Skip to main content
Log in

A generalized finite element formulation for nonlinear frequency response analysis of viscoelastic sandwich beams using harmonic balance method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Harmonic balance method (HBM) is a popular computational tool for the nonlinear dynamic analysis of structural elements in the frequency domain. Its application in conjunction with the finite element (FE) procedure involves complexity in the formulation of the geometrically nonlinear equation of motion. Further complexity arises in the case of a viscoelastic structure as its constitutive model involves temporal derivative/integral of stress/strain. In this concern, the consideration of a few harmonic terms in HBM poses somewhat simplified formulation, but it may not provide a good theoretical estimation of nonlinear dynamics. Therefore, a large number of harmonic terms in HBM are to be considered despite the corresponding complexity, as well as a high computational cost. In this view, presently, two new formulation strategies are introduced toward a generalized FE formulation, especially for the consideration of an arbitrary number of harmonic terms in HBM. The first strategy lies in the formulation of the geometrically nonlinear stiffness matrix through a special factorization of the nonlinear strain–displacement matrix, while the second one lies in the analytical integration of system matrices/vectors over a time period by exploiting the orthogonality of Fourier basis functions. These formulation strategies provide not only the equation of motion with a reduced number of terms in the HBM-based expanded forms of system matrices/vectors but also a significantly reduced computational time. Additionally, various time–domain viscoelastic constitutive models are reduced into a generalized form for the periodic stress/strain to achieve a common HBM-based FE formulation for any of these viscoelastic material models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lumsdaine, A., Scott, R.A.: Shape optimization of unconstrained viscoelastic layers using continuum finite elements. J. Sound Vib. 216, 29–52 (1998). https://doi.org/10.1006/jsvi.1998.1668

    Article  Google Scholar 

  2. Cortes, F., Elejabarrieta, M.J.: Homogenised finite element for transient dynamic analysis of unconstrained layer damping beams involving fractional derivative models. Comput. Mech. 40, 313–324 (2007). https://doi.org/10.1007/s00466-006-0101-6

    Article  MATH  Google Scholar 

  3. El-Sabbagh, A., Baz, A.: Topology optimization of unconstrained damping treatments for plates. Eng. Optim. 46, 1153–1168 (2014). https://doi.org/10.1080/0305215X.2013.832235

    Article  MathSciNet  Google Scholar 

  4. Baz, AM.: Active and passive vibration damping. New York: Wiley (2019).

  5. Gupta, A., Panda, S., Reddy, RS.: Improved damping in sandwich beams through the inclusion of dispersed graphite particles within the viscoelastic core. Compos. Struct. 247, 112424 (2020). https://doi.org/10.1016/j.compstruct.2020.112424

  6. Plunkett, R., Lee, C.T.: Length optimization for constrained viscoelastic layer damping. J. Acoust. Soc. Am. 48, 150–161 (1970). https://doi.org/10.1121/1.1912112

    Article  Google Scholar 

  7. Kung, S.W., Singh, R.: Vibration analysis of beams with multiple constrained layer damping patches. J. Sound Vib. 212, 781–805 (1998). https://doi.org/10.1006/jsvi.1997.1409

    Article  Google Scholar 

  8. Zhou, X.Q., Yu, D.Y., Shao, X.Y., Zhang, S.Q., Wang, S.: Research and applications of viscoelastic vibration damping materials: A review. Compos. Struct. 136, 460–480 (2016). https://doi.org/10.1016/j.compstruct.2015.10.014

    Article  Google Scholar 

  9. McTavish, D., Hughes, P.: Finite element modeling of linear viscoelastic structures-the GHM method. 33rd Struct. Struct. Dyn. Mater. Conf., p. 2380 (1992). https://doi.org/10.2514/6.1992-2380

  10. Amabili, M., Balasubramanian, P., Breslavsky, I.: Anisotropic fractional viscoelastic constitutive models for human descending thoracic aortas. J. Mech. Behav. Biomed. Mater. 99, 186–197 (2019). https://doi.org/10.1016/j.jmbbm.2019.07.010

    Article  Google Scholar 

  11. Galucio, A.C., Deu, J.F., Ohayon, R.: Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Comput. Mech. 33, 282–291 (2004). https://doi.org/10.1007/s00466-003-0529-x

    Article  MATH  Google Scholar 

  12. Litewka, P., Lewandowski, R.: Steady-state non-linear vibrations of plates using Zener material model with fractional derivative. Comput. Mech. 60, 333–354 (2017). https://doi.org/10.1007/s00466-017-1408-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Yi, S., Ahmad, M.F., Hilton, H.H.: Dynamic responses of plates with viscoelastic free layer damping treatment. J. Vib. Acoust. 118, 362–367 (1996). https://doi.org/10.1115/1.2888191

    Article  Google Scholar 

  14. Akbas, S.D., Fageehi, Y.A., Assie, A.E., Eltaher, M.A.: Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load. Eng. Comput. 38, 365–377 (2022). https://doi.org/10.1007/s00366-020-01070-3

    Article  Google Scholar 

  15. Jacques, N., Daya, E.M., Potier-Ferry, M.: Nonlinear vibration of viscoelastic sandwich beams by the harmonic balance and finite element methods. J. Sound Vib. 329, 4251–4265 (2010). https://doi.org/10.1016/j.ijmecsci.2013.11.012

    Article  Google Scholar 

  16. Bilasse, M., Daya, E.M., Azrar, L.: Linear and nonlinear vibrations analysis of viscoelastic sandwich beams. J. Sound Vib. 329, 4950–4969 (2010). https://doi.org/10.1016/j.jsv.2010.06.012

    Article  Google Scholar 

  17. Wielentejczyk, P., Lewandowski, R.: Geometrically nonlinear, steady state vibration of viscoelastic beams. Int. J. Non. Linear Mech. 89, 177–186 (2017). https://doi.org/10.1016/j.ijnonlinmec.2016.12.012

    Article  Google Scholar 

  18. Wielentejczyk, P., Lewandowski, R.: Analysis of the primary and secondary resonances of viscoelastic beams made of Zener Material. J. Comput. Nonlinear Dyn. 14, 091003 (2019). https://doi.org/10.1115/1.4044096

  19. Lewandowski, R., Wielentejczyk, P.: Nonlinear vibration of viscoelastic beams described using fractional order derivatives. J. Sound Vib 399, 228–243 (2017). https://doi.org/10.1016/j.jsv.2017.03.032

    Article  Google Scholar 

  20. Litewka, P., Lewandowski, R.: Nonlinear harmonically excited vibrations of plates with Zener material. Nonlinear Dyn. 89, 691–712 (2017). https://doi.org/10.1007/s11071-017-3480-7

    Article  MATH  Google Scholar 

  21. Nayfeh, AH.: Perturbation methods. New York: Wiley (2008).

  22. Yun, Y., Temuer, C.: Application of the homotopy perturbation method for the large deflection problem of a circular plate. Appl. Math. Model. 39, 1308–1316 (2015). https://doi.org/10.1016/j.apm.2014.09.001

    Article  MathSciNet  MATH  Google Scholar 

  23. Mickens, R.: Comments on the method of harmonic balance. J. Sound Vib. 94, 456–460 (1984)

    Article  MathSciNet  Google Scholar 

  24. Claeys, M., Sinou, J.-J., Lambelin, J.-P., Alcoverro, B.: Multi-harmonic measurements and numerical simulations of nonlinear vibrations of a beam with non-ideal boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 19, 4196–4212 (2014). https://doi.org/10.1016/j.cnsns.2014.04.008

    Article  MATH  Google Scholar 

  25. Ribeiro, P.: Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods. Comput. Struct. 82, 1413–1423 (2004). https://doi.org/10.1016/j.compstruc.2004.03.037

    Article  Google Scholar 

  26. Karkar, S., Cochelin, B., Vergez, C.: A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems. J. Sound Vib. 333, 2554–2567 (2014). https://doi.org/10.1016/j.jsv.2014.01.019

    Article  Google Scholar 

  27. Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng. 296, 18–38 (2015). https://doi.org/10.1016/j.cma.2015.07.017

