Abstract
Urinary tract infection (UTI) is an extremely common health problem, with an unpredictable history. Members of enterobacteriaceae family such as Escherichia coli, which are normal inhabitants of human intestines, account for the majority of these uncomplicated infections. Rarely, UTI can result from virus or fungus. There is a close correlation between loss of the normal genital microbiota, particularly Lactobacillus species, and an increased incidence of genital and bladder infections. Although antimicrobial agents are generally effective in eradicating these infections, there is a high incidence of recurrence. Use of Lactobacillus species to combat UTI is now giving modern concept of modern genitourinary vaccine with the facts that it not only maintains low pH of the genital area, produces hydrogen peroxide and hinders the growth of E. coli but also activates Toll-like receptor-2 (TLR2), which produces interleukin-10 (IL-10) and myeloid differentiation factor 88 (MyD88). E. coli activates TLR4, which is responsible for the activation of IL-12, extracellular signal–regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). This process downregulates inflammatory reactions caused due to pathogens. Current review covers the probiotics-based TLR therapy and shed some knowledge for the use of Lactobacillus species as probiotics.

Similar content being viewed by others
References
Abreu MT, Fukata M, Arditi M (2005) TLR signaling in the gut in health and disease. J Immunol 174:4453–4460
Akira S (2001) Toll like receptor and innate immunity. Adv Immunol 78:1–56
Akira S, Yamamoto M, Takeda K (2003) Role of adapters in Toll-like receptor signaling. Biochem Soc Trans 31(3):637–642
Amdekar S, Dwivedi D, Roy P, Kushwah S, Singh V (2010) Probiotics: multifarious oral vaccine against infectious traumas. FEMS Immunol Med Microbiol 58(3):1–8
Anders H, Patole PS (2005) Toll-like receptors recognize uropathogenic Escherichia coli and trigger inflammation in the urinary tract. Nephrol Dial Transpl 20:1529–1532
Anukam KC, Hayes K, Summers K, Reid G (2009) Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 may help downregulating TNF-α, Il-6, Il-8, Il-10 and IL-12 (p70) in the neurogenic bladder of spinal cord injured patient with urinary tracrt infection: A two case study. Adv Urol. Article ID 680363
Armant MA, Fenton MJ (2002) Toll like receptors: a family of pattern recognition receptors in mammals. Genome Biol 3(8):3011.1–3011.6
Bambou JC, Giraud A, Menard S, Begue B, Rakotobe S, Heyman M, Taddei F, Cerf-Bensussan N, Gaboriau-Routhiau V (2004) In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J Biol Chem 279:42984–44292
Bernet MF, Brassart D, Neeser JR, Servin AL (1994) Lactobacillus acidophilus LA 1 binds to human intestinal lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35:483–489
Borchert D, Sheridan L, Papatsoris A, Faruqu Z, Barua JM, Junaid I et al (2008) Prevention and treatment of urinary tract infection with probiotics: review and research perspective. Indian J Urol 24:139–144
Bruce AW, Reid G (2003) Probiotics and the urologist. Can J Urol 270(7230):16–18
Cario E, Brown D, McKee M, Lynch-Devaney K, Gerken G, Podolsky DK (2002) Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol 160:165–173
Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1992) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692
Cleveland MG, Gorham JD, Murphy TL, Tuomanen E, Murphy KM (1996) Lipoteichoic acid preparations of gram-positive bacteria induce interleukin-12 through a CD14-dependent pathway. Infect Immunol 64:1906–1912
Czaja CA, Stapleton AE, Yarova-Yarovaya Y, Stamm WE (2000). Phase I trail of a Lactobacillus crispatus vaginal suppository for prevention of recurrent urinary tract infection in women. Infectious Dis Obstet Gynecol; Article ID 35387
Finer G, Landau D (2004) Pathogenesis of urinary tract infections with normal female anatomy. Lancet Infect Dis 4(10):631–635
