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antibodies were able to bind Aβ with high affinity. All of 

the antibodies were able to bind Aβ in mouse tissue. How-

ever, significant differences were observed in human brain 

tissue. While bapineuzumab was able to capture a variety 

N-terminally truncated Aβ species, the Aβ detected using 

solanezumab was barely above detection limits while 

crenezumab did not detect any Aβ. None of the antibodies 

were able to detect any Aβ species in human blood. Immu-

noprecipitation experiments using plasma from AD sub-

jects showed that both solanezumab and crenezumab have 

extensive cross reactivity with non-Aβ related proteins. 

Bapineuzumab demonstrated target engagement with brain 

Aβ, consistent with published clinical data. Solanezumab 

and crenezumab did not, most likely as a result of a lack 

of specificity due to cross reactivity with other proteins 

Abstract Reducing amyloid-β peptide (Aβ) burden at 

the pre-symptomatic stages of Alzheimer’s disease (AD) 

is currently the advocated clinical strategy for treating this 

disease. The most developed method for targeting Aβ is 

the use of monoclonal antibodies including bapineuzumab, 

solanezumab and crenezumab. We have synthesized these 

antibodies and used surface plasmon resonance (SPR) and 

mass spectrometry to characterize and compare the ability 

of these antibodies to target Aβ in transgenic mouse tissue 

as well as human AD tissue. SPR analysis showed that the 
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containing epitope overlap. This lack of target engage-

ment raises questions as to whether solanezumab and cren-

ezumab are suitable drug candidates for the preventative 

clinical trials for AD.

Keywords Alzheimer’s disease · β-Amyloid · 

Bapineuzumab · Crenezumab · Solanezumab · Mass 

spectrometry

Introduction

If the β-amyloid (Aβ) hypothesis of Alzheimer’s disease 

(AD) is correct [1, 2], then the aim of any therapeutic 

intervention should be to remove toxic Aβ peptides from 

the brain. In attempts to achieve this, billions of dollars 

have been spent on clinical trials of anti-Aβ therapies for 

treatment of mild to moderate sufferers of AD. Now, after 

unmitigated trial failures in symptomatic patients, the field 

is looking for a therapeutic window earlier in the disease 

process where Aβ-directed interventions aim to prevent 

downstream pathology thereby delaying or stopping the 

development of dementia before significant damage to the 

brain has occurred.

Anti-Aβ antibodies are the most developed potential 

therapeutics for AD. Bapineuzumab (Pfizer, Johnson & 

Johnson) derives specificity for Aβ by binding it in a con-

formationally dependent manner, recognizing the five 

extreme N-terminal residues of Aβ as a helix with the 

N-terminus buried in the antibody surface [3]. Bapineu-

zumab is the only antibody clinically reported to reduce 

brain amyloid burden as well as decreasing cerebrospinal 

fluid (CSF) levels of both total Tau (t-Tau) and phospho-

rylated-Tau (p-Tau) in mild to moderate AD patients [4, 5]. 

However, despite successful target engagement, a large-

scale Phase 3 trial of bapineuzumab to treat mild to mod-

erate AD was prematurely halted when high doses were 

found to promote vasogenic oedema and other amyloid-

related imaging abnormalities [6].

Solanezumab (Eli Lilly) targets the central region of Aβ 

and is reported to selectively bind to soluble monomeric Aβ 

with little affinity for oligomeric/fibrillar forms [7, 8]. On 

examination of transgenic mice expressing Aβ solely within 

the central nervous system (CNS), it was hypothesized that 

solanezumab acts as an Aβ sink in the periphery rather than 

in the CNS [9, 10], disrupting the equilibrium between 

plasma and brain Aβ, thereby driving amyloid from the 

brain into blood. Large Phase 3 clinical trials showed no 

evidence that administration of solanezumab shifted brain 

amyloid burden or downstream biological markers of dis-

ease. Post hoc analysis indicated that treatment with solan-

ezumab slowed cognitive decline in patients with mild, but 

not moderate, forms of the disease. This significant post 

hoc finding coupled with solanezumab’s safety profile led 

to the compound being recommended as the first thera-

peutic agent to be assessed in the anti-amyloid treatment 

in asymptomatic Alzheimer’s disease (A4) prevention trial 

[11].