    Article  MathSciNet  MATH  Google Scholar 

  28. Dimitriadis, G.: Continuation of higher-order harmonic balance solutions for nonlinear aeroelastic systems. J. Aircr. 45, 523–537 (2008). https://doi.org/10.2514/1.30472

    Article  Google Scholar 

  29. Chen, S.H., Cheung, Y.K., Xing, H.X.: Nonlinear vibration of plane structures by finite element and incremental harmonic balance method. Nonlinear Dyn. 26, 87–104 (2001). https://doi.org/10.1023/A:1012982009727

    Article  MATH  Google Scholar 

  30. Xiong, H., Kong, X., Li, H., Yang, Z.: Vibration analysis of nonlinear systems with the bilinear hysteretic oscillator by using incremental harmonic balance method. Commun. Nonlinear Sci. Numer. Simul. 42, 437–450 (2017). https://doi.org/10.1016/j.cnsns.2016.06.005

    Article  MathSciNet  MATH  Google Scholar 

  31. LaBryer, A., Attar, P.J.: A harmonic balance approach for large-scale problems in nonlinear structural dynamics. Comput. Struct. 88, 1002–1014 (2010). https://doi.org/10.1016/j.compstruc.2010.06.003

    Article  Google Scholar 

  32. Grolet, A., Thouverez, F.: On a new harmonic selection technique for harmonic balance method. Mech. Syst. Signal Process. 30, 43–60 (2012). https://doi.org/10.1016/j.ymssp.2012.01.024

    Article  Google Scholar 

  33. Leung, A.Y., Guo, Z.: Forward residue harmonic balance for autonomous and non-autonomous systems with fractional derivative damping. Commun. Nonlinear Sci. Numer. Simul. 16, 2169–2183 (2011). https://doi.org/10.1016/j.cnsns.2010.08.027

    Article  MathSciNet  MATH  Google Scholar 

  34. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56, 149–154 (1989). https://doi.org/10.1016/j.ymssp.2018.10.022

    Article  MathSciNet  MATH  Google Scholar 

  35. Blahos, J., Vizzaccaro, A., Salles, L., El Haddad, F.: Parallel harmonic balance method for analysis of nonlinear dynamical systems. Turbo Expo Power Land, Sea, Air. Am. Soc. Mech. Eng. 84232, V011T30A028 (2020). https://doi.org/10.1115/GT2020-15392

  36. MS, AK., Panda, S., Chakraborty, D.: Piezo-viscoelastically damped nonlinear frequency response of functionally graded plates with a heated plate-surface. J. Vib. Control 22, 320–43 (2016). https://doi.org/10.1177/1077546314532672

  37. Dou, S., Jensen, J.S.: Optimization of nonlinear structural resonance using the incremental harmonic balance method. J. Sound Vib. 334, 239–254 (2015). https://doi.org/10.1016/j.jsv.2014.08.023

    Article  Google Scholar 

  38. Lewandowski, R.: Non-linear, steady-state vibration of structures by harmonic balance/finite element method. Comput. Struct. 44, 287–296 (1992). https://doi.org/10.1016/0045-7949(92)90248-X

    Article  MATH  Google Scholar 

  39. Lewandowski, R.: Computational formulation for periodic vibration of geometrically nonlinear structures—part 1: theoretical background. Int. J. Solids Struct. 34, 1925–1947 (1997). https://doi.org/10.1016/S0020-7683(96)00127-8

    Article  MATH  Google Scholar 

  40. Reddy, RS., Panda, S., Gupta, A.: Nonlinear dynamics and active control of smart beams using shear/extensional mode piezoelectric actuators. Int. J. Mech. Sci. 204, 106495 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106495

  41. Wang, Y.Z., Tsai, T.J.: Static and dynamic analysis of a viscoelastic plate by the finite element method. Appl. Acoust. 25, 77–94 (1988). https://doi.org/10.1016/0003-682X(88)90017-5

    Article  Google Scholar 

  42. Lewandowski, R., Litewka, P., Wielentejczyk, P.: Free vibrations of laminate plates with viscoelastic layers using the refined zig-zag theory–Part 1. Theoretical background. Compos. Struct. 278, 114547. https://doi.org/10.1016/j.compstruct.2021.114547.

  43. Cheung, Y.K., Chen, S.H., Lau, S.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140, 273–286 (1990). https://doi.org/10.1016/0022-460X(90)90528-8

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Science & Engineering Research Board (SERB), Department of Science & Technology, Government of India [Grant Number MTR/2020/000307].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyajit Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

For the nine-node plane Lagrange element (Fig. 2), the shape functions are as follows

$$\begin{aligned} N_{1} & = \frac{1}{4}(1 - \xi )(1 - \eta ) - \frac{1}{4}(1 - \xi^{2} )(1 - \eta ) - \frac{1}{4}(1 - \xi )(1 - \eta^{2} ) + \frac{1}{4}(1 - \xi^{2} )(1 - \eta^{2} ) \\ N_{2} & = \frac{1}{4}(1 + \xi )(1 - \eta ) - \frac{1}{4}(1 - \xi^{2} )(1 - \eta ) - \frac{1}{4}(1 + \xi )(1 - \eta^{2} ) + \frac{1}{4}(1 - \xi^{2} )(1 - \eta^{2} ) \\ N_{3} & = \frac{1}{4}(1 + \xi )(1 + \eta ) - \frac{1}{4}(1 + \xi )(1 - \eta^{2} ) - \frac{1}{4}(1 - \xi^{2} )(1 + \eta ) + \frac{1}{4}(1 - \xi^{2} )(1 - \eta^{2} ) \\ N_{4} & = \frac{1}{4}(1 - \xi )(1 + \eta ) - \frac{1}{4}(1 - \xi^{2} )(1 + \eta ) - \frac{1}{4}(1 - \xi )(1 - \eta^{2} ) + \frac{1}{4}(1 - \xi^{2} )(1 - \eta^{2} ) \\ N_{5} & = \frac{1}{2}(1 - \xi^{2} )(1 - \eta ) - \frac{1}{2}(1 - \xi^{2} )(1 - \eta^{2} ) \\ N_{6} & = \frac{1}{2}(1 + \xi)(1 - \eta^{2}) - \frac{1}{2}(1 - \xi^{2} )(1 - \eta^{2} ) \\ N_{7} & = \frac{1}{2}(1 - \xi^{2} )(1 + \eta ) - \frac{1}{2}(1 - \xi^{2} )(1 - \eta^{2} ) \\ N_{8} & = \frac{1}{2}(1 - \xi)(1 - \eta^{2}) - \frac{1}{2}(1 - \xi^{2} )(1 - \eta^{2} ) \\ N_{9} & = \frac{1}{2}(1 - \xi^{2} )(1 - \eta^{2} ) \end{aligned}$$
(A.1)

where \(N_{i} \,\,(i = 1,\,\,2,\,\,3,\,.\,.\,.,9)\) is the shape function corresponding to the \(i\)th node of the finite element.

The linear strain–displacement matrix \({\varvec{B}}_{n}\) appearing in Eq. (26d) can also be written as

$${\varvec{B}}_{n} = {\varvec{B}}_{1}^{L} ({\varvec{I}}_{18 \times 18} \otimes {\varvec{B}}_{1}^{Q} ) + {\varvec{B}}_{2}^{L} ({\varvec{I}}_{18 \times 18} \otimes {\varvec{B}}_{2}^{Q} ) + {\varvec{B}}_{3}^{L} ({\varvec{I}}_{18 \times 18} \otimes {\varvec{B}}_{3}^{Q} ) + {\varvec{B}}_{4}^{L} ({\varvec{I}}_{18 \times 18} \otimes {\varvec{B}}_{4}^{Q} )$$
(A.2)

where the unity matrix (\({\varvec{I}}\)) appears with the size of \((18 \times 18)\) since there are two degrees of freedom (\(u\) and \(w\)) at every node of the nine-node plane Lagrange element. The other component matrices in Eq. (A.2) appear in the following forms according to the operator matrices in Eq. (26b).

