Skip to main content

Advertisement

Log in

The possible mechanisms of the human microbiome in allergic diseases

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

In the present paper, we discuss the importance of the microbiome in allergic disease. In this review paper, the data from the Medline (PubMed) and search engine of Kirikkale University were systematically searched for all relevant articles in June 15th, 2015 for the past 30 years. The keywords of “microbiome”, “dysbiosis”, “allergy”, “allergic rhinitis”, “allergic disease”, “mechanisms” and “treatment” were used alone or together. In this paper, microbiomes were presented in terms of “Definition”, “Influence of \the human microbiome on health”, “The microbiome and allergic diseases”, and “Modulation of the gut microbiota in terms of treatment and prevention”. Microbiological dysbiosis is also reviewed. The microbiome is the genetic material of all microbes (bacteria, fungi, protozoa, and viruses) that live on or in the human body. Microbes outnumber human cells in a 10:1 ratio. Most microbes live in the gut, particularly the large intestine. Changes in the immune function of the respiratory tract are (at least in theory) linked to the immunomodulatory activity of the gut microbiota via the concept of a “common mucosal response”. The gut microbiota shapes systemic immunity, thus affecting the lung mucosa. Alternatively, changes in the gut microbiota may reflect alterations in the oropharyngeal microbiota, which may in turn directly affect the lung microbiota and host immune responses via microaspiration. Dysbiosis is defined as qualitative and quantitative changes in the intestinal flora; and modern diet and lifestyle, antibiotics, psychological and physical stress result in alterations in bacterial metabolism, as well as the overgrowth of potentially pathogenic microorganisms. All immune system components are directly or indirectly regulated by the microbiota. The nature of microbial exposure early in life appears to be important for the development of robust immune regulation; disruption of either the microbiota or the host response can trigger chronic inflammation. Dysbiosis is also an important clinical entity. Antibiotics, psychological and physical stress, and dietary factors contribute to intestinal dysbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ott WR (1989) Human activity patterns: a review of the literature for estimating time spend indoors, outdoors and in transit. Proceedings of the Research Planning Conference on Human Activity Patterns, EPA/600/4-89/004 (EPA National Exposure Research Laboratory, Las Vegas), 1989, 3

  2. Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A et al (2010) Generation of regulatory dendritic cells and CD4+ Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci USA 107(5):2159–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS et al (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA 108(13):5354–5359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC et al (2014) House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci USA 111(2):805–810. doi:10.1073/pnas.1310750111 (Epub 2013 Dec 16)

    Article  CAS  PubMed  Google Scholar 

  5. Bermon S, Petriz B, Kajėnienė A, Prestes J, Castell L, Franco OL (2015) The microbiota: an exercise immunology perspective. Exerc Immunol Rev 21:70–79

    PubMed  Google Scholar 

  6. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113(2):411–417

    Article  CAS  PubMed  Google Scholar 

  7. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG (2014) Gut microbiota: the neglected endocrine organ. Mol Endocrinol 28:1221–1238

    Article  PubMed  Google Scholar 

  8. Hair M, Sharpe J. Fast facts about the human microbiome. http://depts.washington.edu/ceeh/downloads/FF_Microbiome.pdf. Accessed 21 June 2015

  9. Morgan XC, Huttenhower C (2012) Chapter 12: human microbiome analysis. PLoS Comput Biol 8(12):e1002808. doi:10.1371/journal.pcbi.1002808 (Epub 2012 Dec 27)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS et al (2013) Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185(5):385–395

    Article  PubMed  PubMed Central  Google Scholar 

  11. Abreu NA, Nagalingam NA, Song Y, Roediger FC, Pletcher SD, Goldberg AN et al (2012) Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediatesrhinosinusitis. Sci Transl Med 4(151):151ra124. doi:10.1126/scitranslmed.3003783

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nistal E, Caminero A, Vivas S, Ruiz de Morales JM, Sáenz de Miera LE, Rodríguez-Aparicio LB et al (2012) Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac diseasepatients. Biochimie 94(8):1724–1729. doi:10.1016/j.biochi.2012.03.025 (Epub 2012 Apr 20)

