Skip to main content
Log in

Stimulated emission spectroscopy of Rydberg matter: observation of Rydberg orbits in the core ions

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The short-wavelength bands generated in Rydberg matter (RM) formed by K atoms have been studied both in an operating laser cavity and by amplified emission in the RM, with higher resolution than previously. Transitions down to principal quantum number n′′≥6 in the core ions have been identified previously in the infrared range, while transitions down to n′′=5 and 4 are now observed for transitions of the type n′′=7→4. Efficient down-conversion of emitted wavelengths shorter than 800 nm is found in the RM medium in the cavity by a process similar to two-photon emission. From the good description of the transitions with just one quantum number n′′, it is concluded that the transitions studied are single-electron transitions in the core ions coupled to the conduction band; two-electron processes as proposed previously are not involved in this wavelength range where the change in angular momentum is relatively small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Badiei, L. Holmlid, Chem. Phys. Lett. 376, 812 (2003)

    Article  Google Scholar 

  2. L. Holmlid, J. Phys. B 37, 357 (2004)

    Article  Google Scholar 

  3. S. Badiei, L. Holmlid, Appl. Phys. B 81, 549 (2005)

    Article  ADS  Google Scholar 

  4. L. Holmlid, Phys. Chem. Chem. Phys. 6, 2048 (2004)

    Article  Google Scholar 

  5. T.R. Geballe, Publ. Astro. Soc. Pac. Conf. Ser. 122, 119 (1997)

  6. A.T. Tokunaga, Publ. Astro. Soc. Pac. Conf. Ser. 124, 149 (1997)

  7. J.D. Bregman, L.J. Allamandola, A.G.G.M. Tielens, T.R. Geballe, F.C. Witteborn, Astrophys. J. 344, 791 (1989)

    Article  ADS  Google Scholar 

  8. L. Holmlid, Astron. Astrophys. 358, 276 (2000)

    ADS  Google Scholar 

  9. S. Badiei, L. Holmlid, J. Phys. B 39, 4191 (2006)

    Article  ADS  Google Scholar 

  10. J. Wang, L. Holmlid, Chem. Phys. 277, 201 (2002)

    Article  Google Scholar 

  11. G.H. Herbig, Astrophys. J. 196, 129 (1975)

    Article  ADS  Google Scholar 

  12. P. Jenniskens, X. Désert, Astron. Astrophys. 106, 39 (1994)

    ADS  Google Scholar 

  13. J. Krelowski, Adv. Space Res. 30, 1395 (2002)

    Google Scholar 

  14. L. Holmlid, Astrophys. Space Sci. Suppl. Ser. 305, 91 (2006)

    Google Scholar 

  15. K.D. Gordon, A.N. Witt, B.C. Friedmann, Astrophys. J. 498, 522 (1998)

    Article  ADS  Google Scholar 

  16. D. Pierini, A. Majeed, T.A. Boroson, A.N. Witt, Astrophys. J. 569, 184 (2002)

    Article  ADS  Google Scholar 

  17. S. Badiei, L. Holmlid, Phys. Lett. A 327, 186 (2004)

    Article  ADS  Google Scholar 

  18. É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Sov. Phys. Dokl. 26, 974 (1981)

    Google Scholar 

  19. É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Sov. Phys. JETP 75, 440 (1992)

    Google Scholar 

  20. É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Sov. Phys. JETP 75, 602 (1992)

    Google Scholar 

  21. V.I. Yarygin, V.N. Sidel’nikov, I.I. Kasikov, V.S. Mironov, S.M. Tulin, JETP Lett. 77, 280 (2003)

    Article  ADS  Google Scholar 

  22. A. Kotarba, G. Adamski, Z. Sojka, S. Witkowski, G. Djega-Mariadassou, Stud. Sci. Catal. A 130, 485 (2000)

    Google Scholar 

  23. A. Kotarba, A. Baranski, S. Hodorowicz, J. Sokolowski, A. Szytula, L. Holmlid, Catal. Lett. 67, 129 (2000)

    Google Scholar 

  24. M. Chiesa, E. Giamello, C. Di Valentin, G. Pacchioni, Z. Sojka, S. Van Doorslaer, J. Am. Chem. Soc. 127, 16935 (2005)

    Article  Google Scholar 

  25. G.E. Norman, J. Phys. A Math. Gen. 39, 4579 (2006)

    Article  ADS  Google Scholar 

  26. T. Pohl, T. Pattard, J.M. Rost, Phys. Rev. Lett. 92, 155003 (2004)

    Article  ADS  Google Scholar 

  27. J.H. Choi, B. Kaufmann, T. Cubel Liebisch, A. Reinhard, G. Raithel, Adv. At. Mol. Opt. Phys. 54, 132 (2006)

    Google Scholar 

  28. L. Holmlid, Chem. Phys. 237, 11 (1998)

    Article  Google Scholar 

  29. S. Badiei, L. Holmlid, Chem. Phys. 282, 137 (2002)

    Article  Google Scholar 

  30. S. Badiei, L. Holmlid, J. Phys.: Condens. Matter 16, 7017 (2004)

    Article  ADS  Google Scholar 

  31. L. Holmlid, J. Phys.: Condens. Matter 14, 13469 (2002)

    Article  ADS  Google Scholar 

  32. W.L. Silfvast, Laser Fundamentals, 2nd edn. (Cambridge University Press, Cambridge, 2004)

  33. P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 88, 143601 (2002)

    Article  ADS  Google Scholar 

  34. L. Holmlid, Appl. Phys. B 79, 871 (2004)

    Article  ADS  Google Scholar 

  35. L. Holmlid, Phys. Rev. A 63, 013817 (2001)

    Article  ADS  Google Scholar 

  36. F. Olofson, S. Badiei, L. Holmlid, Langmuir 19, 5756 (2003)

    Article  Google Scholar 

  37. R. Svensson, L. Holmlid, Phys. Rev. Lett. 83, 1739 (1999)

    Article  ADS  Google Scholar 

  38. P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, S. Yanhua, Phys. Rev. Lett. 75, 4337 (1995)

    Article  ADS  Google Scholar 

  39. G. Breit, E. Teller, Astrophys. J. 91, 215 (1940)

    Article  ADS  Google Scholar 

  40. D. O’Connell, K.J. Kollath, A.J. Duncan, H. Kleinpoppen, J. Phys. B 8, L214 (1975)

    Article  ADS  Google Scholar 

  41. H. Krüger, A. Oed, Phys. Lett. A 54, 251 (1975)

    Article  ADS  Google Scholar 

  42. H. Kleinpoppen, A.J. Duncan, H.J. Beyer, Z.A. Sheikh, Phys. Scripta T 72, 7 (1997)

    Article  Google Scholar 

  43. S. Badiei, L. Holmlid, Energy Fuels 19, 2235 (2005)

    Article  Google Scholar 

  44. L. Holmlid, Mol. Phys., in print

  45. J. Lundin, L. Holmlid, J. Phys. Chem. 95, 1029 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Holmlid.

Additional information

PACS

42.70.Hj; 78.45.+h; 42.62.Fi; 42.55.Lt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmlid, L. Stimulated emission spectroscopy of Rydberg matter: observation of Rydberg orbits in the core ions. Appl. Phys. B 87, 273–281 (2007). https://doi.org/10.1007/s00340-007-2579-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2579-9

Keywords

Navigation