$$\begin{gathered} {\varvec{B}}_{i}^{L} = \left[ {\begin{array}{*{20}c} {{\varvec{B}}_{i}^{L1} } & {{\varvec{B}}_{i}^{L2} } & {{\varvec{B}}_{i}^{L3} } & {{\varvec{B}}_{i}^{L4} } & {{\varvec{B}}_{i}^{L5} } & {{\varvec{B}}_{i}^{L6} } & {{\varvec{B}}_{i}^{L7} } & {{\varvec{B}}_{i}^{L8} } & {{\varvec{B}}_{i}^{L9} } \\ \end{array} } \right],\quad i = 1,2,3,4 \hfill \\ {\varvec{B}}_{i}^{Q} = \left[ {\begin{array}{*{20}c} {{\varvec{B}}_{i}^{Q1} } & {{\varvec{B}}_{i}^{Q2} } & {{\varvec{B}}_{i}^{Q3} } & {{\varvec{B}}_{i}^{Q4} } & {{\varvec{B}}_{i}^{Q5} } & {{\varvec{B}}_{i}^{Q6} } & {{\varvec{B}}_{i}^{Q7} } & {{\varvec{B}}_{i}^{Q8} } & {{\varvec{B}}_{i}^{Q9} } \\ \end{array} } \right],\quad i = 1,2,3,4 \hfill \\ {\varvec{B}}_{1}^{Lq} = \left[ {\begin{array}{*{20}c} {{{\partial N_{q} } \mathord{\left/ {\vphantom {{\partial N_{q} } {\partial x}}} \right. \kern-0pt} {\partial x}}} & 0 \\ 0 & 0 \\ {{{\partial N_{q} } \mathord{\left/ {\vphantom {{\partial N_{q} } {\partial z}}} \right. \kern-0pt} {\partial z}}} & 0 \\ \end{array} } \right],\;{\varvec{B}}_{1}^{Qq} = \left[ {\begin{array}{*{20}c} {{{\partial N_{q} } \mathord{\left/ {\vphantom {{\partial N_{q} } {\partial x}}} \right. \kern-0pt} {\partial x}}} & 0 \\ \end{array} } \right],\;\quad q = 1,2,3.....9 \hfill \\ \,{\varvec{B}}_{2}^{Lq} = \left[ {\,\begin{array}{*{20}c} 0 & 0 \\ {{{\partial N_{q} } \mathord{\left/ {\vphantom {{\partial N_{q} } {\partial z}}} \right. \kern-0pt} {\partial z}}} & 0 \\ {{{\partial N_{q} } \mathord{\left/ {\vphantom {{\partial N_{q} } {\partial x}}} \right. \kern-0pt} {\partial x}}} & 0 \\ \end{array} } \right],{\varvec{B}}_{2}^{Qq} = \left[ {\begin{array}{*{20}c} {{{\partial N_{q} } \mathord{\left/ {\vphantom {{\partial N_{q} } {\partial z}}} \right. \kern-0pt} {\partial z}}} & 0 \\ \end{array} } \right],\quad q = 1,2,3.....9 \hfill \\ \,{\varvec{B}}_{3}^{Lq} = \left[ {\begin{array}{*{20}c} 0 & {{{\partial N_{q} } \mathord{\left/ {\vphantom {{\partial N_{q} } {\partial x}}} \right. \kern-0pt} {\partial x}}} \\ 0 & 0 \\ 0 & {{{\partial N_{q} } \mathord{\left/ {\vphantom {{\partial N_{q} } {\partial z}}} \right. \kern-0pt} {\partial z}}} \\ \end{array} } \right],\;{\varvec{B}}_{3}^{Qq} = \left[ {\begin{array}{*{20}c} 0 & {{{\partial N_{q} } \mathord{\left/ {\vphantom {{\partial N_{q} } {\partial x}}} \right. \kern-0pt} {\partial x}}} \\ \end{array} } \right],\quad q = 1,2,3.....9 \hfill \\ \,{\varvec{B}}_{4}^{Lq} = \left[ {\begin{array}{*{20}c} 0 & 0 \\ 0 & {{{\partial N_{q} } \mathord{\left/ {\vphantom {{\partial N_{q} } {\partial z}}} \right. \kern-0pt} {\partial z}}} \\ 0 & {{{\partial N_{q} } \mathord{\left/ {\vphantom {{\partial N_{q} } {\partial x}}} \right. \kern-0pt} {\partial x}}} \\ \end{array} } \right],\;{\varvec{B}}_{4}^{Qq} = \left[ {\begin{array}{*{20}c} 0 & {{{\partial N_{q} } \mathord{\left/ {\vphantom {{\partial N_{q} } {\partial z}}} \right. \kern-0pt} {\partial z}}} \\ \end{array} } \right],\quad q = 1,2,3.....9 \hfill \\ \end{gathered}$$
(A.3)

where \(N_{q}\) is the shape function corresponding to the \(q^{th}\) node of the finite element, as given in Eq. (A.1).

Appendix B

For a finite number (\(H\)) of harmonic terms, the Fourier expansion of the nodal displacement vector (\({}^{i}{\varvec{d}}_{e}\)) can be written as

$${}^{i}{\varvec{d}}_{e} = {}^{i}{\varvec{d}}_{e}^{o} + \sum\limits_{n = 1}^{H} {{}^{i}{\varvec{d}}_{en}^{c} \cos (n\omega t) + {}^{i}{\varvec{d}}_{en}^{s} \sin (n\omega t)}$$
(B.1)

where \({}^{i}{\varvec{d}}_{e}^{o}\), \({}^{i}{\varvec{d}}_{en}^{s}\) and \({}^{i}{\varvec{d}}_{en}^{c}\) are the displacement amplitude vectors for the constant, sine and cosine terms, respectively. Using Eq. (B.1), the Fourier expansion of the term \({}^{i}{\varvec{d}}_{eI}\) (\({}^{i}{\varvec{d}}_{eI} = ({\varvec{I}} \otimes {}^{i}{\varvec{d}}_{e} )\)) can be written as

$$\begin{gathered} {}^{i}{\varvec{d}}_{eI} = ({}^{i}{\varvec{d}}_{eI} )^{o} + \sum\limits_{q = 1}^{H} {({}^{i}{\varvec{d}}_{eI} )_{q}^{s} \cos (q\omega t) + ({}^{i}{\varvec{d}}_{eI} )_{q}^{c} \sin (q\omega t)} \hfill \\ ({}^{i}{\varvec{d}}_{eI} )^{o} = ({\varvec{I}}_{18 \times 18} \otimes \,{}^{i}{\varvec{d}}_{e}^{o} ),\;({}^{i}{\varvec{d}}_{eI} )_{q}^{s} = ({\varvec{I}}_{18 \times 18} \otimes \,{}^{i}{\varvec{d}}_{eq}^{s} ),\;({}^{i}{\varvec{d}}_{eI} )_{q}^{c} = ({\varvec{I}}_{18 \times 18} \otimes \,{}^{i}{\varvec{d}}_{eq}^{c} ) \hfill \\ \end{gathered}$$
(B.2)

Using Eqs. (B.1) and (B.2), the expanded form of the term \(({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )\) can be obtained as

$${}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} = ({}^{i}{\varvec{d}}_{eI} )^{o} \,{}^{i}{\varvec{d}}_{e}^{o} + \left[ \begin{gathered} \sum\limits_{q = 1}^{H} {\left\{ \begin{gathered} \left[ {({}^{i}{\varvec{d}}_{eI} )^{o} \,{}^{i}{\varvec{d}}_{eq}^{c} \, + ({}^{i}{\varvec{d}}_{eI} )_{q}^{c} \,{}^{i}{\varvec{d}}_{e}^{o} } \right]\cos (q\omega t) + \hfill \\ \left[ {({}^{i}{\varvec{d}}_{eI} )^{o} \,{}^{i}{\varvec{d}}_{eq}^{s} \, + ({}^{i}{\varvec{d}}_{eI} )_{q}^{s} \,{}^{i}{\varvec{d}}_{e}^{o} } \right]\sin (q\omega t) \hfill \\ \end{gathered} \right\}} + \hfill \\ \sum\limits_{q = 1}^{H} {\,\sum\limits_{n = 1}^{H} {\frac{1}{2}\left\{ \begin{gathered} \left[ {({}^{i}{\varvec{d}}_{eI} )_{q}^{c} \,{}^{i}{\varvec{d}}_{en}^{c} } \right]\left[ {\cos (q + n)\omega t + \cos (q - n)\omega t} \right] + \hfill \\ \left[ {({}^{i}{\varvec{d}}_{eI} )_{q}^{s} \,{}^{i}{\varvec{d}}_{en}^{s} } \right]\left[ {\cos (q - n)\omega t - \cos (q + n)\omega t} \right] + \hfill \\ \left[ {({}^{i}{\varvec{d}}_{eI} )_{q}^{c} \,{}^{i}{\varvec{d}}_{en}^{s} } \right]\left[ {\sin (q + n)\omega t - \sin (q - n)\omega t} \right] + \hfill \\ \left[ {({}^{i}{\varvec{d}}_{eI} )_{q}^{s} \,{}^{i}{\varvec{d}}_{en}^{c} } \right]\left[ {\sin (q + n)\omega t + \sin (q - n)\omega t} \right] \hfill \\ \end{gathered} \right\}\,} } \hfill \\ \end{gathered} \right]$$
(B.3)

