Skip to main content

Advertisement

Log in

Complementary and alternative medicine use in rheumatoid arthritis: proposed mechanism of action and efficacy of commonly used modalities

  • Review
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

Complementary and alternative medicine (CAM) has become popular in patients with Rheumatoid arthritis (RA) worldwide. The objective of this study is to systematically review the proposed mechanisms of action and currently available evidence supporting the efficacy of CAM modalities in relieving signs and symptoms of RA. The prevalence of CAM usage by RA patients is anywhere from 28% to 90%. Many published studies on CAM are based on animal models of RA and there is often insufficient evidence for the efficacy of CAM modalities in RA. The existing evidence suggests that some of the CAM modalities, such as acupuncture, herbal medicines, dietary omega-3 fatty acids, vitamins, and pulsed electromagnetic field show promising efficacy in reducing pain. While the use of CAM modalities for the treatment of RA continues to increase, rigorous clinical trials examining their efficacy are necessary to validate or refute the clinical claims made for CAM therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Adjuvant arthritis

Bhsp65:

Mycobacterial heat shock protein 65

BVA:

Bee venom acupuncture

CAM:

Complementary and alternative medicine

COX:

Cyclooxygenase

CIA:

Collagen induced arthritis

DHA:

Docosahexaenoic acid

EA:

Electro acupuncture

EGCG:

Epigallocatechin-3-gallate

EPA:

Eicosapentaenoic acid

GPx:

Glutathione peroxidase

GSH:

Glutathione

IFN-γ:

Interferon gamma

IGF-1:

Insulin like growth factor-1

IL-1β:

Interleukin 1 beta

IL-6:

Interleukin 6

iNOS:

Inducible Nitric oxide synthase

LEW:

Lewis

LOX:

Lipooxygenase

MDA:

Malondialdehyde

MMP:

Matrix metalloproteinase

MTX:

Methotrexate

NF-κB:

Nuclear factor kappa B

NO:

Nitric oxide

PUFA:

Polyunsaturated fatty acid

RA:

Rheumatoid arthritis

RT-PCR:

Reverse transcriptase polymerize chain reaction

SOD:

Superoxide dismutase

TCA:

Traditional Chinese acupuncture

TNF-α:

Tumor necrosis factor alpha

TWHF:

Tripterygium wilfordii Hook

VEGF:

Vascular endothelial growth factor

References

  1. Barnes PM et al (2004) Complementary and alternative medicine use among adults: United States, 2002. Adv Data 343:1–19

    PubMed  Google Scholar 

  2. Brune K (2004) Safety of anti-inflammatory treatment—new ways of thinking. Rheumatology (Oxford) 43(Suppl 1):i16–i20

    Google Scholar 

  3. Soeken KL, Miller SA, Ernst E (2003) Herbal medicines for the treatment of rheumatoid arthritis: a systematic review. Rheumatology (Oxford) 42(5):652–659

    Google Scholar 

  4. Astin JA (1999) Use of alternative medicine by women with breast cancer. N Engl J Med 341(15):1156 Author reply 1156–1157

    PubMed  Google Scholar 

  5. Lawrence RC et al (1998) Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 41(5):778–799

    PubMed  Google Scholar 

  6. Chikanza IC et al (1998) Why do we need new treatments for rheumatoid arthritis? J Pharm Pharmacol 50(4):357–369

    PubMed  Google Scholar 

  7. Taibi DM, Bourguignon C (2003) The role of complementary and alternative therapies in managing rheumatoid arthritis. Fam Community Health 26(1):41–52

    PubMed  Google Scholar 

  8. Soeken KL (2004) Selected CAM therapies for arthritis-related pain: the evidence from systematic reviews. Clin J Pain 20(1):13–18

    PubMed  Google Scholar 

  9. Rosted P, Warnakulasuriya S (2005) A survey on the uses of acupuncture by a group of UK dentists. Br Dent J 198(3):139–143

