Skip to main content
Log in

Shear-thickening behavior of Aerosil® R816 nanoparticles suspensions in polar organic liquids

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We have found in this study, by means of steady and dynamic rheometry, that Aerosil® R816 particles, in which hydroxyl groups have been mostly substituted by alkyls groups, form nonflocculated suspensions in polypropylene glycol, in comparison to what was expected from previous studies. Steady flow curve shows shear-thickening behavior between two shear-thinning regions. The transient rheological response has been analyzed using a protocol proposed a long time ago by Cheng (Rheol Acta 25:542–554, 1986). It has been found that, within the reversible shear-thickening region, all the constant structure curves overlap, which suggests that the response at a certain shear rate does not depend significantly on the previous state. As a consequence, this protocol is proposed as an alternative technique for distinction between flocculated and nonflocculated suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barnes HA (1989) Shear thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33(2):329–366

    Article  ADS  CAS  Google Scholar 

  • Bender J, Wagner NJ (1995) Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J Colloid Interface Sci 172:171–184

    Article  CAS  Google Scholar 

  • Bender J, Wagner NJ (1996) Reversible shear thickening in monodisperse and bidisperse colloidal suspensions. J Rheol 40(5):899–916

    Article  ADS  CAS  Google Scholar 

  • Boersma WH, Laven J, Stein HN (1992) Viscoelastic properties of concentrated shear-thickening dispersions. J Colloid Interface Sci 149:10–22

    Article  CAS  Google Scholar 

  • Bossis G, Brady JF (1989) The rheology of Brownian suspensions. J Chem Phys 91(3):1866–1874

    Article  ADS  CAS  Google Scholar 

  • Cheng CDH (1986) Yield stress: a time dependent property and how to measure it. Rheol Acta 25:542–554

    Article  CAS  Google Scholar 

  • Decker MJ, Halbach CJ, Nam CH, Wagner NJ, Wetzel E (2007) Comp Sci Technol 67:565–578

    Article  CAS  Google Scholar 

  • Degussa AG (1989) Fine particles. Technical Bulletin no. 18

  • Degussa AG (2005) Product information

  • Degussa AG (2006) Fine particles. Technical Bulletin no. 11

  • D’Haene P, Mewis J, Fuller GG (1993) Scattering dichroism measurements of flow-induced structure of a shear thickening suspension. J Colloid Interface Sci 156:350–358

    Article  Google Scholar 

  • Dullaert K (2005) Constitutive equations for thixotropic dispersions. PhD thesis, Katholieke Universiteit Leuven

  • Eisenlauer J, Killmann E (1980) Stability of colloidal silica (aerosil) hydrosols. I. Preparation and characterization of silica (aerosil) hydrosol. J Colloid Interface Sci 74(1):108–119

    Article  CAS  Google Scholar 

  • Fischer C, Braun SA, Bourban SE, Michaud V, Plummer CJG, Manson JAE (2006) Dynamic properties of sandwich structures with integrated shear-thickenig fluids. Smart Mater Struct 15:1467–1475

    Article  ADS  Google Scholar 

  • Fischer C, Plummer CJG, Michaud V, Bourban PE, Manson JAE (2007) Pre- and post-transition behavior of shear-thickening fluids in oscillating shear. Rheol Acta 46:1099–1108

    Article  CAS  Google Scholar 

  • Galindo-Rosales FJ, Rubio-Hernández FJ, Velázquez-Navarro JF, Gómez-Merino AI (2007) Structural level of silica-fumed aqueous suspensions. J Am Ceram Soc 90(5):1641–1643

    Article  CAS  Google Scholar 

  • Hoffman RL (1974) Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests. J Colloid Interface Sci 46(3):491–506

    Article  CAS  Google Scholar 

  • Hoffman RL (1998) Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol 42(1):111–123

    Article  ADS  CAS  Google Scholar 

  • Jaúregi-Beloqui B, Fernández-García JC, Orgilés-Barceló AC, Mahiques-Bujanda MM, Martín-Martínez JM (1999) Rheological properties of thermoplastic polyurethane adhesive solutions containing fumed silicas of different surface areas. Int J Adhes Adhes 19:321–328