Alternatively, the expanded form of the term \(({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )\) can be written following the conventional form of Fourier series as

$${}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} = ({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )^{o} + \sum\limits_{m = 1}^{2H} {({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )_{m}^{c} \cos (m\omega t) + ({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )_{m}^{s} \sin (m\omega t)}$$
(B.4)

where \(({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )^{o}\), \(({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )_{m}^{c} \,\) and \(({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )_{m}^{s} \,\) are the amplitude vectors for the constant, cosine and sine terms, respectively. It is clear from Eqs. (B.3) and (B.4) that any of the amplitude vectors \(({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )^{o}\)/\(({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )_{m}^{c} \,\)/\(({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )_{m}^{s} \,\) comprises of the coefficient matrices (\(({}^{i}{\varvec{d}}_{eI} )^{o}\), \(({}^{i}{\varvec{d}}_{eI} )_{q}^{s}\), \(({}^{i}{\varvec{d}}_{eI} )_{q}^{c}\)) and coefficient vectors (\({}^{i}{\varvec{d}}_{e}^{o}\), \({}^{i}{\varvec{d}}_{en}^{s}\), \({}^{i}{\varvec{d}}_{en}^{c}\)) in the Fourier expansion of \({}^{i}{\varvec{d}}_{e}\) (Eq. B.1) and \({}^{i}{\varvec{d}}_{eI}\) (Eq. B.2). Therefore, the coefficient matrices \(({}^{i}{\varvec{d}}_{eI} )^{o}\), \(({}^{i}{\varvec{d}}_{eI} )_{q}^{s}\) and \(({}^{i}{\varvec{d}}_{eI} )_{q}^{c} \,\)) in an amplitude vector (\(({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )^{o}\)/\(({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )_{m}^{c} \,\)/\(({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )_{m}^{s} \,\)) are taken together within a matrix (\({\varvec{D}}^{o}\)/\({\varvec{D}}_{m}^{c}\)/\(\,{\varvec{D}}_{m}^{s}\)), while the associated coefficient vectors (\({}^{i}{\varvec{d}}_{e}^{o}\), \({}^{i}{\varvec{d}}_{en}^{s}\) and \({}^{i}{\varvec{d}}_{en}^{c}\)) are taken in the form of a generalized nodal displacement amplitude vector (\({}^{i}{\varvec{X}}_{e}\)) according to the following expressions

$$\begin{gathered} ({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )^{o} = {\varvec{D}}^{o} {}^{i}{\varvec{X}}_{e} ,\;({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )_{m}^{c} = {\varvec{D}}_{m}^{c} {}^{i}{\varvec{X}}_{e} ,\;\,({}^{i}{\varvec{d}}_{eI} {}^{i}{\varvec{d}}_{e} )_{m}^{s} = {\varvec{D}}_{m}^{s} {}^{i}{\varvec{X}}_{e} \hfill \\ {}^{i}{\varvec{X}}_{e} = \{ \begin{array}{*{20}c} {({}^{i}{\varvec{d}}_{e}^{o} )^{{\text{T}}} } & {({}^{i}{\varvec{d}}_{e1}^{c} )^{{\text{T}}} } & {({}^{i}{\varvec{d}}_{e2}^{c} )^{{\text{T}}} } \\ \end{array} ...\,\,\begin{array}{*{20}c} {({}^{i}{\varvec{d}}_{eH}^{c} )^{{\text{T}}} } & {({}^{i}{\varvec{d}}_{e1}^{s} )^{{\text{T}}} } & {({}^{i}{\varvec{d}}_{e2}^{s} )^{{\text{T}}} } \\ \end{array} ...\,\,\,({}^{i}{\varvec{d}}_{eH}^{s} )^{{\text{T}}} \}^{{\text{T}}} \hfill \\ \end{gathered}$$
(B.5)

Accordingly, Eq. (B.4) can be written in the form, which is given in Eq. (27). As an example, for \(H = 1\), the forms of the matrices \({\varvec{D}}^{o}\), \({\varvec{D}}_{m}^{c}\) and \(\,{\varvec{D}}_{m}^{s}\) (\(m =\) 1, 2) and the vector (\({}^{i}{\varvec{X}}_{e}\)) are explicitly given in Eq. (B.6).

$$\begin{gathered} {\varvec{D}}^{o} = \left[ {\begin{array}{*{20}c} {({}^{i}{\varvec{d}}_{eI} )^{o} } & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{\varvec{d}}_{eI} )_{1}^{c} \,} & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{\varvec{d}}_{eI} )_{1}^{s} \,} \\ \end{array} } \right]\,, \hfill \\ {\varvec{D}}_{1}^{c} = \left[ {\begin{array}{*{20}c} {({}^{i}{\varvec{d}}_{eI} )_{1}^{c} \,} & {({}^{i}{\varvec{d}}_{eI} )^{o} \,} & {\varvec{O}} \\ \end{array} } \right],\;{\varvec{D}}_{2}^{c} = \left[ {\begin{array}{*{20}c} {\varvec{O}} & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{\varvec{d}}_{eI} )_{1}^{c} \,} & { - ({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{\varvec{d}}_{eI} )_{1}^{s} } \\ \end{array} } \right] \hfill \\ {\varvec{D}}_{1}^{s} = \left[ {\begin{array}{*{20}c} {({}^{i}{\varvec{d}}_{eI} )_{1}^{s} \,} & {\varvec{O}} & {({}^{i}{\varvec{d}}_{eI} )^{o} } \\ \end{array} } \right],\;{\varvec{D}}_{2}^{s} = \left[ {\begin{array}{*{20}c} {\varvec{O}} & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})\,({}^{i}{\varvec{d}}_{eI} )_{1}^{s} } & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{\varvec{d}}_{eI} )_{1}^{c} } \\ \end{array} } \right] \hfill \\ {}^{i}{\varvec{X}}_{e} = \{ \begin{array}{*{20}c} {({}^{i}{\varvec{d}}_{e}^{o} )^{{\text{T}}} } & {({}^{i}{\varvec{d}}_{e1}^{c} )^{{\text{T}}} } & {({}^{i}{\varvec{d}}_{e1}^{s} )^{{\text{T}}} } \\ \end{array} \}^{{\text{T}}} \hfill \\ \end{gathered}$$
(B.6)

where \({\varvec{O}}\) is the null matrix of the size of \(({}^{i}{\varvec{d}}_{eI} )^{o}\) or \(({}^{i}{\varvec{d}}_{eI} )_{q}^{s}\) or \(({}^{i}{\varvec{d}}_{eI} )_{q}^{c} \,\)).