    PubMed  Google Scholar 

  10. Vickers A, Zollman C (1999) ABC of complementary medicine. Acupuncture. BMJ 319(7215):973–976

    PubMed  Google Scholar 

  11. Lao L (1996) Acupuncture techniques and devices. J Altern Complement Med 2(1):23–25

    PubMed  Google Scholar 

  12. Zanette Sde A et al (2008) A pilot study of acupuncture as adjunctive treatment of rheumatoid arthritis. Clin Rheumatol 27(5):627–635

    PubMed  Google Scholar 

  13. Tam LS et al (2007) Acupuncture in the treatment of rheumatoid arthritis: a double-blind controlled pilot study. BMC Complement Altern Med 7:35

    PubMed  Google Scholar 

  14. Yim YK et al (2007) Electro-acupuncture at acupoint ST36 reduces inflammation and regulates immune activity in collagen-induced arthritic mice. Evid Based Complement Alternat Med 4(1):51–57

    PubMed  Google Scholar 

  15. Holmdahl R et al (1990) Type II collagen autoimmunity in animals and provocations leading to arthritis. Immunol Rev 118:193–232

    PubMed  Google Scholar 

  16. Weyand CM, Fulbright JW, Goronzy JJ (2003) Immunosenescence, autoimmunity, and rheumatoid arthritis. Exp Gerontol 38(8):833–841

    PubMed  Google Scholar 

  17. Choy EH et al (2002) Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum 46(12):3143–3150

    PubMed  Google Scholar 

  18. Elliott MJ et al (1993) Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum 36(12):1681–1690

    PubMed  Google Scholar 

  19. Miossec P (2004) An update on the cytokine network in rheumatoid arthritis. Curr Opin Rheumatol 16(3):218–222

    PubMed  Google Scholar 

  20. Cook AD et al (2004) Antibodies against the CB10 fragment of type II collagen in rheumatoid arthritis. Arthritis Res Ther 6(5):R477–R483

    PubMed  Google Scholar 

  21. Panayi GS, Corrigall VM, Pitzalis C (2001) Pathogenesis of rheumatoid arthritis. The role of T cells and other beasts. Rheum Dis Clin North Am 27(2):317–334

    PubMed  Google Scholar 

  22. Silverman GJ, Carson DA (2003) Roles of B cells in rheumatoid arthritis. Arthritis Res Ther 5(Suppl 4):S1–S6

    PubMed  Google Scholar 

  23. Dorner T, Burmester GR (2003) The role of B cells in rheumatoid arthritis: mechanisms and therapeutic targets. Curr Opin Rheumatol 15(3):246–252

    PubMed  Google Scholar 

  24. Lee DM, Weinblatt ME (2001) Rheumatoid arthritis. Lancet 358(9285):903–911

    PubMed  Google Scholar 

  25. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423(6937):356–361

    PubMed  Google Scholar 

  26. David J et al (1999) The effect of acupuncture on patients with rheumatoid arthritis: a randomized, placebo-controlled cross-over study. Rheumatology (Oxford) 38(9):864–869

    Google Scholar 

  27. Lee JD et al (2005) An overview of bee venom acupuncture in the treatment of arthritis. Evid Based Complement Alternat Med 2(1):79–84

    PubMed  Google Scholar 

  28. Kwon YB et al (2001) Bee venom injection into an acupuncture point reduces arthritis associated edema and nociceptive responses. Pain 90(3):271–280

    PubMed  Google Scholar 

  29. Borchers AT et al (2000) Inflammation and native american medicine: the role of botanicals. Am J Clin Nutr 72(2):339–347

    PubMed  Google Scholar 

  30. Marok R et al (1996) Activation of the transcription factor nuclear factor-kappaB in human inflamed synovial tissue. Arthritis Rheum 39(4):583–591

    PubMed  Google Scholar 

  31. Winyard PG, Blake DR (1997) Antioxidants, redox-regulated transcription factors, and inflammation. Adv Pharmacol 38:403–421

    PubMed  Google Scholar 

  32. Mix KS et al (2001) A synthetic triterpenoid selectively inhibits the induction of matrix metalloproteinases 1 and 13 by inflammatory cytokines. Arthritis Rheum 44(5):1096–1104

    PubMed  Google Scholar 

  33. Siddiqui IA et al (2004) Antioxidants of the beverage tea in promotion of human health. Antioxid Redox Signal 6(3):571–582

