequence reads 
for bacteria and fungi are presented in Fig. 1 and Supple-
mentary Tables 1 and 2, respectively. The raw sequences 
were deposited to GenBank under the bioproject numbers 
PRJNA751475 for bacteria and PRJNA751714 for fungi.

Alpha-diversity (Shannon, diversity within samples) 
of the vaginal bacteriome of Diabetes group mothers was 
higher compared to the Control group mothers (Fig. 2A). 
In contrast, the alpha-diversity of vaginal mycobiome was 
lower in the Diabetes group than in the Control group 



188	 Medical Microbiology and Immunology (2022) 211:185–194

1 3

(Fig. 2B). Alpha-diversity of bacterial predicted pathways 
also tended to increase, but the result was not statistically 
significant (P = 0.08, Supplementary Fig. 1). We found a dif-
ference in beta-diversity (Bray–Curtis dissimilarity, diversity 
between samples) in the mycobiomes between Diabetes and 
Control groups (Fig. 2C). In the case of bacteriomes and 
predicted pathways, there were no statistically significant 
differences in beta-diversity (Supplementary Fig. 2).

Machine learning models differentiated well between 
Diabetes and Control group, where random forest (RF) 
models achieved high area under the curve (AUC) when 
using both bacteria (AUC = 0.86, SD = 0.03) and fungi 
(AUC = 0.93, SD = 0.02) (Fig.  3). Logistic regression 
(LOG) models had lower AUC values for all types of 
data, except in predicted metabolic pathway data derived 
from 16S sequences (0.86 AUC in both bacteria and 
fungi) (Fig. 3). Machine learning indicated several genera 
to be characteristic for Diabetes group both in separate 
(Fig. 4) and combined analyses (Supplementary Fig. 4) 
of bacterial and fungal genera. When bacteria and fungi 
data were combined for machine learning analyses, both 

RF (AUC = 0.96, SD = 0.02) and LOG (AUC = 0.93, 
SD = 0.04) models could predict with high accuracy 
between Diabetes and Control group test samples (Supple-
mentary Fig. 3). Abundance data indicated several fungal 
genera and bacterial metabolic pathways to be associated 
with child T1D (Tables 1 and 2).   

An amplified sequence variant (ASV) classified within 
the fungal genus Tylospora had the highest feature impor-
tances (MDI value) used in the random forest models to 
predict the differences between the mother groups (Fig. 4). 
The abundance of Tylospora sp. was also significantly higher 
in the Diabetes group samples (P = 0.001, Table 2, Supple-
mentary Fig. 6, Supplementary Table 2). The bacterial genus 
Aerococcus was present at a higher frequency in Diabetes 
group samples than in Control group samples (96% vs 33% 
of samples, respectively) although an abundance of Aerococ-
cus did not differ between groups (data not shown). Con-
sidering predicted metabolic pathways of bacteria, PWY-
6630 (superpathway of L-tyrosine biosynthesis), PWY-6608 
(guanosine nucleotides degradation III) and PWY-6628 
(superpathway of L-phenylalanine biosynthesis) were the 

Fig. 1   Averaged relative abundances of bacterial (A, B) and fungal (C, D) genera in Diabetes and Control groups
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most important ones to predict the difference between Dia-
betes and Control groups (Fig. 4; Table 1).

Discussion

We found differences in vaginal bacteriome and mycobi-
ome between mothers who had a child with T1D (Diabe-
tes group) and mothers with non-diabetic children (Control 
group). Alpha diversity of mother vaginal bacteriome was 
higher among the Diabetes group compared to the Con-
trol group. Increased alpha diversity, i.e., higher within-
sample variation of the vaginal microbiome (bacteriome) 
of mother, related to the child T1D, has been previously 
reported by Tejesvi et al. [11]. In addition, observations of 
increased diversity in child’s bacterial gut microbiota in rela-
tion to maternal gestational diabetes have been observed by 
Wang et al. [12]. Accordingly, Vatanen et al. [31] reported 
increased diversity of child’s bacterial gut microbiota toward 

T1D onset in childhood. The relationship between increased 
diversity in mother’s vaginal bacteriome and child’s T1D 
suggests that there exist unidentified vaginal bacterial groups 
that play a role in development of T1D.