The Fourier expansion of the stress matrix \({}^{i}{{\varvec{\Gamma}}}^{k}\) can be written as

$${}^{i}{{\varvec{\Gamma}}}^{k} = ({}^{i}{{\varvec{\Gamma}}}^{k} )^{o} + \sum\limits_{q = 1}^{2H} {({}^{i}{{\varvec{\Gamma}}}^{k} )_{q}^{c} \,\cos (q\omega t) + ({}^{i}{{\varvec{\Gamma}}}^{k} )_{q}^{s} \,\sin (q\omega t)}$$
(B.7)

where \(({}^{i}{{\varvec{\Gamma}}}^{k} )^{o}\), \(({}^{i}{{\varvec{\Gamma}}}^{k} )_{q}^{s} \,\) and \(({}^{i}{{\varvec{\Gamma}}}^{k} )_{q}^{c}\) are the coefficient matrices for the constant, sine and cosine terms, respectively. Similarly, using the Fourier expansion of the nodal displacement vector (Eq. B.1), the expanded form of the linear strain vector \(\Delta {{\varvec{\upvarepsilon}}}_{g}^{w}\) (\(\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} = {\varvec{B}}_{g}^{w} \,\Delta {\varvec{d}}_{e}\), Eq. 25b) can be written as

$$\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} = {\varvec{B}}_{g}^{w} \Delta {\varvec{d}}_{e}^{o} + \sum\limits_{n = 1}^{H} {{\varvec{B}}_{g}^{w} \Delta {\varvec{d}}_{en}^{c} \,\cos (n\omega t) + {\varvec{B}}_{g}^{w} \Delta {\varvec{d}}_{en}^{s} \,\sin (n\omega t)}$$
(B.8)

where \(\Delta {\varvec{d}}_{e}^{o}\), \(\Delta {\varvec{d}}_{en}^{s}\) and \(\Delta {\varvec{d}}_{en}^{c}\) are the amplitude vectors for the constant, sine and cosine terms, respectively, in the Fourier expansion of \(\Delta {\varvec{d}}_{e}\). Using Eqs. (B.7) and (B.8), the product \(({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )\) can be formulated as

$${}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} = ({}^{i}{{\varvec{\Gamma}}}^{k} )^{o} {\varvec{B}}_{g}^{w} \,\Delta {\varvec{d}}_{e}^{o} + \left\{ \begin{gathered} \sum\limits_{q = 1}^{H} {\left[ {({}^{i}{{\varvec{\Gamma}}}^{k} )^{o} \,{\varvec{B}}_{g}^{w} \,\Delta {\varvec{d}}_{em}^{c} \cos (q\omega t) + ({}^{i}{{\varvec{\Gamma}}}^{k} )^{o} \,{\varvec{B}}_{g}^{w} \,\Delta {\varvec{d}}_{em}^{s} \sin (q\omega t)} \right]} + \hfill \\ \hfill \\ \sum\limits_{q = 1}^{2H} {\left[ {({}^{i}{{\varvec{\Gamma}}}^{k} )_{m}^{c} \,{\varvec{B}}_{g}^{w} \,\Delta {\varvec{d}}_{e}^{o} \cos (q\omega t) + ({}^{i}{{\varvec{\Gamma}}}^{k} )_{m}^{s} \,{\varvec{B}}_{g}^{w} \,\Delta {\varvec{d}}_{e}^{o} \sin (q\omega t)} \right]} + \hfill \\ \sum\limits_{q = 1}^{2H} {\sum\limits_{n = 1}^{H} {\frac{1}{2}\left\{ \begin{gathered} \left[ {({}^{i}{{\varvec{\Gamma}}}^{k} )_{m}^{c} \,{\varvec{B}}_{g}^{w} \,\Delta {\varvec{d}}_{en}^{c} } \right]\left[ {\cos (q + n)\omega t + \cos (q - n)\omega t} \right] + \hfill \\ \left[ {({}^{i}{{\varvec{\Gamma}}}^{k} )_{m}^{s} \,{\varvec{B}}_{g}^{w} \,\Delta {\varvec{d}}_{en}^{s} } \right]\left[ {\cos (q - n)\omega t - \cos (q + n)\omega t} \right] + \hfill \\ \left[ {({}^{i}{{\varvec{\Gamma}}}^{k} )_{m}^{c} \,{\varvec{B}}_{g}^{w} \,\Delta {\varvec{d}}_{en}^{s} } \right]\left[ {\sin (q + n)\omega t - \sin (q - n)\omega t} \right] + \hfill \\ \left[ {({}^{i}{{\varvec{\Gamma}}}^{k} )_{m}^{s} \,{\varvec{B}}_{g}^{w} \,\Delta {\varvec{d}}_{en}^{c} } \right]\left[ {\sin (q + n)\omega t + \sin (q - n)\omega t} \right] \hfill \\ \end{gathered} \right\}\,} } \hfill \\ \end{gathered} \right\}$$
(B.9)

The expanded form of the product \(({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )\) can also be expressed in the conventional form of Fourier series as follows

$${}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} = ({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )^{o} + \sum\limits_{m = 1}^{3H} {({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )_{m}^{c} \cos (m\omega t) + ({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )_{m}^{s} \sin (m\omega t)}$$
(B.10)

where \(({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )^{o}\), \(({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )_{m}^{c} \,\) and \(({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )_{m}^{s} \,\)) are the amplitude vectors for the constant, cosine and sine terms, respectively. Equations (B.9) and (B.10) show that an amplitude vector (\(({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )^{o}\) or \(({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )_{m}^{c} \,\) or \(({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )_{m}^{s} \,\))) appears in terms of the coefficient matrices (\(({}^{i}{{\varvec{\Gamma}}}^{k} )^{o}\), \(({}^{i}{{\varvec{\Gamma}}}^{k} )_{q}^{s} \,\), \(({}^{i}{{\varvec{\Gamma}}}^{k} )_{q}^{c}\)) and displacement amplitude vectors (\(\Delta {\varvec{d}}_{e}^{o}\), \(\Delta {\varvec{d}}_{en}^{s}\) and \(\Delta {\varvec{d}}_{en}^{c}\)). So, the products \(({}^{i}{{\varvec{\Gamma}}}^{k} )^{o} {\varvec{B}}_{g}^{w}\), \(({}^{i}{{\varvec{\Gamma}}}^{k} )_{m}^{s} {\varvec{B}}_{g}^{w}\) and \(({}^{i}{{\varvec{\Gamma}}}^{k} )_{m}^{c} \,{\varvec{B}}_{g}^{w}\)) in any amplitude vector (\(({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )^{o}\) or \(({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )_{m}^{c} \,\) or \(({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} )_{m}^{s} \,\)) are taken together within a matrix (\({(}{\varvec{\varUpsilon}}_{w}^{k} )^{o}\) or \(({\varvec{\varUpsilon}}_{w}^{k} )_{m}^{c}\) or \(\,({\varvec{\varUpsilon}}_{w}^{k} )_{m}^{s}\)), while the associated nodal displacement amplitude vectors (\(\Delta {\varvec{d}}_{e}^{o}\), \(\Delta {\varvec{d}}_{em}^{s}\) and \(\Delta {\varvec{d}}_{em}^{c}\), \(m = 1,\,\,2,\,\,3,...,H\)) are taken in the form of a generalized nodal displacement amplitude vector (\(\Delta {\varvec{X}}_{e}\)) according to the following expressions

$$\begin{gathered} ({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} {)}^{o} { = }\,{(}{\varvec{\varUpsilon}}_{w}^{k} )^{o} \Delta {\varvec{X}}_{e} ,\;({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} {)}_{m}^{c} = \,{(}{\varvec{\varUpsilon}}_{w}^{k} )_{m}^{c} \Delta {\varvec{X}}_{e} ,\;({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} {)}_{m}^{s} { = }\,{(}{\varvec{\varUpsilon}}_{w}^{k} )_{m}^{s} \Delta {\varvec{X}}_{e} \hfill \\ \Delta {\varvec{X}}_{e} = \{ \begin{array}{*{20}c} {(\Delta {\varvec{d}}_{e}^{o} )^{{\text{T}}} } & {(\Delta {\varvec{d}}_{e1}^{c} )^{{\text{T}}} } & {(\Delta {\varvec{d}}_{e2}^{c} )^{{\text{T}}} } \\ \end{array} ...\,\,\begin{array}{*{20}c} {(\Delta {\varvec{d}}_{eH}^{c} )^{{\text{T}}} } & {(\Delta {\varvec{d}}_{e1}^{s} )^{{\text{T}}} } & {(\Delta {\varvec{d}}_{e2}^{s} )^{{\text{T}}} } \\ \end{array} ...\,\,\,(\Delta {\varvec{d}}_{eH}^{s} )^{{\text{T}}} \}^{{\text{T}}} \hfill \\ \end{gathered}$$
(B.11)