Crenezumab, like solanezumab, binds the linear central 

portion of Aβ. It has been reported that crenezumab binds 

preferentially to Aβ fibrils and oligomers over monomeric 

species, and reduces amyloid plaque burden in transgenic 

mice [12]. However, despite crenezumab’s reported affin-

ity for oligomeric Aβ, it is important to note that there are 

currently no techniques with the capacity to monitor the in 

vivo burden of these putatively toxic species. Crenezumab 

is built on an IgG4 backbone, unlike bapineuzumab and 

solanezumab (both are IgG1). The IgG4 backbone ena-

bles the drug to mildly stimulate microglia enough for Aβ 

uptake but not to evoke an inflammatory response com-

pared to the same drug on an IgG1 backbone and can there-

fore be administered at higher doses [12]. Crenezumab is 

the antibody chosen for the Alzheimer’s prevention initia-

tive’s prevention trial in asymptomatic early-onset AD kin-

dred in Colombia [13].

To date, direct comparisons between these antibodies 

have been limited, particularly with regard to their respec-

tive Aβ binding profiles. Therefore, the aim of the cur-

rent investigation was to provide further characterization 

of the Aβ binding profiles of bapineuzumab, crenezumab, 

and solanezumab using synthetic Aβ peptides and surface 

plasmon resonance (SPR) before analyzing their binding 

profiles in both transgenic mouse and AD-affected tissues 

alongside comparable commercially available antibodies 

(WO2 and 4G8) using surface enhanced laser desorption/

ionization time-of-flight (SELDI-TOF MS).

Methods

Comprehensive methodological descriptions are provided 

in Supplementary Material. Therapeutic antibodies and 

their Fabs were expressed in FreeStyle™ 293-F cells (Inv-

itrogen), purified to homogeneity and stored in PBS in 

20 µL aliquots until required. pcDNA 3.1 vector (Invitro-

gen) constructs encoding each antibody chain were derived 

from synthetic DNA (Genscript) corresponding to pub-

lished amino acid sequences: [14, 15] Bapineuzumab (Pat-

ent US 20080292625 A1) [16]; solanezumab (Patent WO 

2001062801 A2, CAS 955085-14-0, CHEMBL1743072) 

[17]; crenezumab (Patent EP 2574345 A1, CAS 1095207-

05-8, CHEMBL1743004) [18]. Murine antibody WO2 was 

obtained from the WEHI Monoclonal Antibody Facility and 

murine 4G8 was purchased from Covance (SIG-39220).
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Aβ binding activity of the recombinant antibodies was 

tested by surface plasmon resonance (SPR) in parallel on 

a ProteOn XPR36 system (Bio-Rad). The Aβ peptides 

screened included Aβ1–28, Aβ1–40, Aβ1–42, the N-terminally 

truncated peptides Aβ3–42, Aβ4–42, and the truncated and 

modified pEAβ3–42, and pEAβ11–42. Aβ1–28, Aβ1–40, Aβ1–42 

were purchased from the Keck laboratory, Yale. All other 

Aβ peptides were made in-house using published methods 

[19].

Cortical samples were collected from 15-month-old 

female APPSWEtg mice (Tg2576) and homogenized, while 

mouse blood samples were collected from 9-month-old 

female APPSWEtg mice (Tg2576). Samples were stored at 

−80 °C.

Human brain tissue collected at autopsy and character-

ized by the Australian Brain Bank Network (ABBN) and 

preparation of the cortical homogenates was in accord-

ance with previously reported methodologies [20]. Blood 

samples were collected from AD patients enrolled in the 

Australian Imaging Biomarkers and Lifestyle (AIBL) 

Flagship Study of Aging [21]. All procedures were con-

ducted in accordance with the Florey Neurosciences Ethics 

Committee.

Mass spectrometric analysis was carried out using Pro-

teinChip® PS10 Arrays (Bio-Rad; CAT #C55-30044) using 

previously published protocols [20, 22].

6His-tagged Fabs for each therapeutic antibody were 

coupled to magnetic Nickel beads (Sigma) for immunopre-

cipitation in AD plasma according to the manufacturer’s 

instructions. Biomolecules pulled down by the antibod-

ies were proteolytically digested and detected by liquid 

chromatography (LC)-MS/MS on a LTQ Orbitrap Elite 

(Thermo Scientific). Acquired MS/MS data were searched 

against all human proteins in UniProt using Mascot [23, 

24].