    PubMed  Google Scholar 

  34. Curtis CL et al (2004) Biological basis for the benefit of nutraceutical supplementation in arthritis. Drug Discov Today 9(4):165–172

    PubMed  Google Scholar 

  35. Singh R et al (2002) Epigallocatechin-3-gallate inhibits interleukin-1beta-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor kappaB activation by degradation of the inhibitor of nuclear factor kappaB. Arthritis Rheum 46(8):2079–2086

    PubMed  Google Scholar 

  36. Ahmed S et al (2002) Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1 beta-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radic Biol Med 33(8):1097–1105

    PubMed  Google Scholar 

  37. Singh R et al (2003) Epigallocatechin-3-gallate selectively inhibits interleukin-1beta-induced activation of mitogen activated protein kinase subgroup c-Jun N-terminal kinase in human osteoarthritis chondrocytes. J Orthop Res 21(1):102–109

    PubMed  Google Scholar 

  38. Vincenti MP, Brinckerhoff CE (2001) The potential of signal transduction inhibitors for the treatment of arthritis: is it all just JNK? J Clin Invest 108(2):181–183

    PubMed  Google Scholar 

  39. Ahmed S et al (2004) Green tea polyphenol epigallocatechin-3-gallate (EGCG) differentially inhibits interleukin-1 beta-induced expression of matrix metalloproteinase-1 and -13 in human chondrocytes. J Pharmacol Exp Ther 308(2):767–773

    PubMed  Google Scholar 

  40. Adcocks C, Collin P, Buttle DJ (2002) Catechins from green tea (Camellia sinensis) inhibit bovine and human cartilage proteoglycan and type II collagen degradation in vitro. J Nutr 132(3):341–346

    PubMed  Google Scholar 

  41. Vankemmelbeke MN et al (2003) Selective inhibition of ADAMTS-1, -4 and -5 by catechin gallate esters. Eur J Biochem 270(11):2394–2403

    PubMed  Google Scholar 

  42. Haqqi TM et al (1999) Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc Natl Acad Sci USA 96(8):4524–4529

    PubMed  Google Scholar 

  43. Spivey AC, Weston M, Woodhead S (2002) Celastraceae sesquiterpenoids: biological activity and synthesis. Chem Soc Rev 31(1):43–59

    PubMed  Google Scholar 

  44. Guo YQ et al (2004) Sesquiterpene esters from the fruits of Celastrus orbiculatus. Chem Pharm Bull (Tokyo) 52(9):1134–1136

    Google Scholar 

  45. Jin HZ et al (2002) Antiinflammatory constituents of Celastrus orbiculatus inhibit the NF-kappaB activation and NO production. J Nat Prod 65(1):89–91

    PubMed  Google Scholar 

  46. Min KR et al (1999) (−)−Epiafzelechin: cyclooxygenase-1 inhibitor and anti-inflammatory agent from aerial parts of Celastrus orbiculatus. Planta Med 65(5):460–462

    PubMed  Google Scholar 

  47. Westerheide SD et al (2004) Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279(53):56053–56060

    PubMed  Google Scholar 

  48. Nam NH (2006) Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 6(8):945–951

    PubMed  Google Scholar 

  49. Appleton I, Tomlinson A, Willoughby DA (1996) Induction of cyclo-oxygenase and nitric oxide synthase in inflammation. Adv Pharmacol 35:27–78

    PubMed  Google Scholar 

  50. Tong L, Moudgil KD (2007) Celastrus aculeatus Merr. suppresses the induction and progression of autoimmune arthritis by modulating immune response to heat-shock protein 65. Arthritis Res Ther 9(4):R70

    PubMed  Google Scholar 

  51. Ulmansky R et al (2002) Resistance to adjuvant arthritis is due to protective antibodies against heat shock protein surface epitopes and the induction of IL-10 secretion. J Immunol 168(12):6463–6469

    PubMed  Google Scholar 

  52. Kim HR et al (2006) Antibody responses to mycobacterial and self heat shock protein 65 in autoimmune arthritis: epitope specificity and implication in pathogenesis. J Immunol 177(10):6634–6641