    Article  CAS  PubMed  Google Scholar 

  13. Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249

    Article  CAS  PubMed  Google Scholar 

  14. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331(6015):337–341. doi:10.1126/science.1198469 (Epub 2010 Dec 23)

    Article  CAS  PubMed  Google Scholar 

  15. Hansen CH, Nielsen DS, Kverka M, Zakostelska Z, Klimesova K, Hudcovic T et al (2012) Patterns of early gut colonization shape future immune responses of the host. PLoS One 7(3):e34043. doi:10.1371/journal.pone.0034043 (Epub 2012 Mar 27)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kolokotroni O, Middleton N, Gavatha M, Lamnisos D, Priftis KN, Yiallouros PK (2012) Asthma and atopy in children born by caesarean section: effect modification by family history of allergies—a population based cross-sectional study. BMC Pediatr 12:179. doi:10.1186/1471-2431-12-179

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498. doi:10.1016/j.cell.2009.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Czerkinsky C, Prince SJ, Michalek SM, Jackson S, Russell MW, Moldoveanu Z et al (1987) IgA antibody-producing cells in peripheral blood after antigen ingestion: evidence for a common mucosal immune system in humans. Proc Natl Acad Sci USA 84:2449–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kiyono H, Fukuyama S (2004) NALT-versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 4:699–710

    Article  CAS  PubMed  Google Scholar 

  20. Mestecky J (1987) The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol 7:265–276

    Article  CAS  PubMed  Google Scholar 

  21. Huang YJ, Boushey HA (2015) The microbiome in asthma. J Allergy Clin Immunol 135(1):25–30. doi:10.1016/j.jaci.2014.11.011

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leyer GJ, Li S, Mubasher ME, Reifer C, Ouwehand AC (2009) Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics 124:e172–e179

    Article  PubMed  Google Scholar 

  23. Razi CH, Harmanci K, Abaci A, Ozdemir O, Hizli S, Renda R et al (2010) The immunostimulant OM-85 BV prevents wheezing attacks in preschool children. J Allergy Clin Immunol 126:763–769

    Article  CAS  PubMed  Google Scholar 

  24. Dickson RP, Erb-Downward JR, Huffnagle GB (2013) The role of the bacterial microbiome in lung disease. Expert Rev Respir Med 7(3):245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tomosada Y, Chiba E, Zelaya H, Takahashi T, Tsukida K, Kitazawa H et al (2013) Nasally administered Lactobacillus rhamnosus strains differentially modulate respiratory antiviral immune responses and induce protection against respiratory syncytial virus infection. BMC Immunol 14:40. doi:10.1186/1471-2172-14-40

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD et al (2014) Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med 20:642–647

    Article  CAS  PubMed  Google Scholar 

  27. Lynch SV, Wood RA, Boushey H, Bacharier LB, Bloomberg GR, Kattan M et al (2014) Effects of early-life exposure to allergens and bacteria on recurrent wheeze and atopy in urban children. J Allergy Clin Immunol 134(593–601):e12

    Google Scholar 

  28. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  CAS  PubMed  Google Scholar 

  29. Hawrelak JA, Myers SP (2004) The causes of intestinal dysbiosis: a review. Altern Med Rev. 9(2):180–197

    PubMed  Google Scholar 

  30. Segal LN, Blaser MJ (2014) A brave new world: the lung microbiota in an era of change. Ann Am Thorac Soc. 11(Suppl 1):S21–S27. doi:10.1513/AnnalsATS.201306-189MG

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB et al (2008) Specific microbiota direct the differentiation of IL-17–producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4(4):337–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341

    Article  CAS  PubMed  Google Scholar 

  33. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB et al (2012) Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang HQ, Thurnheer MC, Zuercher AW, Boiko NV, Bos NA, Cebra JJ (2004) Interactions of commensal gut microbes with subsets of B- and T-cells in the murine host. Vaccine 22:805–811

    Article  CAS  PubMed  Google Scholar 

  35. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Buschenfelde KH (1995) Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol 102:448–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69:1046S–1051S

    CAS  PubMed  Google Scholar 

  37. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  38. West CE, Renz H, Jenmalm MC, Kozyrskyj AL, Allen KJ, Vuillermin P et al (2015) The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiotatherapies. J Allergy Clin Immunol 135(1):3–13. doi:10.1016/j.jaci.2014.11.012 (quiz 14)