Tejesvi et al. [11] reported that within-genus beta-diver-
sity of Lactobacillus was altered in the group of mothers 
with T1D children, and the bacterial genus Prevotella was 
characteristic to this group. High amounts of Prevotella 
have been found in vaginal microbiomes of women who 
have other than Lactobacillus-dominated microbiome, but 
Prevotella has also been linked to bacterial vaginosis [32]. 
In this study, Prevotella was absent from Control group sam-
ples and present in Diabetes group samples (at an average 
of 3% abundance), but this difference was not statistically 
significant. Drell et al. [15] found that increased microbiome 
diversity was linked to an increase in vaginal pH. In this 
study, we found a bacterial ASV classified as Aerococcus 
(Firmicutes, Bacilli) characterizing the difference between 
the Diabetes and Control group mothers. Aerococcus, which 

Fig. 2   Alpha and beta diversity of bacteria and fungi in vaginal samples. Alpha diversity boxplots of Shannon’s diversity indices for Diabetes 
and Control group samples of A bacteria and B fungi. C Beta-diversity of fungal community in Diabetes and Control group samples
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is a common member of air and vegetation microbial com-
munities, is often found in the vaginal bacteriome, but it is 
also associated with bacterial vaginosis and urinary tract 
infections [33]. Unhealthy vaginal bacteriome of mother has 
been found to be linked to offspring health in a mouse model 
[34]. Whether changes in certain bacterial groups, such as in 
Lactobacillus, Prevotella or Aerococcus in mother vaginal 
microbiome are associated with child T1D, warrants further 
research.

We also predicted specific bacterial metabolic path-
ways in vaginal microbiomes that were associated with 
child T1D. Specifically, the predicted bacterial metabolic 
pathways characterizing differences between Diabetes and 
Control groups were related to amino acid biosynthesis and 
nucleotide degradation. The combination of these pathways 
may imply of direction of nitrogen usage within the bac-
terial communities, as nitrogen is specifically required for 
both amino acid and nucleotide synthesis. Because amino 
acids are building blocks for proteins, required for meta-
bolic activity, and nucleotides are needed for replication of 
DNA and proliferation [35], the result suggests that bacteria 
were directing their nitrogen use toward survival and not 
cell division.

Fig. 3   Cross-validated machine learning model performance when 
differentiating Diabetes and Control samples in the test samples. 
Dotted black line represents the performance of a model that is com-
pletely random (0.5 area under the curve, AUC), while a model that is 
always correct would have an AUC of 1.0

Fig. 4   Importances of features used by random forest models (sepa-
rate analyses for bacteria and fungi). Mean Decrease in Impurity 
(MDI) was used as the feature importance metric. Models were 

trained to predict unknown samples of Diabetes and Control groups 
in A bacteria, B pathways, and C fungi
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In contrast to the bacteriome, alpha-diversity of mycobi-
ome was lower in Diabetes group mothers compared to the 
Control group mothers. Beta diversity of the mycobiomes 
also differed between the groups. Decreased diversity of 
vaginal mycobiome and altered community structure (beta-
diversity) suggest that the vaginal mycobiome may play a 
more significant role in the full microbiome functions and, 
consequently, in the child’s gut microbiome, than has previ-
ously been thought. In general, recent findings have indi-
cated that vaginal mycobiome is more diverse than previ-
ously thought [15, 16]. According to Hall & Noverr [36], the 
majority of vaginal fungi are opportunists, which suggests 
that they are sensitive to the living conditions of the vagina. 
Fungal communities of vaginally delivered children are also 