    PubMed  Google Scholar 

  53. Williams JE (2001) Review of antiviral and immunomodulating properties of plants of the Peruvian rainforest with a particular emphasis on Una de Gato and Sangre de Grado. Altern Med Rev 6(6):567–579

    PubMed  Google Scholar 

  54. Sandoval-Chacon M et al (1998) Antiinflammatory actions of cat’s claw: the role of NF-kappaB. Aliment Pharmacol Ther 12(12):1279–1289

    PubMed  Google Scholar 

  55. Sandoval M et al (2002) Anti-inflammatory and antioxidant activities of cat’s claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine 9(4):325–337

    PubMed  Google Scholar 

  56. Miller MJ et al (2001) Dietary antioxidants protect gut epithelial cells from oxidant-induced apoptosis. BMC Complement Altern Med 1:11

    PubMed  Google Scholar 

  57. Sandoval M et al (2000) Cat’s claw inhibits TNFalpha production and scavenges free radicals: role in cytoprotection. Free Radic Biol Med 29(1):71–78

    PubMed  Google Scholar 

  58. Muhammad I (2001) Investigation of Una De Gato I. 7-Deoxyloganic acid and 15N NMR spectroscopic studies on pentacyclic oxindole alkaloids from Uncaria tomentosa. Phytochemistry 57(5):781–785

    PubMed  Google Scholar 

  59. Mur E et al (2002) Randomized double blind trial of an extract from the pentacyclic alkaloid-chemotype of Uncaria tomentosa for the treatment of rheumatoid arthritis. J Rheumatol 29(4):678–681

    PubMed  Google Scholar 

  60. Piscoya J et al (2001) Efficacy and safety of freeze-dried cat’s claw in osteoarthritis of the knee: mechanisms of action of the species Uncaria guianensis. Inflamm Res 50(9):442–448

    PubMed  Google Scholar 

  61. Santa Maria A et al (1997) Evaluation of the toxicity of Uncaria tomentosa by bioassays in vitro. J Ethnopharmacol 57(3):183–187

    PubMed  Google Scholar 

  62. Gonzales GF et al (2003) Effect of Lepidium meyenii (Maca), a root with aphrodisiac and fertility-enhancing properties, on serum reproductive hormone levels in adult healthy men. J Endocrinol 176(1):163–168

    PubMed  Google Scholar 

  63. Gonzales GF et al (2002) Effect of Lepidium meyenii (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men. Andrologia 34(6):367–372

    PubMed  Google Scholar 

  64. Gonzales GF et al (2001) Lepidium meyenii (Maca) improved semen parameters in adult men. Asian J Androl 3(4):301–303

    PubMed  Google Scholar 

  65. Miller MJ et al (2006) The chrondoprotective actions of a natural product are associated with the activation of IGF-1 production by human chondrocytes despite the presence of IL-1beta. BMC Complement Altern Med 6:13

    PubMed  Google Scholar 

  66. Fernandez-Celemin L et al (2002) Inhibition of muscle insulin-like growth factor I expression by tumor necrosis factor-alpha. Am J Physiol Endocrinol Metab 283(6):E1279–E1290

    PubMed  Google Scholar 

  67. De Benedetti F et al (2001) Effect of IL-6 on IGF binding protein-3: a study in IL-6 transgenic mice and in patients with systemic juvenile idiopathic arthritis. Endocrinology 142(11):4818–4826

    PubMed  Google Scholar 

  68. Tao X, Lipsky PE (2000) The Chinese anti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii Hook F. Rheum Dis Clin North Am 26(1):29–50

    PubMed  Google Scholar 

  69. Qiu D, Kao PN (2003) Immunosuppressive and anti-inflammatory mechanisms of triptolide, the principal active diterpenoid from the Chinese medicinal herb Tripterygium wilfordii Hook f. Drugs R D 4(1):1–18

    PubMed  Google Scholar 

  70. Lin N, Sato T, Ito A (2001) Triptolide, a novel diterpenoid triepoxide from Tripterygium wilfordii Hook. f., suppresses the production and gene expression of pro-matrix metalloproteinases 1 and 3 and augments those of tissue inhibitors of metalloproteinases 1 and 2 in human synovial fibroblasts. Arthritis Rheum 44(9):2193–2200