Results

Crenezumab has strong sequence similarities 

with solanezumab

While crenezumab has an IgG4 backbone, solanezumab 

has an IgG1 backbone; however, the complementarity 

determining regions (CDRs) are identical in length, with no 

insertions or deletions (see Supplementary Table 1). Three 

CDRs are of identical sequence (L2, L3, and the hyper-

variable H3). Besides a few very conservative amino acid 

substitutions, there are merely five non-conservative amino 

acid differences in total between the CDRs of solanezumab 

and crenezumab. CDR 2 of the heavy chain in solanezumab 

can be glycosylated at N56 on the heavy chain that has the 

potential to sterically hinder Aβ affinity.

Antibodies bind synthetic Aβ species with high affinity

Bapineuzumab, crenezumab, and solanezumab prepara-

tions studied here were expressed in human embryonic 

kidney cells, which might be different to the methods used 

for production of the clinically tested recombinant human-

ized samples and their murine equivalents studied in animal 

models. The clinical antibodies reportedly have a single 

N-linked glycosylation site in their respective Fc portions 

that mediates Fc receptor binding rather than ligand affinity 

and specificity of the complementarity determining regions 

conserved in humanized and murine equivalent antibod-

ies. There is a single glycosylation site in the Fv domain 

of solanezumab: N56 of the heavy chain CDR2 that can 

sterically modify affinity for Aβ, from a KD of 4 pM for 

fully glycosylated antibody to a KD of 0.8 pM for the 

N56S/N56T mutated (unglycosylated) antibody (patent 

WO/2003/016466). This demonstrates that solanezumab 

retains extremely high affinity for Aβ regardless of dif-

ferential glycosylation at this site; which might arise from 

differential expression systems for antibody production. 

We have used one of the preferred mammalian expression 

systems prescribed in each antibody patent to minimize 

the possibility of differential glycosylation. We initially 

performed SPR experiments to ensure that these antibod-

ies were able to bind a range of synthetic Aβ peptides in 

accordance with their reported epitopes [16–18]. Mean rate 

association constants (ka) for bapineuzumab, solanezumab, 

and crenezumab with captured Aβ as determined by SPR 

were found to be 7, 0.8 and 6 × 103 M−1 s−1, respectively 

(Fig. 1a). Dissociation curves were flat and derived dissoci-

ation constant (kd) values were in the order of 1 × 10−5 s−1 

or lower (Supplementary Table 2). Drifting baselines, most 

likely due to Aβ aggregation, hampered efforts to resolve 

accurate KD values. However, we established that the anti-

bodies bapineuzumab, solanezumab and crenezumab rec-

ognized synthetic Aβ1–40 with binding constants in the low 

nanomolar and sub-nanomolar ranges when Aβ is conju-

gated to the chip (Fig. 1a). With antibodies coupled to the 

SPR chip and Aβ peptides introduced as analytes, the flat 

dissociation phase response curves for solanezumab per-

sisted, yielding unreliable kd values down to 10−17 s−1, and 

a mean kd value in the order of 10−6 s−1, i.e., beyond the 

limits of detection. Apparent kd values increased for bap-

ineuzumab and crenezumab which were reproducible and 

in the order of 10−4 s−1 and 10−3 s−1, respectively. Appar-

ent KD values for soluble Aβ species binding to bapineu-

zumab and crenezumab are in the order of low nanomolar, 

whereas apparent KD values for solanezumab binding are 

in the picomolar or better range (Supplementary Table 2). 

Bapineuzumab did not recognize Aβ pre-treated with 

NaOH/HFIP in PBS, but demonstrated strong binding as 

reported above in PBS plus 0.005 % (v/v) Tween-20. This 
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may have been due to the inhibition of aggregation or con-

formational change induced by the detergent. In either 

case, it highlights the pleomorphic nature of Aβ peptides 

and how care must be taken when interpreting affinity coef-

ficients for these interactions.

With the antibodies conjugated to the sensor chip and 

Aβ peptides introduced as analytes, kd for the solanezumab 

and crenezumab was similar for all peptides tested, namely, 

Aβ1–28, Aβ1–40, Aβ1–42, Aβ3–42, Aβ4–42, pEAβ3–42, and 

pEAβ11–42 which all contain the shared linear epitope. Bap-

ineuzumab showed no change in kd for Aβ1–28, Aβ1–40, Aβ1–

42, but no binding was detected between the antibody and 

any Aβ species with an altered N-terminus (Supplementary 

Table 2). Bapineuzumab, solanezumab, and crenezumab 

when conjugated directly to the SELDI chip matrix readily 

detected synthetic Aβ1–40 and Aβ1–42 at 50 pM by SELDI-

TOF MS (Fig. 1b, c).