affected by environmental conditions, such as fungal dis-
persal via air, living environment, or caretakers [37]. In our 
study, the decreased diversity was related to several fungal 
genera/groups that were associated with vaginal mycobiome 
of mothers in the Diabetes group. In particular, Tylospora 
sp. was highly specific to the Diabetes group. Because the 
human mycobiomes are relatively little studied to date [15, 
16], the importance of this finding remains to be discovered. 
This is due to the low capacity for taxonomic identification 
in the reference libraries, which can be expected to increase 
as more fungal reference samples of humans are identified 
[15]. However, regardless of poor classification of the taxa, 
identification of specific fungal groups in the mother vaginal 
mycobiome and changes in fungal diversity indices clearly 
indicate that fungal community changes may play a role in 
early onset of T1D. Dysbiosis, i.e., a change in the balance 
between gut bacteriome and mycobiome is reported to play 
a role in the onset of T1D in child gut microbiome [4]. We 
suggest that a similar kind of interaction between bacterial 
and fungal communities in mother’s vagina (as suggested 
also by Bradford & Ravel for vaginal communities in gen-
eral [16]) may take place and that the altered microbiome is 
associated with the onset of T1D in a child [17].

Machine learning studies have shown that type 1 and type 
2 diabetes can be predicted based on gut microbiome using 
both 16S and whole genome sequencing data [38–41]. In 
these studies, the machine learning models achieved mod-
erate prediction performance in the range of 0.7–0.8 AUC, 
except for a deep learning-based model that achieved 0.9 
AUC in a cohort of European women with type 2 diabetes 
[39]. In our study, the best models predicted T1D with a high 
performance of 0.86–0.96 AUC, indicating that the vaginal 
microbiome and mycobiome of the mother is a reliable pre-
dictor for T1D in children.

Our study has been carried out in one local population 
at maximum 11 years after the child delivery. Our find-
ings therefore need to be corroborated by a longitudinal 
study, where the microbial sampling would be carried 
out at the time of birth and linked with a follow-up of 
child cohorts, similar to large-scale child diabetes stud-
ies (e.g., [42]), preferably covering several populations 
(countries and continents). In addition, our results rely on 
current microbial reference libraries, which in the case of 
humans, are changing fast (https://​www.​arb-​silva.​de, [43]). 
It is known that hormonal contraceptives may change the 
vaginal microbiota [44], and for this reason, the use of 
hormonal contraceptives was excluded in our study. None 
of the mothers had constant medication, or hormonal con-
traceptives, but we suggest that factors such as frequency 
of intercourse, glycemic index of food and the quality of 
hygiene products need to be taken into account in future 
studies. Vaginal microbiomes during childhood, repro-
ductive-age and menopause are different also suggesting 

Table 1   Predicted metabolic pathway features in Diabetes and Con-
trol groups

Effect: direction of change. Positive value: feature is more abundant 
in Diabetes group

Feature name Diabetes vs Control Effect
Adjusted p-value Direction

ASPASN-PWY 0.045 0.705
CENTFERM-PWY 0.049 0.577
HSERMETANA-PWY 0.031 0.498
PWY-5695 0.011 0.943
PWY-6507 0.033 0.635
PWY-6590 0.035 0.591
PWY-6608 0.004 1.058
PWY-6628 0.001 1.106
PWY-6630 0.001 1.097
PWY-6891 0.04 0.655
PWY-6892 0.04 0.685
PWY-6895 0.02 0.697
PWY-6901 0.024 0.612
RHAMCAT-PWY 0.036 0.592
THISYN-PWY 0.016 0.749

Table 2   Aldex2 results for Fungi genera feature table

Effect = direction of change. Positive value = feature, i.e., fungal 
group is more abundant in Diabetes group

Feature name Diabetes vs Control Effect
Adjusted p-value Direction

K_Fungi;_;_;_;_;_ 0.02 0.757
G_Exophiala 0.04 0.623
G_Cortinarius 0.006 0.889
G_Lacrymaria 0.026 0.593
G_Tylospora 0.001 1.194
G_Tomentella 0.044  – 0.69
G_unidentified 0.022 0.745

https://www.arb-silva.de
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that within reproductive age vaginal microbiome is rela-
tively stable [45, 46]. However, antibiotic use, gestation 
and mother hormonal status affect vaginal microbiome in 
short term [47, 48]. During the last trimester of pregnancy 
microbial diversity has been found to increase toward 
delivery [3].