    PubMed  Google Scholar 

  71. Liacini A, Sylvester J, Zafarullah M (2005) Triptolide suppresses proinflammatory cytokine-induced matrix metalloproteinase and aggrecanase-1 gene expression in chondrocytes. Biochem Biophys Res Commun 327(1):320–327

    PubMed  Google Scholar 

  72. Tao X et al (2002) Benefit of an extract of Tripterygium Wilfordii Hook F in patients with rheumatoid arthritis: a double-blind, placebo-controlled study. Arthritis Rheum 46(7):1735–1743

    PubMed  Google Scholar 

  73. Tao X et al (2001) A phase I study of ethyl acetate extract of the Chinese antirheumatic herb Tripterygium wilfordii hook F in rheumatoid arthritis. J Rheumatol 28(10):2160–2167

    PubMed  Google Scholar 

  74. Ahmed S et al (2005) Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: a review. Evid Based Complement Alternat Med 2(3):301–308

    PubMed  Google Scholar 

  75. Miller TE et al. (1993) Anti-inflammatory activity of glycogen extracted from Perna canaliculus (NZ green-lipped mussel). Agents Actions 38 Spec No:C139–C142

  76. Cobb CS, Ernst E (2006) Systematic review of a marine nutriceutical supplement in clinical trials for arthritis: the effectiveness of the New Zealand green-lipped mussel Perna canaliculus. Clin Rheumatol 25(3):275–284

    PubMed  Google Scholar 

  77. Mani S, Lawson JW (2006) In vitro modulation of inflammatory cytokine and IgG levels by extracts of Perna canaliculus. BMC Complement Altern Med 6:1

    PubMed  Google Scholar 

  78. Halpern GM (2000) Anti-inflammatory effects of a stabilized lipid extract of Perna canaliculus (Lyprinol). Allerg Immunol (Paris) 32(7):272–278

    Google Scholar 

  79. Miller T, Wu H (1984) In vivo evidence for prostaglandin inhibitory activity in New Zealand green-lipped mussel extract. N Z Med J 97(757):355–357

    PubMed  Google Scholar 

  80. Lawson BR et al (2007) Immunomodulation of murine collagen-induced arthritis by N, N-dimethylglycine and a preparation of Perna canaliculus. BMC Complement Altern Med 7:20

    PubMed  Google Scholar 

  81. Aggarwal BB, Shishodia S (2004) Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann N Y Acad Sci 1030:434–441

    PubMed  Google Scholar 

  82. Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 9(1):161–168

    PubMed  Google Scholar 

  83. Srivastava KC, Bordia A, Verma SK (1995) Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets. Prostaglandins Leukot Essent Fatty Acids 52(4):223–227

    PubMed  Google Scholar 

  84. Ranjan D et al (2004) Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFkappaB activation, and IL-2 signaling. J Surg Res 121(2):171–177

    PubMed  Google Scholar 

  85. Liacini A et al (2002) Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol 21(3):251–262

    PubMed  Google Scholar 

  86. Schulze-Tanzil G et al (2004) Effects of curcumin (diferuloylmethane) on nuclear factor kappaB signaling in interleukin-1beta-stimulated chondrocytes. Ann N Y Acad Sci 1030:578–586

    PubMed  Google Scholar 

  87. Hong J et al (2004) Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25(9):1671–1679

    PubMed  Google Scholar 

  88. Wallace JM (2002) Nutritional and botanical modulation of the inflammatory cascade—eicosanoids, cyclooxygenases, and lipoxygenases—as an adjunct in cancer therapy. Integr Cancer Ther 1(1):7–37 discussion 37

    PubMed  Google Scholar 

  89. Frondoza CG et al (2004) An in vitro screening assay for inhibitors of proinflammatory mediators in herbal extracts using human synoviocyte cultures. In Vitro Cell Dev Biol Anim 40(3–4):95–101