Antibodies bind Aβ in APPSWE transgenic mice

The therapeutic antibodies were coupled to a SELDI-TOF 

array before the addition and incubation of either corti-

cal homogenate (n = 3) or plasma (n = 3) from APPSWE 

transgenic mice was added. Mass spectrometric analy-

sis of these fractions showed that in APPSWE transgenic 

mice cortical samples bapineuzumab, solanezumab, WO2 

and 4G8 all capture a near identical range of C-terminally 

truncated Aβ species: Aβ1–37, Aβ1–38, Aβ1–39, Aβ1–40, and 

Aβ1–42 (Fig. 2a). Crenezumab only captured the dominant 

species Aβ1–40 and Aβ1–42 with lower peak intensities. With 

the exception of crenezumab, all the antibodies captured 

Fig. 1  Recognition of synthetic Aβ species using bapineuzumab, 

crenezumab, and solanezumab. a Representative SPR binding 

response curves on the same coordinate axis for antibody binding to 

Aβ1–40 captured on a NLH sensor chip at the C-terminus in PBS, pH 

7.4, with 0.005 % (v/v) Tween-20. The maximum concentrations of 

bapineuzumab (red), solanezumab (blue), and crenezumab (green) 

are 2.9, 7.0, and 2.8 µM, respectively, with a series of tenfold dilu-

tions. Only the three highest concentrations of each antibody and the 

blank are shown for clarity. Thick lines represent data points and the 

thin lines are fits obtained with the bivalent analyte model in ProteOn 

Manager Software package. b, c Representative SELDI-TOF MS 

spectra of 50 pM synthetic Aβ1–40 and Aβ1–42 arising from analysis 

with bapineuzumab, crenezumab, and solanezumab

Fig. 2  Spectral profiles of transgenic APPSWE mouse tissue. Repre-

sentative SELDI-TOF MS spectra arising from the analysis of trans-

genic APPSWE (tg2576) mouse a brain homogenate (n = 3) and b 

plasma (n = 3) with bapineuzumab, crenezumab, solanezumab, and 

WO2
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Aβ1–40 in plasma collected from APPSWE transgenic mice 

(Fig. 2b).

Not all antibodies recognize Aβ in AD-affected human 

brain tissue

As with the samples collected from the transgenic animals, 

analysis of AD-affected cortical homogenate and plasma 

was conducted using SELDI-TOF MS. This experiment 

revealed significant differential activities between the anti-

bodies when analyzing the AD-affected brain homogenates 

(n = 4; Fig. 3a). The resulting spectra indicated that bap-

ineuzumab, WO2, and 4G8 captured a spectrum of N-ter-

minally truncated Aβ peptides ranging from Aβ5–42 through 

Aβ1–42, with very strong signal-to-noise. In contrast, detec-

tion of Aβ species in the AD cortical homogenate when 

using solanezumab and crenezumab was significantly 

lower with signals either being barely detectable above the 

noise or not detectable at all.

Therapeutic antibodies do not recognize Aβ species in the 

blood cellular fraction

We have previously shown that the cellular fraction of 

blood is rich in Aβ-related biomarkers [22]. Here, analy-

sis of the blood cellular fraction indicated that the mono-

meric and dimeric Aβ species observed using WO2 and 

4G8 were not detected using bapineuzumab, crenezumab, 

and solanezumab (n = 4; Fig. 3b). A single peak around 

8 kDa was captured using all three antibodies; however, 

this did not align with any reported fragments of APP or 

Aβ and was considered to be the result of non-specific 

interactions.

There is no detectable Aβ in plasma

SELDI-TOF MS was also used for identification of Aβ spe-

cies in AD-affected plasma samples (n = 4; Fig. 4). Bap-

ineuzumab, crenezumab, solanezumab, and the laboratory 

standards WO2 and 4G8 were all unable to capture detecta-

ble levels of any Aβ species from AD-affected plasma sam-

ples, consistent with our earlier findings [11] and the short 

half-life of soluble Aβ in vivo [25]. The antibodies were 

all however, capable of binding synthetic Aβ1–42 spiked 

into the AD-affected plasma at picomolar concentrations 

(Supplementary Fig. 1), indicating that the exchangeable 

pool of Aβ observed in the transgenic animal models is not 

reflected in sporadic AD.