Taken together, we have detected systematic variation 
in vaginal microbial communities between mothers with 
or without a child with diabetes in a one-population study. 
Although the current research has indicated that mother’s 
microbial communities may play a smaller role in deter-
mining the general microbiome of a neonate/child than 
have been previously assumed [3, 37], our results suggest 
that mother’s vaginal microbiome, even collected years 
after childbirth, may be linked with the development of 
T1D. This yet unknown link may act via vaginal hormonal 
status [49]. As our study was carried out in a relatively 
small geographical area, the results may be different in a 
wider population, and our observations should therefore 
be confirmed in a larger, cross-population study, where 
vaginal swab samples are preserved at the time of delivery.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00430-​022-​00741-w.

Acknowledgements  We thank Päivikki and Sakari Sohlberg founda-
tion for funding this study and we thank cordially all the volunteers 
providing samples for this study.

Author contributions  R.N., A.T-M. and P.T. coordinated sampling, 
M.T. and M.S. carried out laboratory and sequencing analyses, P.V. 
carried out bioinformatics and machine learning, A.L.R. produced the 
first version and coordinated manuscript writing with the help of all 
authors. All authors approved the final version of the manuscript.

Funding  Open Access funding provided by University of Oulu includ-
ing Oulu University Hospital. Päivikki and Sakari Sohlbergin säätiö 
(foundation) has funded this stutdy (for R.N.).

Data availability statement  Data is deposited in GenBank https://​
www.​ncbi.​nlm.​nih.​gov/​genba​nk/ under the bioproject numbers 
PRJNA751475 for bacteria https://​datav​iew.​ncbi.​nlm.​nih.​gov/​
object/​PRJNA​751475?​revie​wer=​jia44​284el​ai976​f8b5o​tp063r and 
PRJNA751714 for fungi https://​datav​iew.​ncbi.​nlm.​nih.​gov/​object/​
PRJNA​751714?​revie​wer=​h1oai​tfif9​38522​cmfv3​r5frq

Declarations 

Conflict of interest  The authors declare no conflict of financial or non-
financial interest.

Ethical standards  This study was performed in line with the principles 
of the Declaration of Helsinki. Institutional Ethics Committee of North-
ern Ostrobothnia Hospital District approved the study and the patient 
consent (Statement of the regional Ethics committee 21.6.2017).

Informed consent  Informed consent was obtained from all individual 
participants included in the study.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Dominquez-Bello MG, Dominguez-Bello EK, Costello M, Con-
treras MM, Glida H, Fierer N et al (2010) Delivery mode shapes 
the acquisition and structure of the initial microbiota across 
multiple body habitats in newborns. PNAS 107:11971–11975. 
https://​doi.​org/​10.​1073/​pnas.​10026​01107

	 2.	 Stewart CJ, Ajami NJ, Jacqueline L, O’Brien JL, Diane S, 
Hutchinson DS, Smith DP, Wong MC et al (2018) Temporal 
development of the gut microbiome in early childhood from the 
TEDDY study. Nature 562:583–588. https://​doi.​org/​10.​1038/​
s41586-​018-​0617-x

	 3.	 Rasmussen MA, Thorsen J, Dominguez-Bello MG, Blaser MS, 
Mortensen AD, Brejnrod SA et al (2020) Ecological succession 
in the vaginal microbiota during pregnancy and birth. ISME J 
14:2325–2335. https://​doi.​org/​10.​1038/​s41396-​020-​0686-3

	 4.	 Honkanen J, Vuorela A, Muthas D, Orivuori L, Luopajärvi 
K, Tejesvi MVG et al (2020) Fungal dysbiosis and intestinal 
inflammation in children with beta-cell autoimmunity. Front 
Immunol. https://​doi.​org/​10.​3389/​fimmu.​2020.​00468