Accordingly, Eq. (B.10) is written in the form, as given in Eq. (32a). As an example, for \(H = 1\), the forms of the matrices \({(}{\varvec{\varUpsilon}}_{w}^{k} )^{o}\), \(({\varvec{\varUpsilon}}_{w}^{k} )_{m}^{c}\) and \(\,({\varvec{\varUpsilon}}_{w}^{k} )_{m}^{s}\) are explicitly given in the following expressions

$$\begin{gathered} ({\varvec{\varUpsilon}}_{w}^{k} )^{o} = \left[ {\begin{array}{*{20}c} {({}^{i}{{\varvec{\Gamma}}}^{k} )^{o} {\varvec{B}}_{g}^{w} } & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{{\varvec{\Gamma}}}^{k} )_{1}^{c} {\varvec{B}}_{g}^{w} \,} & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{{\varvec{\Gamma}}}^{k} )_{1}^{s} {\varvec{B}}_{g}^{w} \,} \\ \end{array} } \right]\,, \hfill \\ ({\varvec{\varUpsilon}}_{w}^{k} )_{1}^{c} = \left[ {\begin{array}{*{20}c} {({}^{i}{{\varvec{\Gamma}}}^{k} )_{1}^{c} {\varvec{B}}_{g}^{w} \,} & {\left\{ {({}^{i}{{\varvec{\Gamma}}}^{k} )^{o} + ({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{{\varvec{\Gamma}}}^{k} )_{2}^{c} } \right\}{\varvec{B}}_{g}^{w} \,} & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{{\varvec{\Gamma}}}^{k} )_{2}^{s} {\varvec{B}}_{g}^{w} } \\ \end{array} } \right], \hfill \\ ({\varvec{\varUpsilon}}_{w}^{k} )_{2}^{c} = \left[ {\begin{array}{*{20}c} {({}^{i}{{\varvec{\Gamma}}}^{k} )_{2}^{c} {\varvec{B}}_{g}^{w} } & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{{\varvec{\Gamma}}}^{k} )_{1}^{c} {\varvec{B}}_{g}^{w} \,} & { - ({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{{\varvec{\Gamma}}}^{k} )_{1}^{s} {\varvec{B}}_{g}^{w} } \\ \end{array} } \right], \hfill \\ ({\varvec{\varUpsilon}}_{w}^{k} )_{3}^{c} = \left[ {\begin{array}{*{20}c} {\varvec{O}} & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{{\varvec{\Gamma}}}^{k} )_{2}^{c} {\varvec{B}}_{g}^{w} \,} & { - ({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{{\varvec{\Gamma}}}^{k} )_{2}^{s} {\varvec{B}}_{g}^{w} } \\ \end{array} } \right], \hfill \\ ({\varvec{\varUpsilon}}_{w}^{k} )_{1}^{s} = \left[ {\begin{array}{*{20}c} {({}^{i}{{\varvec{\Gamma}}}^{k} )_{1}^{s} {\varvec{B}}_{g}^{w} \,} & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{{\varvec{\Gamma}}}^{k} )_{2}^{s} {\varvec{B}}_{g}^{w} } & {\left\{ {({}^{i}{{\varvec{\Gamma}}}^{k} )^{o} - ({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{{\varvec{\Gamma}}}^{k} )_{2}^{c} } \right\}{\varvec{B}}_{g}^{w} } \\ \end{array} } \right], \hfill \\ ({\varvec{\varUpsilon}}_{w}^{k} )_{2}^{s} = \left[ {\begin{array}{*{20}c} {({}^{i}{{\varvec{\Gamma}}}^{k} )_{2}^{s} {\varvec{B}}_{g}^{w} } & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})\,({}^{i}{{\varvec{\Gamma}}}^{k} )_{1}^{s} {\varvec{B}}_{g}^{w} } & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{{\varvec{\Gamma}}}^{k} )_{1}^{c} {\varvec{B}}_{g}^{w} } \\ \end{array} } \right], \hfill \\ ({\varvec{\varUpsilon}}_{w}^{k} )_{3}^{s} = \left[ {\begin{array}{*{20}c} {\varvec{O}} & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})\,({}^{i}{{\varvec{\Gamma}}}^{k} )_{2}^{s} {\varvec{B}}_{g}^{w} } & {({1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2})({}^{i}{{\varvec{\Gamma}}}^{k} )_{2}^{c} {\varvec{B}}_{g}^{w} } \\ \end{array} } \right] \hfill \\ \end{gathered}$$
(B.12)

where \({\varvec{O}}\) is the null matrix of the same size of \(({}^{i}{{\varvec{\Gamma}}}^{k} )^{o} {\varvec{B}}_{g}^{w}\). The above expressions can also be used for the expanded form of the product \(({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{u} )\), where \({\varvec{B}}_{g}^{w}\) is to be replaced by \({\varvec{B}}_{g}^{u}\) since \(\Delta {{\varvec{\upvarepsilon}}}_{g}^{u}\) (\(\Delta {{\varvec{\upvarepsilon}}}_{g}^{u} = {\varvec{B}}_{g}^{u} \,\Delta {\varvec{d}}_{e}\), Eq. (25b)) is involved instead of \(\Delta {{\varvec{\upvarepsilon}}}_{g}^{w}\) (\(\Delta {{\varvec{\upvarepsilon}}}_{g}^{w} = {\varvec{B}}_{g}^{w} \,\Delta {\varvec{d}}_{e}\), Eq. (25b)). So, in this case, Eqs. (B.10) and (B.11) can be modified as

$$\begin{gathered} {}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{u} = ({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{u} )^{o} + \sum\limits_{m = 1}^{3H} {({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{u} )_{m}^{c} \cos (m\omega t) + ({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{u} )_{m}^{s} \sin (m\omega t)} \hfill \\ ({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{u} {)}^{o} { = }\,{(}{\varvec{\varUpsilon}}_{u}^{k} )^{o} \Delta {\varvec{X}}_{e} ,\;({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{u} {)}_{m}^{c} { = }\,{(}{\varvec{\varUpsilon}}_{u}^{k} )_{m}^{c} \Delta {\varvec{X}}_{e} ,\;({}^{i}{{\varvec{\Gamma}}}^{k} \,\Delta {{\varvec{\upvarepsilon}}}_{g}^{u} {)}_{m}^{s} { = }\,{(}{\varvec{\varUpsilon}}_{u}^{k} )_{m}^{s} \Delta {\varvec{X}}_{e} \hfill \\ \end{gathered}$$
(B.13)

where the form of \(\Delta {\varvec{X}}_{e}\) remains the same as given in Eq. (B.11). Equation (B.13) is written in the form, as given in Eq. (32b).

Appendix C

The fractional Zener model for a viscoelastic material with the frequency-dependent Poisson’s ratio can be written as [42]