    PubMed  Google Scholar 

  90. Deodhar SD, Sethi R, Srimal RC (1980) Preliminary study on antirheumatic activity of curcumin (diferuloyl methane). Indian J Med Res 71:632–634

    PubMed  Google Scholar 

  91. Tohda C et al (2006) Comparison of anti-inflammatory activities of six curcuma rhizomes: a possible curcuminoid-independent pathway mediated by Curcuma phaeocaulis extract. Evid Based Complement Alternat Med 3(2):255–260

    PubMed  Google Scholar 

  92. Afzal M et al (2001) Ginger: an ethnomedical, chemical and pharmacological review. Drug Metabol Drug Interact 18(3–4):159–190

    PubMed  Google Scholar 

  93. Ippoushi K (2003) [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sci 73(26):3427–3437

    PubMed  Google Scholar 

  94. Jolad SD et al (2004) Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochemistry 65(13):1937–1954

    PubMed  Google Scholar 

  95. Srivastava KC, Mustafa T (1992) Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders. Med Hypotheses 39(4):342–348

    PubMed  Google Scholar 

  96. Srivastava KC, Mustafa T (1989) Ginger (Zingiber officinale) and rheumatic disorders. Med Hypotheses 29(1):25–28

    PubMed  Google Scholar 

  97. Altman RD, Marcussen KC (2001) Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum 44(11):2531–2538

    PubMed  Google Scholar 

  98. Bliddal H et al (2000) A randomized, placebo-controlled, cross-over study of ginger extracts and ibuprofen in osteoarthritis. Osteoarthritis Cartilage 8(1):9–12

    PubMed  Google Scholar 

  99. Ramprasath VR, Shanthi P, Sachdanandam P (2006) Effect of Semecarpus anacardium Linn. nut milk extract on rat neutrophil functions in adjuvant arthritis. Cell Biochem Funct 24(4):333–340

    PubMed  Google Scholar 

  100. Ramprasath VR, Shanthi P, Sachdanandam P (2006) Immunomodulatory and anti-inflammatory effects of Semecarpus anacardium LINN. Nut milk extract in experimental inflammatory conditions. Biol Pharm Bull 29(4):693–700

    PubMed  Google Scholar 

  101. Vijayalakshmi T, Muthulakshmi V, Sachdanandam P (1996) Effect of the milk extract of Semecarpus anacardium nut on adjuvant arthritis—a dose-dependent study in Wistar albino rats. Gen Pharmacol 27(7):1223–1226

    PubMed  Google Scholar 

  102. Vijayalakshmi T, Muthulakshmi V, Sachdanandam P (1997) Salubrious effect of Semecarpus anacardium against lipid peroxidative changes in adjuvant arthritis studied in rats. Mol Cell Biochem 175(1–2):65–69

    PubMed  Google Scholar 

  103. Ravichandran LV, Puvanakrishnan R, Joseph KT (1990) Alterations in the heart lysosomal stability in isoproterenol induced myocardial infarction in rats. Biochem Int 22(2):387–396

    PubMed  Google Scholar 

  104. Denner SS (2007) A review of the efficacy and safety of devil’s claw for pain associated with degenerative musculoskeletal diseases, rheumatoid, and osteoarthritis. Holist Nurs Pract 21(4):203–207

    PubMed  Google Scholar 

  105. Jeon HJ et al (2008) Anti-inflammatory activity of Taraxacum officinale. J Ethnopharmacol 115(1):82–88

    PubMed  Google Scholar 

  106. Cleland LG, James MJ, Proudman SM (2006) Fish oil: what the prescriber needs to know. Arthritis Res Ther 8(1):202

    PubMed  Google Scholar 

  107. Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83(6 Suppl):1505S–1519S

    PubMed  Google Scholar 

  108. De Caterina R, Massaro M (2005) Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. J Membr Biol 206(2):103–116

    PubMed  Google Scholar 

  109. Novak TE et al (2003) NF-kappa B inhibition by omega -3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription. Am J Physiol Lung Cell Mol Physiol 284(1):L84–L89

