Skip to main content
Log in

Microbial Biofilms on the Sandstone Monuments of the Angkor Wat Complex, Cambodia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Discoloring biofilms from Cambodian temples Angkor Wat, Preah Khan, and the Bayon and West Prasat in Angkor Thom contained a microbial community dominated by coccoid cyanobacteria. Molecular analysis identified Chroococcidiopsis as major colonizer, but low similarity values (<95%) suggested a similar genus or species not present in the databases. In only two of the six sites sampled were filamentous cyanobacteria, Microcoleus, Leptolyngbya, and Scytonema, found; the first two detected by sequencing of 16S rRNA gene library clones from samples of a moist green biofilm on internal walls in Preah Khan, where Lyngbya (possibly synonymous with Microcoleus) was seen by direct microscopy as major colonizer. Scytonema was detected also by microscopy on an internal wall in the Bayon. This suggests that filamentous cyanobacteria are more prevalent in internal (high moisture) areas. Heterotrophic bacteria were found in all samples. DNA sequencing of bands from DGGE gels identified Proteobacteria (Stenotrophomonas maltophilia and Methylobacterium radiotolerans) and Firmicutes (Bacillus sp., Bacillus niacini, Bacillus sporothermodurans, Lysinibacillus fusiformis, Paenibacillus sp., Paenibacillus panacisoli, and Paenibacillus zanthoxyli). Some of these bacteria produce organic acids, potentially degrading stone. Actinobacteria, mainly streptomycetes, were present in most samples; algae and fungi were rare. A dark-pigmented filamentous fungus was detected in internal and external Preah Khan samples, while the alga Trentepohlia was found only in samples taken from external, pink-stained stone at Preah Khan. Results show that these microbial biofilms are mature communities whose major constituents are resistant to dehydration and high levels of irradiation and can be involved in deterioration of sandstone. Such analyses are important prerequisites to the application of control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adhikary SP, Satapathy DP (1996) Toypothrix byssoidea (Cyanophyceae/Cyanobacteria) from temple rock surfaces of coastal Orissa, India. Nova Hedwigia 62:419–423

    Google Scholar 

  2. Anand N, Mohan E, Hopper RSS, Subramanian TD (1986) Taxonomic studies on blue green algae from certain marine environments. Seaweed Res Util 9:49–56

    Google Scholar 

  3. André MF (2006) Sandstone weathering rates at the Angkor temples (Cambodia). In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vasquez-Calvo C (eds) Heritage, weathering and conservation. Taylor & Francis, London

    Google Scholar 

  4. André MF, Etienne S, Mercier D, Vautier F, Voldoire O (2008) Assessment of sandstone deterioration at Ta Keo temple (Angkor): first results and future prospects. Environ Geol 56:677–688

    Article  Google Scholar 

  5. Anon (2006) International coordinating committee for the safeguarding and development of the historic Site of Angkor. Report of Fifteenth Technical Committee—June 5, 6, 7, 2006, p 90

  6. Boone DR, Castenholz RW, Garrity GM (2001) Bergey’s manual of systematic bacteriology, vol 1. Springer, New York

    Google Scholar 

  7. Boyer SL, Johansen JR, Flechtner VR, Howard GL (2003) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S–23S ITS region. J Phycol 38:1222–1235

    Article  Google Scholar 

  8. Crispim CA, Gaylarde CC (2005) Cyanobacteria and biodeterioration of cultural heritage: a review. Microbial Ecol 49:1–9

    Article  CAS  Google Scholar 

  9. Crispim CA, Gaylarde CC, Gaylarde PM (2004) Biofilms on church walls in Porto Alegre, RS, Brazil, with special attention to cyanobacteria. Int Biodeter Biodegr 54:121–124

    Article  Google Scholar 

  10. Cullen DW, Hirsch PR (1998) Simple and rapid method for direct extraction of microbial DNA from soil to PCR. Soil Biol Biochem 30:983–993

    Article  CAS  Google Scholar 

  11. Darlington A (1981) Ecology of walls. Heinemann, London

    Google Scholar 

  12. Dasman KajiyamaS, Kawasaki H, Yagi M, Seki T, Fukusaki E, Kobayashi A (2002) Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune. Int J Syst Evol Microbiol 52:1669–1674

    Article  PubMed  CAS  Google Scholar 

  13. Galtier N, Gouy M, Gautier C (1996) SEA VIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    PubMed  CAS  Google Scholar 

  14. Gaylarde P, Englert G, Ortega-Morales O, Gaylarde C (2006) Lichen-like colonies of pure Trentepohlia on limestone monuments. Int Biodeter Biodegr 58:119–123

    Article  CAS  Google Scholar 

  15. Gaylarde CC, Gaylarde PM (2005) A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int Biodeter Biodegr 55:131–139

    Article  Google Scholar 

  16. Gaylarde CC, Gaylarde PM, Copp J, Neilan BA (2004) Polyphasic detection of cyanobacteria in terrestrial biofilms. Biofouling 20:71–79