	 5.	 Insel R, Knip M (2018) Prospects for primary prevention of type 
1 diabetes by restoring a disappearing microbe. Pediatr Diabetes 
19:1400–1406. https://​doi.​org/​10.​1111/​pedi.​12756

	 6.	 Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos 
C (2010) Mode of delivery affects the bacterial community in 
the newborn gut. Early Hum Dev 86(suppl):13–15. https://​doi.​
org/​10.​1016/j.​earlh​umdev.​2010.​01.​004

	 7.	 Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari 
RS et al (2013) Gut microbiota of healthy Canadian infants: 
profiles by mode of delivery and infant diet at 4 months. CMAJ 
185:385–394. https://​doi.​org/​10.​1503/​cmaj.​121189

	 8.	 Cardwell CR, Stene LC, Joner G, Cinek O, Svensson J, Golda-
cre MJ et al (2008) Caesarean section is associated with an 
increased risk of childhood-onset type 1 diabetes mellitus: a 
meta-analysis of observational studies. Diabetologia 51:726–
735. https://​doi.​org/​10.​1007/​s00125-​008-​0941-z

	 9.	 Stinson LF, Payne MS, Keelan JA (2018) A critical review of 
the bacterial baptism hypothesis and the impact of cesarean 
delivery on the infant microbiome. Front Med. https://​doi.​org/​
10.​3389/​fmed.​2018.​00135

	10.	 Tanoey J, Gulati A, Patterson C, Becher H (2019) Risk of type 
1 diabetes in the offspring born through elective or non-elective 
caesarean section in comparison to vaginal delivery: a meta-
analysis of observational studies. Curr Diab Rep. https://​doi.​
org/​10.​1007/​s11892-​019-​1253-z

	11.	 Tejesvi MV, Nissi R, Saravesi K, Pirttilä AM, Markkola A, Tal-
vensaari-Mattila A et al (2019) Association of prevalent vaginal 
microbiome of mother with occurrence of type I diabetes in 
child. Sci Rep. https://​doi.​org/​10.​1038/​s41598-​018-​37467-w

	12.	 Wang J, Zheng J, Shi W, Du N, Xu X, Zhang Y et al (2018) 
Dysbiosis of maternal and neonatal microbiota associated with 

https://doi.org/10.1007/s00430-022-00741-w
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://dataview.ncbi.nlm.nih.gov/object/PRJNA751475?reviewer=jia44284elai976f8b5otp063r
https://dataview.ncbi.nlm.nih.gov/object/PRJNA751475?reviewer=jia44284elai976f8b5otp063r
https://dataview.ncbi.nlm.nih.gov/object/PRJNA751714?reviewer=h1oaitfif938522cmfv3r5frq
https://dataview.ncbi.nlm.nih.gov/object/PRJNA751714?reviewer=h1oaitfif938522cmfv3r5frq
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1073/pnas.1002601107
https://doi.org/10.1038/s41586-018-0617-x
https://doi.org/10.1038/s41586-018-0617-x
https://doi.org/10.1038/s41396-020-0686-3
https://doi.org/10.3389/fimmu.2020.00468
https://doi.org/10.1111/pedi.12756
https://doi.org/10.1016/j.earlhumdev.2010.01.004
https://doi.org/10.1016/j.earlhumdev.2010.01.004
https://doi.org/10.1503/cmaj.121189
https://doi.org/10.1007/s00125-008-0941-z
https://doi.org/10.3389/fmed.2018.00135
https://doi.org/10.3389/fmed.2018.00135
https://doi.org/10.1007/s11892-019-1253-z
https://doi.org/10.1007/s11892-019-1253-z
https://doi.org/10.1038/s41598-018-37467-w


193Medical Microbiology and Immunology (2022) 211:185–194	

1 3

gestational diabetes mellitus. Gut 67:1614–1625. https://​doi.​
org/​10.​1136/​gutjnl-​2018-​315988