Garcia-Lafuente A, Antolin M, Guarner F, Crespo E, Malagelada JR (2001) Modulation of colonic barrier function by the composition of the commensal flora in the rat. Gut 48:503–507
Gewirtz AT (2007) TLRs in the Gut. III. Immune responses to flagellin in Crohn’s disease, good, bad, or irrelevant? Am J Physiol Gastrointest Liver Physiol 292:G706–G710
Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103
Hopkins PA, Sriskandan S (2005) Mammalian Toll-like receptors: to immunity and beyond. Clin Exp Immunol 140:395–407
Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752
Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216
John A, Catanzaro ND, Green Lisa (1997) Microbial ecology and probiotics in human medicine (Part II). Altern Rev Med 2(4):296–305
Kaewnopparat S, Kaewnopparat N (2009) Formulation and evaluation of vaginal suppositories containing Lactobacillus. World Acad Sci Eng Technol 55:640–643
Kaminogawa S, Nanno M (2004) Modulation of immune action by food. eCAM 1(3):241–250
Kayisli UA, Mahutte NG, Arici A (2002) Uterine chemokines in reproductive physiology and pathology. Am J Reprod Immunol 47:213–221
Kelly D, Conway S (2005) Bacterial modulation of mucosal innate immunity. Mol Immunol 42:895–901
Kirschning CJ, Schumann RR (2002) TLR2: cellular sensor for microbial and endogenous molecular patterns. Curr Top Microbiol Immunol 270:121–144
Kobayashi KS, Flavell RA (2004) Shielding the double-edged sword: negative regulation of the innate immune system. Leukocyte Biol 75:428–433
Koller B, Kappler M, Latzin P, Gaggar A, Schreiner M, Takyar S, Kormann M, Kabesch M, Roos D, Griese M, Hartl D (2008) TLR expression on neutrophils at the pulmonary site of infection: TLR1/TLR2-mediated up-regulation of TLR5 expression in cystic fibrosis lung disease. J Immunol 181:2753–2763
Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22(7):2478–2486
Levings MK, Bacchetta R, Schulz U, Roncarolo MG (2002) The role of IL-10 and TGF-γ in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol 129:263–276
Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, Doyle J, Jewell L, De Simone C (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121:580–591
Matzinger P (1994) Tolerance, danger and the extended family. Annu Rev Immunol 12:991–1045
Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145
Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA Jr (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2:253–258
Metchnikoff E (1908) The prolongation of life. Optimistic studies. Putman’s Sons, New York, pp 161–183
Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A (1998) The human Toll signaling pathway: divergence of nuclear factor kB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med 187:2097–20101
Naik S, Kelly EJ, Meijer L, Pettersson S, Sanderson IR (2001) Absence of toll like receptors 4 explains endotoxin hyporesponsiveness in human intestinal epithelium. J Paedatr Gastroenterol Nutr 32:449–453
Osset J, BArtolome RM, Gardia E, Andreu A (2001) Assessment of the capacity of Lactobacillus to inhibit the growth of uropathogen and block their adhesion to vaginal epithelia cells. J Infect Dis 183(3):485–491
Otte JM, Podolsky DK (2004) Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol 286:G613–G626
Ozen S, Berdeli A, Turel B, Kutlay S, Yalcinkaya F, Arici M, Besbas N, Bakkaloglu A, Yilmaz E (2006) Arg753Gln TLR2 polymorphism in familial Mediterranean fever: linking the environment to the phenotype in a monogenic inflammatory disease. J Rheumatol 33:2498–2500
Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088
Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B, Akira S, Takeda K, Lee J, Takabayashi K, Raz E (2004) Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126:520–528
Raetz CRH, Whitfield Chris (2002) Lipopolysaccharides endotoxins. Annu Rev Biochem 71:635–700
Rahn DD (2008) Urinary tract infections: contemporary management. Urol Nurs 28(5):333–341
Reid G (1999) Potential prevents strategies and therapies in urinary tract infection. World J Urol 17:359–363