Fig. 3  Spectra profiles of AD-affected human tissue Representative 

SELDI-TOF MS spectra arising from the analysis of AD-affected a 

brain homogenate (n = 4) and b the blood cellular fraction (n = 4) 

with bapineuzumab, crenezumab, solanezumab, WO2, and 4G8

Fig. 4  Spectral profiles of the AD-affected plasma. Representative 

SELDI-TOF MS spectra of plasma from AD patients demonstrated 

that all antibodies failed to resolve peaks consistent with known APP/

Aβ species
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Solanezumab and crenezumab bind non-Aβ related species 

in plasma

Given the poor performance of the therapeutic antibodies in 

capturing Aβ in blood, we used immunoprecipitation (IP) 

in conjunction with LC-MS/MS to better characterize the 

mAb binding profiles in human plasma. No Aβ peptides 

were detected with any of the antibodies. However, bap-

ineuzumab was the only antibody to pull down a construct 

from the C-terminal cytoplasmic tail of APP (Supplemen-

tary Table 3). Given the N-terminal and conformational 

requirements of bapineuzumab for Aβ, this species was 

likely the BACE-derived Aβ precursor C99. Using cren-

ezumab and solanezumab, the IPs pulled down and identi-

fied just over 200 proteins in AD-affected plasma not seen 

by bapineuzumab or beads alone. Twelve of these exhibited 

sequence identity with the linear epitope (KLVFFAED) 

central to the putative Aβ epitopes recognized by crene-

zumab and solanezumab (Table 1).

Discussion

One of the key driving forces for the amyloid cascade 

hypothesis is that the accumulation of cortical Aβ precedes 

the clinical onset of AD by upwards of 20 years [26, 27]. 

Clinical validation of this hypothesis requires that lower-

ing cortical Aβ burden should lead to cognitive improve-

ments or that the reduction of pre-clinical Aβ accumulation 

should prevent or delay the onset of disease. However, to 

date anti-Aβ therapies have failed in the clinical setting, 

raising questions about the validity of the amyloid hypoth-

esis of AD and lending strength to the argument that thera-

peutic interventions in the mild to moderate stages of AD 

are simply a case of too little, too late [28–30]. It could 

be argued, however, that the amyloid hypothesis has not 

yet been adequately tested, as the therapeutic compounds 

thus far selected for clinical evaluation have suffered from 

a number of fundamental flaws, including an inability to 

cross the blood–brain barrier, toxic side effects, question-

able mechanisms of action [30], and now questions regard-

ing whether appropriate target engagement is occurring.

Given this history, the field has now determined that the 

best time to target Aβ accumulation is prior to symptom 

onset before significant and irreversible damage has been 

done to the brain. For this strategy to work, the chosen 

drug(s) must be capable of reducing the pool of Aβ that is 

thought to drive the disease, i.e., brain-derived Aβ. Studies 

in transgenic animals have shown that bapineuzumab, cren-

ezumab, and solanezumab engage the target in these mod-

els successfully reducing Aβ burden [8, 10, 12]. Consist-

ent with these data utilizing SELDI-TOF MS technology, 

our analysis showed that all the antibodies could capture 

Aβ from transgenic mouse brain tissue (Fig. 2a). When we 

examined human AD brain tissue, bapineuzumab was able 

to capture an array of Aβ species, but at the same time both 

solanezumab and crenezumab were very poor at capturing 

the Aβ species present in the brain tissue (Fig. 3a), indicat-

ing a different spectrum of activity for solanezumab and 

crenezumab between mouse and human tissue. While these 

results were surprising, they were in line with reported 

clinical outcomes in that bapineuzumab can successfully 

reduce Aβ burden as detected by positron emission tomog-

raphy imaging studies [5], while solanezumab does not 

[31].