    Article  PubMed  Google Scholar 

  39. Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299:1259–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rook GA (2013) Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci USA 110:18360–18367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wold AE (1998) The hygiene hypothesis revised: is the rising frequency of allergy due to changes in the intestinal flora? Allergy 53:20–25

    Article  CAS  PubMed  Google Scholar 

  42. Noverr MC, Huffnagle GB (2005) The ‘microflora hypothesis’ of allergic diseases. Clin Exp Allergy 35:1511–1520

    Article  CAS  PubMed  Google Scholar 

  43. Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC (2013) Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy 44(6):842–850

    Article  Google Scholar 

  44. Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Muller G et al (2011) Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 128(646–52):e1–e5

    Google Scholar 

  45. Sjogren YM, Jenmalm MC, Bottcher MF, Bjorksten B, Sverremark-Ekstrom E (2009) Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy 39:518–526

    Article  CAS  PubMed  Google Scholar 

  46. Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toh ZQ, Anzela A, Tang ML, Licciardi PV (2012) Probiotic therapy as a novel approach for allergic disease. Front Pharmacol 3:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Storro O, Avershina E, Rudi K (2013) Diversity of intestinal microbiota in infancy and the risk of allergic disease in childhood. Curr Opin Allergy Clin Immunol 13:257–262

    Article  PubMed  Google Scholar 

  49. Storrø O, Øien T, Langsrud Ø, Rudi K, Dotterud C, Johnsen R (2011) Temporal variations in early gut microbial colonization are associated with allergen-specificimmunoglobulin E but not atopic eczema at 2 years of age. Clin Exp Allergy. 41(11):1545-1554

    Article  PubMed  Google Scholar 

  50. Hansel TT, Johnston SL, Openshaw PJ (2013) Microbes and mucosal immune responses in asthma. Lancet 381(9869):861–873

    Article  CAS  PubMed  Google Scholar 

  51. Huang YJ (2013) Asthma microbiome studies and the potential for new therapeutic strategies. Curr Allergy Asthma Rep 13(5):453–461

    Article  PubMed  PubMed Central  Google Scholar 

  52. Suzaki H, Watanabe S, Pawankar R (2013) Rhinosinusitis and asthma-microbiome and new perspectives. Curr Opin Allergy Clin Immunol 13:45–49

    Article  CAS  PubMed  Google Scholar 

  53. Marsland BJ (2012) Regulation of inflammatory responses by the commensal microbiota. Thorax 67:93–94

    Article  PubMed  Google Scholar 

  54. Chalermwatanachai T, Velásquez LC, Bachert C (2015) The microbiome of the upper airways: focus on chronic rhinosinusitis. World Allergy Organ J. 8(1):3. doi:10.1186/s40413-014-0048-6 (eCollection 2015)

    Article  PubMed  PubMed Central  Google Scholar 

  55. Renz H, Brandtzaeg P, Hornef M (2012) The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol 12:9–23

    CAS  Google Scholar 

  56. Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238

    Article  CAS  PubMed  Google Scholar 

  57. Garn H, Neves JF, Blumberg RS, Renz H (2013) Effect of barrier microbes on organbased inflammation. J Allergy Clin Immunol 131:1465–1478

    Article  PubMed  PubMed Central  Google Scholar 

  58. West CE, Jenmalm MC, Prescott SL (2015) The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin Exp Allergy. 45(1):43–53

    Article  CAS  PubMed  Google Scholar 

  59. Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159:1739–1745

    CAS  PubMed  Google Scholar 

  60. Cahenzli J, Koller Y, Wyss M, Geuking MB, McCoy KD (2013) Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14:559–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sjögren YM, Tomicic S, Lundberg A, Böttcher MF, Björkstén B, Sverremark-Ekström E et al (2009) Influence of early gut microbiota on the maturation of childhood mucosaland systemic immune responses. Clin Exp Allergy 39(12):1842–1851. doi:10.1111/j.1365-2222.2009.03326.x (Epub 2009 Sep 3)