Reid G, Seidenfeld A (1997) Drug resistance amongst uropathogens isolated from women in a suburban population laboratory findings over 7 years. Can J Urol 4(4):432–437
Reid G, Chan RCY, Bruce AW, Costerton JW (1985) Prevention of urinary tract infection in rats with indigenous Lactobacillus casei strain. Infect Immun 49(2):320–324
Robertson SA, Brannstrom M, Seamark RF (1992) Cytokines in rodent reproduction and the cytokine-endocrine interaction. Curr Opin Immunol 4:585–590
Salimen S, Ouwehannd AC, Isolauri E (1998) Clinical application of probiotic bacteria. Int Dairy J 8:563–572
Samra KSS, Cenk S, Horu GMG, Beril O (2005) Increasing antimicrobial resistance of Escherichia coli isolates from community acquired UTI during 1998–2003. Manisa Turkey Japan. J Infect Dis 58:159–161
Schilling JD, Martin SM, Hunstad DA, Patel KP, Mulvey MA, Justice SS, Lorenz RG, Hultgren SJ (2003) CD14 and Toll like receptor-dependent activation of bladder epithelial cells by lipopolysaccharide and type 1 piliated Escherichia coli. Infect Immun 71:1470–1480
Schmitt C, Sobel JD, Meriwether C (1992) Bacterial vaginosis: treatment with clindamycin cream versus oral metronidazole. Obstet Gynecol 79(6):1020–1023
Singh V, Singh K, Amdekar S, Singh DD, Tripathi P, Sharma GL, Yadav H (2008) Innate and specific gut-associated immunity and microbial Interference. FEMS Immunol Med Microbiol 55(1):6–12
Smith RD, Yago M, Millar M, Coast J (2006) A macroeconomic approach to evaluating policies to contain antimicrobial resistance: a case study of methicillin resistant Staphylococcus aureus (MRSA). Appl Health Econ Health Pol 5:55–65
Spiegel CA, Amsel RA, Eschenbach D, Schoenknecht F, Holmes KK (1980) Anaerobic bacteria in nonspecific vaginitis. N Engl J Med 303:601–607
Strus M, Kucharska A, Kukl G, Brzychczy-Wloch M, Maresz K, Heczko PB (2005) The in vitro activity of vaginal Lactobacillus with probiotic properties against Candida. Infect Dis Obstetr Gynecol 13(2):69–75
Suzuki M, Hisamatsu T, Podolsky DK (2003) Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular toll like receptor 4-MD-2 complex. Infect Immun 7:3503–3511
Svanborg C, Godaly G (1997) Bacterial virulence in urinary tract infection. Infect Dis Clin North Am 11:513–529
Svanborg C, Bergsten G, Fischer H, Godaly G, Gustafsson M, Karpman D, Lundstedt AC, Ragnarsdottir B, Svensson M, Wullt B (2003) Uropathogenic Escherichia coli as a model of host parasite interaction. Curr Opin Microbiol 9:33–39
Szebeni B, Veres G, Dezsofi A, Rusai K, Vannay A, Mraz M, Majorova E, Arato A (2008) Increased expression of Toll-like receptor TLR2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin Exp Immunol 151:34–41
Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376
Takeuchi O, Hoshino K, Akira S (2000) Cutting edge: LR-2 deficient and MyD88- deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 165:5392–5396
Triantafilou M, Triantafilou K (2002) Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23:301–304
Varoga D, Paulsen F, Mentlein R, Fay J, Kurz B, Schütz R, Wruck C, Goldring MB, Pufe T (2006) TLR2-mediated induction of vascular endothelial growth factor (VEGF) in cartilage in septic joint disease. J Pathol 210:315–324
Velraeds MM, Van der Mei HC, Reid G, Busscher HJ (2009) Inhibition of initial adhesion of uropathogenic Enterococcus faeclis by biosurfactants from Lactobacillus isolates. Appl Environ Microbiol 62(6):1958–1963
Wilson M, Seymour R, Henderson B (1998) Bacterial perturbation of cytokine networks. Infect Immun 66:2401–2409
Xia Y, Yamagata K, Krukoff TL (2006) Differential expression of the CD14/TLR4 complex and inflammatory signaling molecules following i.c.v. administration of LPS. Brain Res 1095:85–95
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Amdekar, S., Singh, V. & Singh, D.D. Probiotic Therapy: Immunomodulating Approach Toward Urinary Tract Infection. Curr Microbiol 63, 484 (2011). https://doi.org/10.1007/s00284-011-0006-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00284-011-0006-2