Based on mouse studies, it has been suggested that 

solanezumab does not work directly on brain Aβ, but 

instead works as a peripheral sink targeting peripheral Aβ 

Table 1  Proteins identified following immunoprecipitation of AD plasma with crenezumab, and solanezumab

a  Mapped in Plasma Proteomics Database

Protein Gene symbol UniProt ID Aβ16–23 sequence alignment

16 KLVFFAED 23

Probable ATP-dependent DNA helicase HFM1 A2PYH4 147 KLVNFAED 154

Contactin-associated protein-like 3B CNT3B Q96NU0 240 KLVFFLNS 244

2-oxoglutarate and iron-dependent oxygenase domain-containing protein OGFD1 Q8N543 206 KLVFFEVS 210

Cysteine-rich protein 3 CRIP3 Q6Q6R5 12 QPVFFAEK 16

Solute carrier family 2, member 13 SLC2A13 Q96QE2 517 YLVFFAPG 521a

Autophagy-related protein 9B ATG9B Q674R7 531 QLVFFAGA 535

Neurotrimin NTM Q9P121 279 KLIFFNVS 283a

Kelch domain containing 2 KLHDC2 Q9Y2U9 156 KLIFFGGY 160a

Interleukin-12 receptor beta-1 IL12RB1 P42701 547 WLIFFASL 551a

Peroxisomal bifunctional enzyme EHHADH Q08426 272 QYAFFAER 275a

Cardiomyopathy associated 3 XIRP2 A4UGR9 24 PESDFAED 27a

Zinc finger protein 429 ZN429 Q86V71 81 CSHFAED 84
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which in turn lowers CNS Aβ by mass action. Indeed when 

we examined plasma from tg2576 mice, solanezumab was 

able to detect Aβ1–40 in plasma (Fig. 2b). However, none of 

the therapeutic antibodies were able to detect Aβ in either 

the plasma or the cellular fraction from human AD subjects 

(Figs. 3b, 4). The first thing to note from these data is that 

Aβ profiles in the mouse blood are completely different to 

those of human blood, once again highlighting that caution 

must be exercised when extrapolating results from trans-

genic animals into humans. Furthermore, it raises the ques-

tion; why did these antibodies fail to capture any Aβ spe-

cies? Our SPR data confirmed that all the antibodies have 

a high affinity for Aβ (Fig. 1) and the ability to capture Aβ 

species in complex biological milieu was confirmed by 

our examination of the mouse tissue (Fig. 2). So if affinity 

is not the issue, perhaps it is a question of the antibodies’ 

specificity for Aβ?

All of the therapeutic antibodies were raised against lin-

ear epitopes within the Aβ sequence. It is likely that these 

epitopes are at least partially present in other proteins and 

that the resulting cross reactivity with these proteins dimin-

ishes the ability of the antibodies to target Aβ. Immunopre-

cipitation experiments from human plasma (Table 1) indi-

cated that cross reactivity does indeed occur and is likely to 

explain the poor ability of solanezumab and crenezumab to 

capture Aβ species in human tissue. The similar cross reac-

tivity profiles of solanezumab and crenezumab were con-

sistent with their sequence similarities. One of the proteins 

pulled down by both solanezumab and crenezumab was 

the IL12 receptor; this is interesting as a recent publica-

tion showed that modulation of the IL12 signaling pathway 

resulted in cognitive improvements in a transgenic mouse 

model of AD [32]. It should be noted that a driving force 

for the selection of solanezumab as a drug candidate for the 

preventative trials was the post hoc analysis that showed a 

small, but significant improvement in cognition in the mild 

AD subjects in Phase 3 trials.

In summary, two of the leading drug candidates for 

preventative clinical trials are effectively the same anti-

body indicating a lack of diversity in therapeutic strate-

gies. These antibodies poorly recognize Aβ in human tis-

sue as a result of cross reactivity, which is a well-known 

problem for therapeutic antibodies raised against linear 

target sequences [33–35]. This lack of specificity and tar-

get engagement for Aβ does not bode well for the prospects 

of success of these drugs in the preventative trials that are 

ultimately likely to validate the amyloid cascade hypothesis 

for AD. Bapineuzumab while raised against a linear epitope 

of Aβ, requires a specific conformation for binding [3]; this 

gives the antibody a degree of specificity and as a result 

this drug has clinically demonstrated target engagement, 

but unfortunately toxicity issues prevent further evaluation 

of this drug. Over stimulation of microglia or removal of 

Aβ embedded in the vascular architecture of the AD brain 

has been suggested to explain bapineuzumab toxicity. This 

would recommend the use of an Fc-modified form of bap-

ineuzumab, AAB-003 recently developed by Pfizer. Ulti-

mately, if the amyloid cascade hypothesis is to be validated 

in a pre-symptomatic cohort, the drug utilized must be clin-

ically proven to safely reduce cortical Aβ burden.
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