    Article  PubMed  CAS  Google Scholar 

  17. Gaylarde PM, Crispim CA, Neilan BA, Gaylarde CC (2005) Cyanobacteria from Brazilian building walls are distant relatives of aquatic genera. OMICS 9:30–42

    Article  PubMed  CAS  Google Scholar 

  18. Gaylarde CC, Ortega-Morales BO, Bartolo-Perez P (2007) Biogenic black crusts on buildings in unpolluted environments. Curr Microbiol 54:162–166

    Article  PubMed  CAS  Google Scholar 

  19. Heyrman J, Swings J (2001) 16S rDNA Sequence analysis of bacterial isolates from biodeteriorated mural paintings in the Servilia tomb (Necropolis of Carmona, Seville, Spain). Syst Appl Microbiol 24:417–422

    Article  PubMed  CAS  Google Scholar 

  20. Kiel G, Gaylarde C (2006) Bacterial diversity in biofilms on external surfaces of historic buildings in Porto Alegre. World J Microbiol Biotechnol 22:293–297

    Article  Google Scholar 

  21. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  22. Laiz L, Piñar G, Lubitz W, Saiz-Jimenez C (2003) Monitoring the colonization of monuments by bacteria: cultivation versus molecular methods. Environ Microbiol 5:72–74

    Article  PubMed  Google Scholar 

  23. Lamenti G, Tiano P, Tomaselli L (2000) Biodeterioration of ornamental marble statues in the Boboli Gardens (Florence, Italy). J Appl Phycol 12:427–433

    Article  Google Scholar 

  24. Lan W, Li H, Wang W-D, Katayama Y, Gu J-D (2010) Microbial community analysis of fresh and old microbial biofilms on Bayon Temple Sandstone of Angkor Thom, Cambodia. Microb Ecol 60:105–115

    Article  PubMed  Google Scholar 

  25. McNamara CJ, Perry TD, Bearce KA, Hernandez-Duque G, Mitchell R (2006) Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microbial Ecol 51:51–64

    Article  Google Scholar 

  26. McSpadden Gardener BB (2004) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94:1252–1258

    Article  PubMed  CAS  Google Scholar 

  27. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  28. Ortega-Morales O, Guezennec J, Hernandez-Duque G, Gaylarde CC, Gaylarde PM (2000) Phototrophic biofilms on ancient Mayan buildings in Yucatan, Mexico. Curr Microbiol 40:81–85

    Article  PubMed  CAS  Google Scholar 

  29. Ortega-Morales BO, Narvaez-Zapata JA, Schmalenberger A, Dousa-Lopez A, Tebbe CC (2004) Biofilms fouling ancient limestone Mayan monuments in Uxmal, Mexico: a cultivation-independent analysis. Biofilms 1:79–90

    Article  Google Scholar 

  30. Peraza Zurita Y, Cultrone G, Sánchez Castillo P, Sebastián E, Bolívar FC (2005) Microalgae associated with deteriorated stonework of the fountain of Bibatauín in Granada, Spain. Int Biodeterior Biodegr 55:55–61

    Article  CAS  Google Scholar 

  31. Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Article  PubMed  Google Scholar 

  32. Sanguinetti CJ, Neto ED, Simpson AJG (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914–921

    PubMed  CAS  Google Scholar 

  33. Scheffer M, Rinaldi S, Gragnani A, Mur LR, van Nes EH (1997) On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78:272–282

    Article  Google Scholar 

  34. Smerda J, Sedlácek I, Pacova Z, Krejcí E, Havel L (2006) Paenibacillus sepulcri sp. nov., isolated from biodeteriorated mural paintings in the Servilia tomb. Int J Syst Evol Microbiol 56:2341–2344

    Article  PubMed  CAS  Google Scholar 

  35. Valério E, Faria N, Paulino S, Pereira P (2008) Seasonal variation of phytoplankton and cyanobacteria composition and associated microcystins in six Portuguese freshwater reservoirs. Ann Limnol 44:189–196

    Article  Google Scholar 

  36. Walker JJ, Pace NR (2007) Phylogenetic composition of rocky mountain endolithic microbial ecosystems. Appl Environ Microbiol 73:3497–3504

    Article  PubMed  CAS  Google Scholar 

  37. Warscheid T (2000) Integrated concepts for the protection of cultural artefacts against biodeterioration. In: Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. Kluwer, Amsterdam, pp 185–201

  38. Warscheid T, Leisen H (2011) Microbiological studies on stone deterioration and development of conservation measures at Angkor Wat. In: Charola AE, McNamara C, Koestler RJ (eds) Biocolonization of stone: control, preventive methods. Smithsonian Inst, Washington, pp 1–18

    Google Scholar 

  39. Wee YC, Lee KB (1980) Proliferation of algae on surfaces of buildings in Singapore. Int Biodeter Bull 16:113–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine C. Gaylarde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaylarde, C.C., Rodríguez, C.H., Navarro-Noya, Y.E. et al. Microbial Biofilms on the Sandstone Monuments of the Angkor Wat Complex, Cambodia. Curr Microbiol 64, 85–92 (2012). https://doi.org/10.1007/s00284-011-0034-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-0034-y

Keywords

Navigation