    Article  PubMed  Google Scholar 

  62. Wang S, Hibberd ML, Pettersson S, Lee YK (2014) Enterococcus faecalis from healthy infants modulates inflammation through MAPK signaling pathways. PLoS One 9:e97523

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  65. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS et al (2013) Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185:385–394

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C et al (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566

    Article  CAS  PubMed  Google Scholar 

  67. Penders J, Gerhold K, Stobberingh EE, Thijs C, Zimmermann K, Lau S et al (2013) Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J Allergy Clin Immunol 132(601–7):e8

    Google Scholar 

  68. Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD (2012) Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 3:203–220

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Karlström A, Lindgren H, Hildingsson I (2013) Maternal and infant outcome after caesarean section without recorded medical indication: findings from a Swedish case-control study. BJOG 120:479–486

    Article  PubMed  Google Scholar 

  71. Kolokotroni O, Middleton N, Gavatha M, Lamnisos D, Priftis KN, Yiallouros PK (2012) Asthma and atopy in children born by caesarean section: effect modification by family history of allergies—a population based cross-sectional study. BMC Pediatr 12:179

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li H, Ye R, Pei L, Ren A, Zheng X, Liu J (2014) Caesarean delivery, caesarean delivery on maternal request and childhood overweight: a Chinese birth cohort study of 181,380 children. Pediatr Obes 9:10–16

    Article  CAS  PubMed  Google Scholar 

  73. Stene LC, Gale EA (2013) The prenatal environment and type 1 diabetes. Diabetologia 56:1888–1897

    Article  CAS  PubMed  Google Scholar 

  74. Magnus MC, Haberg SE, Stigum H, Nastad P, London SJ, Vangen S et al (2011) Delivery by cesarean section and early childhood respiratory symptoms and disorders: the Norwegian mother and child cohort study. Am J Epidemiol 174:1275–1285

    Article  PubMed  PubMed Central  Google Scholar 

  75. Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR (2008) A meta-analysis of the association between Caesarean section and childhood asthma. Clin Exp Allergy 38:629–633

    Article  CAS  PubMed  Google Scholar 

  76. Hughes C, Davoodi-Semiromi Y, Colee JC, Culpepper T, Dahl WJ, Mai V et al (2011) Galactooligosaccharide supplementation reduces stress-induced gastrointestinal dysfunction and days of cold or flu: a randomized, double-blind, controlled trial in healthy university students. Am J Clin Nutr 93:1305–1311

    Article  CAS  PubMed  Google Scholar 

  77. Penders J, Gerhold K, Stobberingh EE, Thijs C, Zimmermann K, Lau S, Hamelmann E (2013) Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J Allergy Clin Immunol 32:601–607

    Article  Google Scholar 

  78. Tsuji H, Oozeer R, Matsuda K, MatsukiT Ohta T, Nomoto K et al (2012) Molecular monitoring of the development of intestinal microbiota in Japanese infants. Benef Microbes 3:113–125

    Article  CAS  PubMed  Google Scholar 

  79. Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC (2012) Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 129:434–440

    Article  PubMed  Google Scholar 

  80. Bisgaard H, Li N, Bonnelykke K, Bonnelykke K, Chawes BL, Skoy T et al (2011) Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 128:646–652

    Article  PubMed  Google Scholar 

  81. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107:11971–11975

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang M, Karlsson C, Olsson C, Alderberth I, Wold AE, Strachan DP et al (2008) Reduced diversity in the early fecal microbiota of infants with atopic eczema. J Allergy Clin Immunol 121:129–134

    Article  PubMed  Google Scholar 

  83. Legatzki A, Rösler B, von Mutius E (2014) Microbiome diversity and asthma and allergy risk. Curr Allergy Asthma Rep. 14(10):466. doi:10.1007/s11882-014-0466-0

    Article  PubMed  Google Scholar 

  84. Melli LC, do Carmo-Rodrigues MS, Araújo-Filho HB, Solé D, de Morais MB (2015) Intestinal microbiota and allergic diseases: a systematic review. Allergol Immunopathol (Madr). doi:10.1016/j.aller.2015.01.013. (Epub ahead of print)

  85. Martinez FD (2014) The human microbiome. Early life determinant of health outcomes. Ann Am Thorac Soc 11(Suppl 1):S7–S12. doi:10.1513/AnnalsATS.201306-186MG

