Skip to main content
Log in

Fervidobacterium changbaicum Lip1: identification, cloning, and characterization of the thermophilic lipase as a new member of bacterial lipase family V

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel lipase gene encoded 315 amino acid residues was obtained using lipase-prospecting primers and genome walking from hyperthermophilic bacterium Fervidobacterium changbaicum CBS-1. Sequence alignment and phylogenetic analysis revealed this novel lipase is a new member of bacterial lipase family V. The recombinant enzyme F. changbaicum lipase 1 (FCLip1) showed maximum activity at 78°C and pH 7.8. It displayed extreme thermostability at 70°C and was also stable across a wide pH range from 6.0 to 12.0. Kinetic study demonstrated FCLip1 preferentially hydrolyzed middle-length acyl chains, especially p-nitrophenyl caprate and tricaprylin. With p-nitrophenyl caprate as a substrate, the enzyme exhibited a K m and k cat of 4.67 μM and 22.7/s, respectively. In addition, FCLip1 was resistant to various detergents and organic solvents. This enzyme is the first reported thermophilic lipase from bacterial family Thermotogaceae. Its extreme stability with respect to temperature and pH, along with its triglyceride hydrolysis activity, indicate that FCLip1 has high potential for future application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akoh CC, Lee GC, Shaw JF (2004) Protein engineering and applications of Candida rugosa lipase isoforms. Lipids 39(6):513–526

    Article  CAS  Google Scholar 

  • Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  Google Scholar 

  • Bell PJL, Nevalainen H, Morgan HW, Bergquist PL (1999) Rapid cloning of thermoalkalophilic lipases from bacillus spp. using pcr. Biotechnol Lett 21(11):1003–1006

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalp 3.0. J Mol Biol 340(4):783–795

    Article  Google Scholar 

  • Cai JG, Wang YP, Liu DB, Zeng Y, Xue YF, Ma YH, Feng Y (2007) Fervidobacterium changbaicum sp nov., a novel thermophilic anaerobic bacterium isolated from a hot spring of the changbai mountains, china. Int J Syst Evol Microbiol 57:2333–2336

    Article  CAS  Google Scholar 

  • Carriere F, Thirstrup K, Hjorth S, Ferrato F, Nielsen PF, WithersMartinez C, Cambillau C, Boel E, Thim L, Verger R (1997) Pancreatic lipase structure-function relationships by domain exchange. Biochemistry (Mosc) 36(1):239–248

    Article  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31(13):3497–3500

    Article  CAS  Google Scholar 

  • Fischer M, Pleiss J (2003) The lipase engineering database: a navigation and analysis tool for protein families. Nucleic Acids Res 31(1):319–321

    Article  CAS  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89(1):17–34

    Article  CAS  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  Google Scholar 

  • Kashima Y, Iijima M, Okamoto A, Koizumi Y, Udaka S, Yanagida F (1998) Purification and characterization of intracellular esterases related to ethylacetate formation in Acetobacter pasteurianus. J Ferment Bioeng 85(6):584–588

    Article  CAS  Google Scholar 

  • Kashima Y, Nakajima Y, Nakano T, Tayama K, Koizumi Y, Udaka S, Yanagida F (1999) Cloning and characterization of ethanol-regulated esterase genes in Acetobacter pasteurianus. J Biosci Bioeng 87(1):19–27

    Article  CAS  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: a case study using the phyre server. Nat Protoc 4(3):363–371

    Article  CAS  Google Scholar 

  • Kim HK, Park SY, Lee JK, Oh TK (1998) Gene cloning and characterization of thermostable lipase from bacillus stearothermophilus l1. Biosci Biotechnol Biochem 62(1):66–71

    Article  CAS  Google Scholar 

  • Kim MH, Kim HK, Lee JK, Park SY, Oh TK (2000) Thermostable lipase of bacillus stearothermophilus: high-level production, purification, and calcium-dependent thermostability. Biosci Biotechnol Biochem 64(2):280–286

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5(2):150–163

    Article  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) Procheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    Article  CAS  Google Scholar 

  • Lee DW, Koh YS, Kim KJ, Kim BC, Choi HJ, Kim DS, Suhartono MT, Pyun YR (1999) Isolation and characterization of a thermophilic lipase from bacillus thermoleovorans id-1. FEMS Microbiol Lett 179(2):393–400