	13.	 Hoarau G, Mukherjee PK, Gower-Rousseau C, Hager C, Chan-
dra J, Retuerto MA et al (2016) Bacteriome and mycobiome 
interactions underscore microbial dysbiosis in familial Crohn’s 
disease. MBio. https://​doi.​org/​10.​1128/​mBio.​01250-​16

	14.	 Kowalewska B, Zorena K, Szmigiero-Kawko M, Wąż P, 
Myśliwiec M (2016) Higher diversity in fungal species dis-
criminates children with type 1 diabetes mellitus from healthy 
control. Patient Prefer Adherence 10:591–599. https://​doi.​org/​
10.​2147/​PPA.​S97852

	15.	 Drell T, Lillsaar T, Tummeleht L, Simm J, Aaspõllu A, Väin E 
et al (2013) Characterization of the vaginal micro- and mycobi-
ome in asymptomatic reproductive-age Estonian women. PLoS 
One. https://​doi.​org/​10.​1371/​journ​al.​pone.​00543​79

	16.	 Bradford LL, Ravel J (2017) The vaginal mycobiome: A con-
temporary perspective on fungi in women’s health and diseases. 
Virulence 8:342–351. https://​doi.​org/​10.​1080/​21505​594.​2016.​
12373​32

	17.	 Siljander H, Honkanen J, Knip M (2019) Microbiome and type 
1 diabetes. Lancet 46:512–521. https://​doi.​org/​10.​1016/j.​ebiom.​
2019.​06.​031

	18.	 Bolyen E, Rideout JR, Dillon MR, Bokulich NB, Abnet CC, Al-
Ghalith GA et al (2019) Reproducible, interactive, scalable and 
extensible microbiome data science using QIIME 2. Nat Biotech-
nol 27:852–857. https://​doi.​org/​10.​1038/​s41587-​019-​0209-9

	19.	 Martin M (2011) Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet. J 17:10–12. https://​doi.​
org/​10.​14806/​ej.​17.1.​200

	20.	 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, 
Holmes SP (2016) DADA2: High-resolution sample inference 
from Illumina amplicon data. Nat Methods 13:581–583. https://​
doi.​org/​10.​1038/​nmeth.​3869

	21.	 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P 
et al (2013) The SILVA ribosomal RNA gene database project: 
improved data processing and web-based tools. Nucleic Acids Res 
41:D590–D596. https://​doi.​org/​10.​1093/​nar/​gks12​19

	22.	 Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) 
VSEARCH: A versatile open source tool for metagenomics. PeerJ. 
https://​doi.​org/​10.​7717/​peerj.​2584

	23.	 Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, 
Taylor CM et al (2020) PICRUSt2 for prediction of metagenome 
functions. Nat Biotechnol 38:685–688. https://​doi.​org/​10.​1038/​
s41587-​020-​0548-6

	24.	 Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler 
IM et al (2014) The MetaCyc database of metabolic pathways and 
enzymes and the BioCyc collection of pathway/genome databases. 
Nucleic Acids Res 42:D459–D471. https://​doi.​org/​10.​1093/​nar/​
gkv11​64

	25.	 Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ 
(2018) Simple statistical identification and removal of contami-
nant sequences in marker-gene and metagenomics data. Microbi-
ome. https://​doi.​org/​10.​1186/​s40168-​018-​0605-2

	26.	 Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, 
Jeppesen TS, Schigel D et al (2019) The UNITE database for 
molecular identification of fungi: handling dark taxa and paral-
lel taxonomic classifications. Nucleic Acids Res 47:D259–D264. 
https://​doi.​org/​10.​1093/​nar/​gky10​22

	27.	 R Core Team (2021) R: A language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna, 
Austria. https://​www.R project.org/

	28.	 Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB (2013) 
ANOVA-like differential expression (ALDEx) analysis for mixed 
population RNA-seq. PLoS One. https://​doi.​org/​10.​1371/​journ​al.​
pone.​00670​19