    Article  PubMed  PubMed Central  Google Scholar 

  86. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. World Health Organization, Ontario

  87. Fiocchi A, Burks W, Bahna SL, Bielory L, Boyle RJ, Cocco R et al (2012) Clinical Use of Probiotics in Pediatric Allergy (CUPPA): a World Allergy Organization position paper. World Allergy Organ J 5:148–167

    Article  PubMed  PubMed Central  Google Scholar 

  88. West CE (2014) Gut microbiota and allergic disease: new findings. Curr Opin Clin Nutr Metab Care 17:261–266

    Article  PubMed  Google Scholar 

  89. Hao Q, Lu Z, Dong BR, Huang CQ, Wu T (2011) Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev (9):CD006895. doi:10.1002/14651858.CD006895.pub2

  90. Kalliomäki M, Salminen S, Poussa T, Isolauri E (2007) Probiotics during the first 7 years of life: a cumulative risk reduction of eczema in a randomized, placebocontrolled trial. J Allergy Clin Immunol 119:1019–1021

    Article  PubMed  Google Scholar 

  91. Jensen MP, Meldrum S, Taylor AL, Dunstan JA, Prescott SL (2012) Early probiotic supplementation for allergy prevention: long-term outcomes. J Allergy Clin Immunol 130:1209–1211.e5

    Article  PubMed  Google Scholar 

  92. West CE, Hammarström ML, Hernell O (2013) Probiotics in primary prevention of allergic disease–follow-up at 8–9 years of age. Allergy 68(8):1015–1020. doi:10.1111/all.12191 (Epub 2013 Jul 30)

    Article  CAS  PubMed  Google Scholar 

  93. Abrahamsson TR, Jakobsson T, Björkstén B, Oldaeus G, Jenmalm MC (2013) No effect of probiotics on respiratory allergies: a 7-yearfollow-up of a randomized controlled trial in infancy. Pediatr Allergy Immunol 24(6):556–561. doi:10.1111/pai.12104 (Epub 2013 Jul 31)

    Article  PubMed  Google Scholar 

  94. Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK et al (2014) Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 111:13145–13150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kuitunen M, Kukkonen K, Juntunen-Backman K, Korpela R, Poussa T, Tuure T et al (2009) Probiotics prevent IgE-associated allergy until age 5 years in cesarean delivered children but not in the total cohort. J Allergy Clin Immunol 123:335–341

    Article  PubMed  Google Scholar 

  96. Ellwood P, Asher MI, Garcia-Marcos L, Williams H, Keil U, Robertson C et al (2013) Do fast foods cause asthma, rhinoconjunctivitis and eczema? Global findings from the International Study of Asthma and Allergies in Childhood (ISAAC) phase three. Thorax 68:351–360

    Article  PubMed  Google Scholar 

  97. Thorburn AN, Macia L, Mackay CR (2014) Diet, metabolites, and ‘‘western-lifestyle’’ inflammatory diseases. Immunity 40:833–842

    Article  CAS  PubMed  Google Scholar 

  98. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696

    Article  PubMed  PubMed Central  Google Scholar 

  99. Osborn DA, Sinn JK (2013) Prebiotics in infants for prevention of allergy. Cochrane Database Syst Rev (3):CD006474. doi:10.1002/14651858.CD006474.pub3

  100. Smits LP, Bouter KE, de Vos WM, Borody TJ, Nieuwdorp M (2013) Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145:946–953

    Article  PubMed  Google Scholar 

  101. Kassam Z, Lee CH, Yuan Y, Hunt RH (2013) Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol 108:500–508

    Article  PubMed  Google Scholar 

  102. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368(5):407–415

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

“With exception of data collection, preparation of this paper including design and planning was supported by Continuous Education and Scientific Research Association”. There is no financial support. There is only scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuray Bayar Muluk.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ipci, K., Altıntoprak, N., Muluk, N.B. et al. The possible mechanisms of the human microbiome in allergic diseases. Eur Arch Otorhinolaryngol 274, 617–626 (2017). https://doi.org/10.1007/s00405-016-4058-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-016-4058-6

Keywords

Navigation