$$\begin{gathered} {{\varvec{\upsigma}}}_{a} + \tau_{a}^{\alpha } \,({{d^{\alpha } {{\varvec{\upsigma}}}_{a} } \mathord{\left/ {\vphantom {{d^{\alpha } {{\varvec{\upsigma}}}_{a} } {dt^{\alpha } }}} \right. \kern-0pt} {dt^{\alpha } }}) = 3\left[ {K_{o} {{\varvec{\upvarepsilon}}}_{a} + K_{\infty } \tau_{a}^{\alpha } \,({{d^{\alpha } {{\varvec{\upvarepsilon}}}_{a} } \mathord{\left/ {\vphantom {{d^{\alpha } {{\varvec{\upvarepsilon}}}_{a} } {dt^{\alpha } }}} \right. \kern-0pt} {dt^{\alpha } }})} \right] \hfill \\ {{\varvec{\upsigma}}}_{d} + \tau_{d}^{\beta } \,({{d^{\beta } {{\varvec{\upsigma}}}_{d} } \mathord{\left/ {\vphantom {{d^{\beta } {{\varvec{\upsigma}}}_{d} } {dt^{\beta } }}} \right. \kern-0pt} {dt^{\beta } }}) = 2\left[ {G_{o} {{\varvec{\upvarepsilon}}}_{d} + G_{\infty } \tau_{d}^{\beta } \,({{d^{\beta } {{\varvec{\upvarepsilon}}}_{d} } \mathord{\left/ {\vphantom {{d^{\beta } {{\varvec{\upvarepsilon}}}_{d} } {dt^{\beta } }}} \right. \kern-0pt} {dt^{\beta } }})} \right] \hfill \\ \end{gathered}$$
(C.1a)
$$\begin{gathered} {{\varvec{\upsigma}}}_{a} = \left\{ {\begin{array}{*{20}c} p & p & p & 0 & 0 & 0 \\ \end{array} } \right\}^{{\text{T}}} ,\;{{\varvec{\upvarepsilon}}}_{a} = \left\{ {\begin{array}{*{20}c} {\varepsilon_{v} } & {\varepsilon_{v} } & {\varepsilon_{v} } & 0 & 0 & 0 \\ \end{array} } \right\}^{{\text{T}}} , \hfill \\ {{\varvec{\upsigma}}}_{d} = \left\{ {\begin{array}{*{20}c} {\sigma_{x} - p} & {\sigma_{y} - p} & {\sigma_{z} - p} & {\tau_{yz} } & {\tau_{zx} } & {\tau_{xy} } \\ \end{array} } \right\}^{{\text{T}}} , \hfill \\ {{\varvec{\upvarepsilon}}}_{d} = \left\{ {\begin{array}{*{20}c} {\varepsilon_{x} - \varepsilon_{v} } & {\varepsilon_{y} - \varepsilon_{v} } & {\varepsilon_{z} - \varepsilon_{v} } & {(1/2)\gamma_{yz} } & {(1/2)\gamma_{zx} } & {(1/2)\gamma_{xy} } \\ \end{array} } \right\}^{{\text{T}}} , \hfill \\ p = {{\left( {\sigma_{x} + \sigma_{y} + \sigma_{z} } \right)} \mathord{\left/ {\vphantom {{\left( {\sigma_{x} + \sigma_{y} + \sigma_{z} } \right)} 3}} \right. \kern-0pt} 3},\;\varepsilon_{v} = {{\left( {\varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z} } \right)} \mathord{\left/ {\vphantom {{\left( {\varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z} } \right)} 3}} \right. \kern-0pt} 3} \hfill \\ \end{gathered}$$
(C.1b)

where \({{\varvec{\upsigma}}}_{a}\)/\({{\varvec{\upvarepsilon}}}_{a}\) and \({{\varvec{\upsigma}}}_{d}\)/\({{\varvec{\upvarepsilon}}}_{d}\) are the volumetric and deviatoric parts of stress/strain, respectively, as given in Eq. (C.1b); the subscript \(x\)/\(y\)/\(z\) indicates the normal stress/strain components along the \(x\)/\(y\)/\(z\) direction in the reference Cartesian coordinate system (\(xyz\)); the subscript \(yz\)/\(zx\)/\(xy\) indicates the shear stress/strain in the \(yz\)/\(zx\)/\(xy\) plane of the reference Cartesian coordinate system (\(xyz\)); \({{K_{o} } \mathord{\left/ {\vphantom {{K_{o} } {G_{o} }}} \right. \kern-0pt} {G_{o} }}\) and \({{K_{\infty } } \mathord{\left/ {\vphantom {{K_{\infty } } {G_{\infty } }}} \right. \kern-0pt} {G_{\infty } }}\) are the relaxed and non-relaxed bulk/shear moduli, respectively; \({{\tau_{a}^{\alpha } } \mathord{\left/ {\vphantom {{\tau_{a}^{\alpha } } {\tau_{d}^{\beta } }}} \right. \kern-0pt} {\tau_{d}^{\beta } }}\) and \({\alpha \mathord{\left/ {\vphantom {\alpha \beta }} \right. \kern-0pt} \beta }\) are the relaxation time and the fractional-order time derivative, respectively, for the volumetric/deviatoric constitutive relation. Here, the volumetric and deviatoric constitutive relations (Eq. C.1a) appear similar to that given in Eq. (13). Therefore, each of these constitutive relations (Eq. C.1a) can be reduced for the periodic stress/strain following the same procedure as described in Sect. 3.1. The resulting expressions can be written as

$$\begin{gathered} {{\varvec{\upsigma}}}_{a} = 3K_{o} \,{{\varvec{\upvarepsilon}}}_{a}^{t} \hfill \\ {{\varvec{\upvarepsilon}}}_{a}^{t} = ({{\varvec{\upvarepsilon}}}_{a} )^{o} + \sum\limits_{m = 1}^{H} {\left\{ {f_{am}^{c} ({{\varvec{\upvarepsilon}}}_{a} )_{m}^{c} + f_{am}^{s} ({{\varvec{\upvarepsilon}}}_{a} )_{m}^{s} } \right\}\cos (m\omega t) + \left\{ {f_{am}^{c} ({{\varvec{\upvarepsilon}}}_{a} )_{m}^{s} - f_{am}^{s} ({{\varvec{\upvarepsilon}}}_{a} )_{m}^{c} } \right\}\sin (m\omega t)} \hfill \\ f_{am}^{c} = ({{K_{\infty } } \mathord{\left/ {\vphantom {{K_{\infty } } {K_{o} )}}} \right. \kern-0pt} {K_{o} )}}\left[ {1 - f_{am} \left\{ {1 + c_{al} \,(m\omega \tau_{a}^{\alpha } )^{\alpha } } \right\}} \right],\;f_{am}^{s} = ({{K_{\infty } } \mathord{\left/ {\vphantom {{K_{\infty } } {K_{o} )}}} \right. \kern-0pt} {K_{o} )}}f_{am} \,s_{al} \,(m\omega \tau_{a}^{\alpha } )^{\alpha } \hfill \\ f_{am} = {{f_{a} } \mathord{\left/ {\vphantom {{f_{a} } {\left[ {\left\{ {1 + c_{al} (m\omega \tau_{a}^{\alpha } )^{\alpha } } \right\}^{2} + \left\{ {s_{al} \,(m\omega \tau_{a}^{\alpha } )^{\alpha } } \right\}^{2} } \right]}}} \right. \kern-0pt} {\left[ {\left\{ {1 + c_{al} (m\omega \tau_{a}^{\alpha } )^{\alpha } } \right\}^{2} + \left\{ {s_{al} \,(m\omega \tau_{a}^{\alpha } )^{\alpha } } \right\}^{2} } \right]}} \hfill \\ c_{al} = \cos ({{\pi \alpha } \mathord{\left/ {\vphantom {{\pi \alpha } 2}} \right. \kern-0pt} 2}),\,\,s_{al} = \sin ({{\pi \alpha } \mathord{\left/ {\vphantom {{\pi \alpha } 2}} \right. \kern-0pt} 2}),\;f_{a} = {{(K_{\infty } - K_{o} )} \mathord{\left/ {\vphantom {{(K_{\infty } - K_{o} )} {K_{\infty } }}} \right. \kern-0pt} {K_{\infty } }} \hfill \\ \end{gathered}$$
(C.2a)
$$\begin{gathered} {{\varvec{\upsigma}}}_{a} = 3K_{o} \,{{\varvec{\upvarepsilon}}}_{a}^{t} \hfill \\ {{\varvec{\upvarepsilon}}}_{a}^{t} = ({{\varvec{\upvarepsilon}}}_{a} )^{o} + \sum\limits_{m = 1}^{H} {\left\{ {f_{am}^{c} ({{\varvec{\upvarepsilon}}}_{a} )_{m}^{c} + f_{am}^{s} ({{\varvec{\upvarepsilon}}}_{a} )_{m}^{s} } \right\}\cos (m\omega t) + \left\{ {f_{am}^{c} ({{\varvec{\upvarepsilon}}}_{a} )_{m}^{s} - f_{am}^{s} ({{\varvec{\upvarepsilon}}}_{a} )_{m}^{c} } \right\}\sin (m\omega t)} \hfill \\ f_{am}^{c} = ({{K_{\infty } } \mathord{\left/ {\vphantom {{K_{\infty } } {K_{o} )}}} \right. \kern-0pt} {K_{o} )}}\left[ {1 - f_{am} \left\{ {1 + c_{al} \,(m\omega \tau_{a}^{\alpha } )^{\alpha } } \right\}} \right],\;f_{am}^{s} = ({{K_{\infty } } \mathord{\left/ {\vphantom {{K_{\infty } } {K_{o} )}}} \right. \kern-0pt} {K_{o} )}}f_{am} \,s_{al} \,(m\omega \tau_{a}^{\alpha } )^{\alpha } \hfill \\ f_{am} = {{f_{a} } \mathord{\left/ {\vphantom {{f_{a} } {\left[ {\left\{ {1 + c_{al} (m\omega \tau_{a}^{\alpha } )^{\alpha } } \right\}^{2} + \left\{ {s_{al} \,(m\omega \tau_{a}^{\alpha } )^{\alpha } } \right\}^{2} } \right]}}} \right. \kern-0pt} {\left[ {\left\{ {1 + c_{al} (m\omega \tau_{a}^{\alpha } )^{\alpha } } \right\}^{2} + \left\{ {s_{al} \,(m\omega \tau_{a}^{\alpha } )^{\alpha } } \right\}^{2} } \right]}} \hfill \\ c_{al} = \cos ({{\pi \alpha } \mathord{\left/ {\vphantom {{\pi \alpha } 2}} \right. \kern-0pt} 2}),\,\,s_{al} = \sin ({{\pi \alpha } \mathord{\left/ {\vphantom {{\pi \alpha } 2}} \right. \kern-0pt} 2}),\;f_{a} = {{(K_{\infty } - K_{o} )} \mathord{\left/ {\vphantom {{(K_{\infty } - K_{o} )} {K_{\infty } }}} \right. \kern-0pt} {K_{\infty } }} \hfill \\ \end{gathered}$$
(C.2b)