	29.	 Breiman L (2001) Random forests. Mach Learn 45:5–32. https://​
doi.​org/​10.​1023/A:​10109​33404​324

	30.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B 
(2011) Scikit-learn: Machine learning in python. J Mach Learn 
Res 12:2825–2830

	31.	 Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, 
Vehik K et al (2018) The human gut microbiome in early-onset 
type 1 diabetes from the TEDDY study. Nature 562:589–594. 
https://​doi.​org/​10.​1038/​s41586-​018-​0620-2

	32.	 Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle 
SL (2011) Vaginal microbiome of reproductive-age women. 
PNAS 108(Supplement 1):4680–4687. https://​doi.​org/​10.​1073/​
pnas.​10026​11107

	33.	 Lewis AL, Gilbert NM (2020) Roles of the vagina and the vaginal 
microbiota in urinary tract infection: evidence from clinical cor-
relations and experimental models. GMS Infect Dis. https://​doi.​
org/​10.​3205/​id000​046

	34.	 Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA 
(2018) Brock Biology of Microorganisms. 15th Global Edi-
tion. Benjamin Cummins, Boston, US

	35.	 Jašarević E, Hill EM, Kane PJ, Rutt L, Gyles T, Folts L et al 
(2021) The composition of human vaginal microbiota transferred 
at birth affects offspring health in a mouse model. Nat Commun. 
https://​doi.​org/​10.​1038/​s41467-​021-​26634-9

	36.	 Hall RA, Noverr MC (2017) Fungal interactions with the human 
host: exploring the spectrum of symbiosis. Curr Opin Microbiol 
40:58–64. https://​doi.​org/​10.​1016/j.​mib.​2017.​10.​020

	37.	 Ward TL, Dominguez-Bello MG, Heisel T, Al-Ghalith G, Knights 
D, Gale C (2018) Development of the human mycobiome over the 
first month of life and across body sites. mSystems. https://​doi.​
org/​10.​1128/​mSyst​ems.​00140-​17

	38.	 Wirbel J, Zych K, Essex M, Karcher N, Kartal E, Salazar G et al 
(2021) Microbiome meta-analysis and cross-disease comparison 
enabled by the SIAMCAT machine learning toolbox. Genome 
Biol. https://​doi.​org/​10.​1186/​s13059-​021-​02306-1

	39.	 Oh M, Zhang L (2020) DeepMicro: deep representation learning 
for disease prediction based on microbiome data. Sci Rep. https://​
doi.​org/​10.​1038/​s41598-​020-​63159-5

	40.	 Gou W, Ling C-W, He Y, Jiang Z, Fu Y, Xu F et al (2021) Inter-
pretable machine learning framework reveals robust gut micro-
biome features associated with type 2 diabetes. Diabetes Care 
44:358–366. https://​doi.​org/​10.​2337/​dc20-​1536

	41.	 Pasolli E, Truong DT, Malik F, Waldron L, Segata N (2016) 
Machine learning meta-analysis of large metagenomic datasets: 
tools and biological insights. PLoS Comput Biol. https://​doi.​org/​
10.​1371/​journ​al.​pcbi.​10049​77

	42.	 Knip M (2021) Type 1 diabetes in Finland: past, present, and 
future. Lancet Diabetes Endocrinol 9:259–260. https://​doi.​org/​10.​
1016/​S2213-​8587(21)​00074-7

	43.	 Sierra MA, Li Q, Pushalkar S, Paul B, Sandoval TA, Kamer AR 
et al (2020) The Influences of Bioinformatics Tools and Reference 
Databases in Analyzing the Human Oral Microbial Community. 
Genes. https://​doi.​org/​10.​3390/​genes​11080​878

	44.	 Achilles SL, Austin MN, Meyn LA, Mhlanga F, Chirenje ZM, 
Hillier SL (2018) Impact of contraceptive initiation on vaginal 
microbiota. Am J Obstet Gynecol 218:622.e1-622.e10