    PubMed  Google Scholar 

  110. Zhao Y et al (2004) Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation. J Am Coll Nutr 23(1):71–78

    PubMed  Google Scholar 

  111. Adam O et al (2003) Anti-inflammatory effects of a low arachidonic acid diet and fish oil in patients with rheumatoid arthritis. Rheumatol Int 23(1):27–36

    PubMed  Google Scholar 

  112. Goldberg RJ, Katz J (2007) A meta-analysis of the analgesic effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain. Pain 129(1–2):210–223

    PubMed  Google Scholar 

  113. Galarraga B et al (2008) Cod liver oil (n-3 fatty acids) as an non-steroidal anti-inflammatory drug sparing agent in rheumatoid arthritis. Rheumatology (Oxford) 47(5):665–669

    Google Scholar 

  114. Berbert AA et al (2005) Supplementation of fish oil and olive oil in patients with rheumatoid arthritis. Nutrition 21(2):131–136

    PubMed  Google Scholar 

  115. Ozturk HS et al (1999) Oxidant/antioxidant status of plasma samples from patients with rheumatoid arthritis. Rheumatol Int 19(1–2):35–37

    PubMed  Google Scholar 

  116. Tappel AL (1973) Lipid peroxidation damage to cell components. Fed Proc 32(8):1870–1874

    PubMed  Google Scholar 

  117. Halliwell B, Hoult JR, Blake DR (1988) Oxidants, inflammation, and anti-inflammatory drugs. FASEB J 2(13):2867–2873

    PubMed  Google Scholar 

  118. Jaswal S et al (2003) Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin Chim Acta 338(1–2):123–129

    PubMed  Google Scholar 

  119. Kalavacherla US et al (1994) Malondialdehyde as a sensitive marker of inflammation in patients with rheumatoid arthritis. J Assoc Physicians India 42(10):775–776

    PubMed  Google Scholar 

  120. Gambhir JK, Lali P, Jain AK (1997) Correlation between blood antioxidant levels and lipid peroxidation in rheumatoid arthritis. Clin Biochem 30(4):351–355

    PubMed  Google Scholar 

  121. Chaturvedi V et al (1999) Estimation & significance of serum & synovial fluid malondialdehyde levels in rheumatoid arthritis. Indian J Med Res 109:170–174

    PubMed  Google Scholar 

  122. van Vugt RM et al (2008) Antioxidant intervention in rheumatoid arthritis: results of an open pilot study. Clin Rheumatol 27(6):771–775

    PubMed  Google Scholar 

  123. Selvam R et al (2007) Low frequency and low intensity pulsed electromagnetic field exerts its antiinflammatory effect through restoration of plasma membrane calcium ATPase activity. Life Sci 80(26):2403–2410

    PubMed  Google Scholar 

  124. Kumar VS et al (2005) Optimization of pulsed electromagnetic field therapy for management of arthritis in rats. Bioelectromagnetics 26(6):431–439

    PubMed  Google Scholar 

  125. Almaden Y et al (2002) Regulation of arachidonic acid production by intracellular calcium in parathyroid cells: effect of extracellular phosphate. J Am Soc Nephrol 13(3):693–698

    PubMed  Google Scholar 

  126. Segal NA et al (2001) Two configurations of static magnetic fields for treating rheumatoid arthritis of the knee: a double-blind clinical trial. Arch Phys Med Rehabil 82(10):1453–1460

    PubMed  Google Scholar 

  127. Werneke U et al (2004) Potential health risks of complementary alternative medicines in cancer patients. Br J Cancer 90(2):408–413

    PubMed  Google Scholar 

  128. Sundrarjun T et al (2004) Effects of n-3 fatty acids on serum interleukin-6, tumour necrosis factor-alpha and soluble tumour necrosis factor receptor p55 in active rheumatoid arthritis. J Int Med Res 32(5):443–454

    PubMed  Google Scholar 

Download references

Conflict of interest statement

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Efthimiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efthimiou, P., Kukar, M. Complementary and alternative medicine use in rheumatoid arthritis: proposed mechanism of action and efficacy of commonly used modalities. Rheumatol Int 30, 571–586 (2010). https://doi.org/10.1007/s00296-009-1206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-009-1206-y

Keywords

Navigation