The total stress can be obtained by the addition of deviatoric (Eq. C.2b) and volumetric (Eq. C.2a) counterparts of stress. Introducing the stress/strain components (Eq. C.1b) in the expression of this total stress (\({\varvec{\sigma}} = {\varvec{\sigma}}_{a} + {\varvec{\sigma}}_{d}\)), the constitutive relation for one of the stress components, say \(\sigma_{x}\), can be written as

$$\begin{aligned} {{\varvec{\upsigma}}}_{x} & = K_{o} \left[ {({{\varvec{\upvarepsilon}}}_{x} + {{\varvec{\upvarepsilon}}}_{y} + {{\varvec{\upvarepsilon}}}_{z} )^{o} + \sum\limits_{m = 1}^{H} {\left\{ \begin{gathered} \left[ {f_{am}^{c} ({{\varvec{\upvarepsilon}}}_{x} + {{\varvec{\upvarepsilon}}}_{y} + {{\varvec{\upvarepsilon}}}_{z} )_{m}^{c} + f_{am}^{s} ({{\varvec{\upvarepsilon}}}_{x} + {{\varvec{\upvarepsilon}}}_{y} + {{\varvec{\upvarepsilon}}}_{z} )_{m}^{s} } \right]\cos (m\omega t) \hfill \\ + \left[ {f_{am}^{c} ({{\varvec{\upvarepsilon}}}_{x} + {{\varvec{\upvarepsilon}}}_{y} + {{\varvec{\upvarepsilon}}}_{z} )_{m}^{s} - f_{am}^{s} ({{\varvec{\upvarepsilon}}}_{x} + {{\varvec{\upvarepsilon}}}_{y} + {{\varvec{\upvarepsilon}}}_{z} )_{m}^{c} } \right]\sin (m\omega t) \hfill \\ \end{gathered} \right\}} } \right] \\ & \quad + \frac{{2\,G_{o} }}{3}\,\left[ {(2{{\varvec{\upvarepsilon}}}_{x} - {{\varvec{\upvarepsilon}}}_{y} - {{\varvec{\upvarepsilon}}}_{z} )^{o} + \sum\limits_{m = 1}^{H} {\left\{ \begin{gathered} \left[ {f_{dm}^{c} (2{{\varvec{\upvarepsilon}}}_{x} - {{\varvec{\upvarepsilon}}}_{y} - {{\varvec{\upvarepsilon}}}_{z} )_{m}^{c} + f_{dm}^{s} (2{{\varvec{\upvarepsilon}}}_{x} - {{\varvec{\upvarepsilon}}}_{y} - {{\varvec{\upvarepsilon}}}_{z} )_{m}^{s} } \right]\cos (m\omega t) \hfill \\ + \left[ {f_{dm}^{c} (2{{\varvec{\upvarepsilon}}}_{x} - {{\varvec{\upvarepsilon}}}_{y} - {{\varvec{\upvarepsilon}}}_{z} )_{m}^{s} - f_{dm}^{s} (2{{\varvec{\upvarepsilon}}}_{x} - {{\varvec{\upvarepsilon}}}_{y} - {{\varvec{\upvarepsilon}}}_{z} )_{m}^{c} } \right]\sin (m\omega t) \hfill \\ \end{gathered} \right\}} } \right] \\ \end{aligned}$$
(C.3)

The other stress components also appear with the similar expression as given in Eq. (C.3) for \(\sigma_{x}\). If all stress components are taken in the conventional form of stress vector, then the overall reduced constitutive relation can be written as

$$\begin{gathered} {{\varvec{\upsigma}}} = ({\varvec{C}}_{a} \,\,{}^{t}{{\varvec{\upvarepsilon}}}_{a} + {\varvec{C}}_{d} \,\,{}^{t}{{\varvec{\upvarepsilon}}}_{d} ) \hfill \\ {}^{t}{{\varvec{\upvarepsilon}}}_{a} = ({{\varvec{\upvarepsilon}}})^{o} + \sum\limits_{m = 1}^{H} {\left\{ {\left[ {f_{am}^{c} ({{\varvec{\upvarepsilon}}})_{m}^{c} + f_{am}^{s} ({{\varvec{\upvarepsilon}}})_{m}^{s} } \right]\cos (m\omega t) + \left[ {f_{am}^{c} ({{\varvec{\upvarepsilon}}})_{m}^{s} - f_{am}^{s} ({{\varvec{\upvarepsilon}}})_{m}^{c} } \right]} \right\}\sin (m\omega t)} , \hfill \\ {\varvec{C}}_{a} = K_{o} \left[ {\begin{array}{*{20}c} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right],\;{\varvec{C}}_{d} = \frac{{2\,G_{o} }}{3}\left[ {\begin{array}{*{20}c} 2 & { - 1} & { - 1} & 0 & 0 & 0 \\ { - 1} & 2 & { - 1} & 0 & 0 & 0 \\ { - 1} & { - 1} & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}} & 0 \\ 0 & 0 & 0 & 0 & 0 & {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-0pt} 2}} \\ \end{array} } \right] \hfill \\ {{\varvec{\upsigma}}} = \left\{ {\begin{array}{*{20}c} {\sigma_{x} } & {\sigma_{y} } & {\sigma_{z} } & {\tau_{yz} } & {\tau_{zx} } & {\tau_{xy} } \\ \end{array} } \right\}^{{\text{T}}} \hfill \\ {{\varvec{\upvarepsilon}}} = \left\{ {\begin{array}{*{20}c} {\varepsilon_{x} } & {\varepsilon_{y} } & {\varepsilon_{z} } & {\gamma_{yz} } & {\gamma_{zx} } & {\gamma_{xy} } \\ \end{array} } \right\}^{{\text{T}}} \hfill \\ \end{gathered}$$
(C.4)

This reduced constitutive relation (Eq. C.4) appears in the similar form of that in Eqs. (15a15b), where the only difference appears as the involvement of two stiffness matrices (\({\varvec{C}}_{a} \,,\;{\varvec{C}}_{d}\)) because of the consideration of volumetric and deviatoric parts of stress/strain.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, R.S., Panda, S. A generalized finite element formulation for nonlinear frequency response analysis of viscoelastic sandwich beams using harmonic balance method. Arch Appl Mech 93, 2209–2241 (2023). https://doi.org/10.1007/s00419-023-02380-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02380-w

Keywords

Navigation