    Article  CAS  Google Scholar 

  • Lee DW, Kim HW, Lee KW, Kim BC, Choe EA, Lee HS, Kim DS, Pyun YR (2001) Purification and characterization of two distinct thermostable lipases, from the gram-positive thermophilic bacterium bacillus thermoleovorans id-1. Enzyme Microb Technol 29(6–7):363–371

    Article  CAS  Google Scholar 

  • Lesuisse E, Schanck K, Colson C (1993) Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. Eur J Biochem 216(1):155–160

    Article  CAS  Google Scholar 

  • Liu KL, Wang JQ, Bu DP, Zhao SG, McSweeney C, Yu P, Li D (2009) Isolation and biochemical characterization of two lipases from a metagenomic library of china holstein cow rumen. Biochem Biophys Res Commun 385(4):605–611

    Article  CAS  Google Scholar 

  • Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85

    Article  CAS  Google Scholar 

  • Martinelle M, Holmquist M, Hult K (1995) On the interfacial activation of Candida antarctica lipase a and b as compared with Humicola lanuginosa lipase. Biochim Biophys Acta 1258(3):272–276

    Google Scholar 

  • Morris DD, Gibbs MD, Chin CWJ, Koh MH, Wong KKY, Allison RW, Nelson PJ, Bergquist PL (1998) Cloning of the xynb gene from dictyoglomus thermophilum rt46b.1 and action of the gene product on kraft pulp. Appl Environ Microbiol 64(5):1759–1765

    CAS  Google Scholar 

  • Rathi P, Bradoo S, Saxena RK, Gupta R (2000) A hyper-thermostable, alkaline lipase from pseudomonas sp with the property of thermal activation. Biotechnol Lett 22(6):495–498

    Article  CAS  Google Scholar 

  • Reetz MT (2002) Lipases as practical biocatalysts. Curr Opin Chem Biol 6(2):145–150

    Article  CAS  Google Scholar 

  • Reetz MT, Jaeger KE (1998) Overexpression, immobilization and biotechnological application of pseudomonas lipases. Chem Phys Lipids 93(1–2):3–14

    Article  CAS  Google Scholar 

  • Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res 26(7):1628–1635

    Article  CAS  Google Scholar 

  • Rua ML, Schmidt-Dannert C, Wahl S, Sprauer A, Schmid RD (1997) Thermoalkalophilic lipase of bacillus thermocatenulatus large-scale production, purification and properties: aggregation behaviour and its effect on activity. J Biotechnol 56(2):89–102

    Article  CAS  Google Scholar 

  • Ruiz C, Falcocchio S, Pastor FI, Saso L, Diaz P (2007) Helicobacter pylori estv: identification, cloning, and characterization of the first lipase isolated from an epsilon-proteobacterium. Appl Environ Microbiol 73(8):2423–2431

    Article  CAS  Google Scholar 

  • Salameh MA, Wiegel J (2007) Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl Environ Microbiol 73(23):7725–7731

    Article  CAS  Google Scholar 

  • Samaniego L (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schmidt-Dannert C, Rua ML, Atomi H, Schmid RD (1996) Thermoalkalophilic lipase of bacillus thermocatenulatus. I. Molecular cloning, nucleotide sequence, purification and some properties. Biochim Biophys Acta 1301(1–2):105–114

    Google Scholar 

  • Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga Y (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76(7):789–793

    Article  CAS  Google Scholar 

  • Thirstrup K, Verger R, Carriere F (1994) Evidence for a pancreatic lipase subfamily with new kinetic properties. Biochemistry (Mosc) 33(10):2748–2756

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the High Technology Program of China (# 2010AA101501) and the Natural Science Foundation of China (# 30970632, # 30821005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Ramachandran plot of the final model from FCLip1 calculated with PROCHECK. Residues in most favored regions located in [A, B, L]; residues in additional allowed regions located in [a, b, l, p]; residues in generously allowed regions located in [~a, ~b, ~l, ~p]; residues in disallowed regions are unshaded. Glycine residues shown as closed triangles (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Xie, Y., Song, B. et al. Fervidobacterium changbaicum Lip1: identification, cloning, and characterization of the thermophilic lipase as a new member of bacterial lipase family V. Appl Microbiol Biotechnol 89, 1463–1473 (2011). https://doi.org/10.1007/s00253-010-2971-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2971-y

Keywords

Navigation