	45.	 Huang B, Fettweis JM, Brooks JP, Jefferson KK, Buck GA (2014) 
The changing landscape of the vaginal microbiome. Clin Lab Med 
34:747–761. https://​doi.​org/​10.​1016/j.​cll.​2014.​08.​006

	46.	 Auriemma RS, Scairati R, Del Vecchio G, Liccardi A, Verde N, 
Pirchio R et al (2021) The vaginal microbiome: a long urogenital 
colonization throughout woman life. Front Cell Infect Microbiol 
11:686167. https://​doi.​org/​10.​3389/​fcimb.​2021.​686167

	47.	 Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Lor-
raine N et al (2014) The composition and stability of the vaginal 
microbiota of normal pregnant women is different from that of 

https://doi.org/10.1136/gutjnl-2018-315988
https://doi.org/10.1136/gutjnl-2018-315988
https://doi.org/10.1128/mBio.01250-16
https://doi.org/10.2147/PPA.S97852
https://doi.org/10.2147/PPA.S97852
https://doi.org/10.1371/journal.pone.0054379
https://doi.org/10.1080/21505594.2016.1237332
https://doi.org/10.1080/21505594.2016.1237332
https://doi.org/10.1016/j.ebiom.2019.06.031
https://doi.org/10.1016/j.ebiom.2019.06.031
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1093/nar/gkv1164
https://doi.org/10.1093/nar/gkv1164
https://doi.org/10.1186/s40168-018-0605-2
https://doi.org/10.1093/nar/gky1022
https://www.R
https://doi.org/10.1371/journal.pone.0067019
https://doi.org/10.1371/journal.pone.0067019
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1038/s41586-018-0620-2
https://doi.org/10.1073/pnas.1002611107
https://doi.org/10.1073/pnas.1002611107
https://doi.org/10.3205/id000046
https://doi.org/10.3205/id000046
https://doi.org/10.1038/s41467-021-26634-9
https://doi.org/10.1016/j.mib.2017.10.020
https://doi.org/10.1128/mSystems.00140-17
https://doi.org/10.1128/mSystems.00140-17
https://doi.org/10.1186/s13059-021-02306-1
https://doi.org/10.1038/s41598-020-63159-5
https://doi.org/10.1038/s41598-020-63159-5
https://doi.org/10.2337/dc20-1536
https://doi.org/10.1371/journal.pcbi.1004977
https://doi.org/10.1371/journal.pcbi.1004977
https://doi.org/10.1016/S2213-8587(21)00074-7
https://doi.org/10.1016/S2213-8587(21)00074-7
https://doi.org/10.3390/genes11080878
https://doi.org/10.1016/j.cll.2014.08.006
https://doi.org/10.3389/fcimb.2021.686167


194	 Medical Microbiology and Immunology (2022) 211:185–194

1 3

non-pregnant women. Microbiome 2:4. https://​doi.​org/​10.​1186/​
2049-​2618

	48.	 DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, 
Robaczewska A et al (2015) Temporal and spatial variation of 
the human microbiota during pregnancy. Proc Natl Acad Sci U 
112:11060–11065. https://​doi.​org/​10.​1073/​pnas.​15028​75112

	49.	 Farage MA, Miller KW, Sobel JD (2010) Dynamics of the vaginal 
ecosystem—hormonal influences. Infect Dis 3:1–15. https://​doi.​
org/​10.​4137/​IDRT.​S3903

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/2049-2618
https://doi.org/10.1186/2049-2618
https://doi.org/10.1073/pnas.1502875112
https://doi.org/10.4137/IDRT.S3903
https://doi.org/10.4137/IDRT.S3903

	Child type 1 diabetes associated with mother vaginal bacteriome and mycobiome
	Abstract
	Introduction
	Methods
	Description of samples and sampling protocol
	PCR amplification, DNA extraction, and sequencing
	Bioinformatics: 16S sequence and ITS sequence preprocessing
	Diversity analyses and differential abundance
	Machine learning

	Results
	Discussion
	Acknowledgements 
	References