    Article  Google Scholar 

  • Khan SA, Baker GL, Colson S (1994) Composite polymer electrolytes using fumed silica fillers: rheology and ionic conductivity. Chem Mater 6(12):2359–2363

    Article  CAS  Google Scholar 

  • Kirkwood K, Kirkwood J, Wetzel ED, Lee YS, Wagner NJ (2004) Yarn pull-out as a mechanism for dissipating ballistic impact energy in Kevlar KM-2 fabric. Part I: quasi-static characterization of yarn pull-out. Tex Res J 74(10):920–928

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Lee YS, Wagner NJ (2003) Dynamic properties of shear thickening colloidal suspensions. Rheol Acta 42:199–208

    CAS  Google Scholar 

  • Lee YS, Wagner NJ (2006) Rheological properties and small-angle neutron scattering of a shear thickening nanoparticle dispersion at high shear rates. Ind Eng Chem Res 45:7015–7024

    Article  CAS  Google Scholar 

  • Lee YS, Wetzel E, Wagner N (2003) J Mater Sci 38:2825–2833

    Article  CAS  Google Scholar 

  • Maranzano BJ, Wagner NJ (2001) The effect of interparticle interactions and particle size on reversible shear thickening: hard spheres colloidal dispersions. J Rheol 45(5):1205–1222

    Article  ADS  CAS  Google Scholar 

  • Maranzano BJ, Wagner NJ (2002) Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J Chem Phys 117(22):10291–10302

    Article  ADS  CAS  Google Scholar 

  • Nguyen QD, Jensen CTB, Kristensen PG (1998) Experimental and modelling studies of the properties of maize and waxy maize starch pastes. Chem Eng J 70:165–171

    Article  CAS  Google Scholar 

  • Osuji CO, Kim C, Weitz A (2008) Shear thickening and scaling of the elastic modulus in a fractal colloidal system with attractive interactions. Phys Rev E 77:060402 (R)

    Article  ADS  Google Scholar 

  • Raghavan SR, Khan SA (1995) Shear-induced microstructural changes in flocculated suspensions of fumed silica. J Rheol 39(6):1311–1325

    Article  ADS  CAS  Google Scholar 

  • Raghavan SR, Khan SA (1997) Shear-thickening response of fumed silica suspensions under steady and oscillatory shear. J Colloid Interface Sci 185:57–67

    Article  PubMed  CAS  Google Scholar 

  • Raghavan SR, Riley M, Fedwik PS, Khan SA (1998) Composite polymer electrolytes based on poly(ethylene glycol) and hydrophobic fumed silica: dynamic rheology and microstructure. Chem Mater 10(1):244–251

    Article  CAS  Google Scholar 

  • Raghavan SR, Hou J, Khan SA (2000a) Colloidal interactions between particles with tethered nonpolar chains dispersed in polar media: direct correlation between dynamic rheology and interaction parameters. Langmuir 16:1066–1077

    Article  CAS  Google Scholar 

  • Raghavan SR, Walls HJ, Khan SA (2000b) Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir 16(21):7920–7930

    Article  CAS  Google Scholar 

  • Sánchez A (2006) Colloidal gels of fumed silica: microstructure, surface interactions and temperature effects. PhD thesis, North Carolina State University

  • Sims ND, Stanway R, Johnson AR (1999) Vibration contributing smart fluids: a state-of-the-art review. Shock Vibr Dig 31(3):194–203

    Google Scholar 

  • Torró-Palau AM, Fernández-García AC, Orgilés-Barceló MM, Martín-Martínez JM (2001) Characterization of polyurethanes containing different silicas. Int J Adhes Adhes 21:1–9

    Article  Google Scholar 

Download references

Acknowledgement

We would like to express our gratitude to Degussa A.G. for supplying kindly Aerosil®R816.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Rubio-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galindo-Rosales, F.J., Rubio-Hernández, F.J. & Velázquez-Navarro, J.F. Shear-thickening behavior of Aerosil® R816 nanoparticles suspensions in polar organic liquids. Rheol Acta 48, 699–708 (2009). https://doi.org/10.1007/s00397-009-0367-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0367-7

Keywords

Navigation