Skip to main content
Log in

Bioprocessing of plant cell cultures for mass production of targeted compounds

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

More than a century has passed since the first attempt to cultivate plant cells in vitro. During this time, plant cell cultures have become increasingly attractive and cost-effective alternatives to classical approaches for the mass production of plant-derived metabolites. Furthermore, plant cell culture is the only economically feasible way of producing some high-value metabolites (e.g., paclitaxel) from rare and/or threatened plants. This review summarizes recent advances in bioprocessing aspects of plant cell cultures, from callus culture to product formation, with particular emphasis on the development of suitable bioreactor configurations (e.g., disposable reactors) for plant cell culture-based processes; the optimization of bioreactor culture environments as a powerful means to improve yields; bioreactor operational modes (fed-batch, continuous, and perfusion); and biomonitoring approaches. Recent trends in downstream processing are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderlei T, Zang W, Papaspyrou M, Büchs J (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17:187–194

    CAS  Google Scholar 

  • Benavides J, Aguilar O, Lapizco-Encinas B, Rito-Palomares M (2008) Extraction and purification of bioproducts and nanoparticles using aqueous two-phase systems strategies. Chem Eng Technol 6:838–845

    Google Scholar 

  • Bentebibel S, Moyano E, Palazon J, Cusido RM, Bonfill M, Eibl R, Pinol MT (2005) Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng 89:647–655

    CAS  PubMed  Google Scholar 

  • Büchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7:91–98

    PubMed  Google Scholar 

  • Chakraborty A, Chattopadhyay S (2008) Stimulation of menthol production in Mentha piperita cell culture. In Vitro Cell Dev Biol Plant 44:518–524

    CAS  Google Scholar 

  • Chilton MD (2001) Agrobacterium. A memoir. Plant Physiol 126:9–14

    Google Scholar 

  • Chisti Y (1999a) Shear sensitivity. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, vol 5. Wiley, New York, pp 2379–2406

    Google Scholar 

  • Chisti Y (1999b) Mass transfer. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, vol 3. Wiley, New York, pp 1607–1640

    Google Scholar 

  • Cragg GM, Newman DJ (2009) Nature: a vital source of leads for anticancer drug development. Phytochem Rev 8:313–331

    CAS  Google Scholar 

  • De Dobbeleer C, Cloutier M, Fouilland M, Legros R, Jolicoeur M (2006) A high-rate perfusion bioreactor for plant cells. Biotechnol Bioeng 95:1126–1137

    PubMed  Google Scholar 

  • De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloids biosynthesis. Trends Plant Sci 5:168–173

    PubMed  Google Scholar 

  • Degerman M, Jakobsson N, Nilsson B (2008) Designing robust preparative purification processes with high performance. Chem Eng Technol 31:875–882

    CAS  Google Scholar 

  • Doran PM (1999) Design of mixing systems for plant cell suspensions in stirred reactors. Biotechnol Prog 15:319–335

    CAS  PubMed  Google Scholar 

  • Ducos J-P, Terrier B, Courtois D (2009) Disposable bioreactors for plant micropropagation and mass plant cell culture. Adv Biochem Eng Biotechnol . doi:https://doi.org/10.1007/10_2008_8

    Google Scholar 

  • Edahiro J, Yamada M, Seike S, Kakigi Y, Miyanaga K, Nakamura M, Seki M (2005) Separation of cultured strawberry cells producing anthocyanins in aqueous two-phase system. J Biosci Bioeng 100:449–454

    CAS  PubMed  Google Scholar 

  • Eibl R, Eibl D (2002) Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey K-M, Barz W (eds) Plant biotechnology and transgenic plants. Marcel Dekker, New York, pp 165–199

    Google Scholar 

  • Eibl R, Eibl D (2006) Design and use of the wave bioreactor for plant cell culture. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering. Focus on biotechnology, vol 6. Springer, Dordrecht, pp 203–227

    Google Scholar 

  • Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue culture. Phytochem Rev 7:593–598

    CAS  Google Scholar 

  • Eibl R, Werner S, Eibl D (2009) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol . doi:https://doi.org/10.1007/10_2008_15

    Google Scholar 

  • Georgiev M, Pavlov A, Ilieva M (2004) Rosmarinic acid production by Lavandula vera MM cell suspension: the effect of temperature. Biotechnol Lett 26:855–856

    CAS  PubMed  Google Scholar 

  • Georgiev M, Kuzeva S, Pavlov A, Kovacheva E, Ilieva M (2006a) Enhanced rosmarinic acid production by Lavandula vera MM cell suspension culture through elicitation with vanadyl sulfate. Z Naturforsch 61c:241–244

    Google Scholar 

  • Georgiev M, Pavlov A, Ilieva M (2006b) Selection of high rosmarinic acid producing Lavandula vera MM cell lines. Process Biochem 41:2068–2071

    CAS  Google Scholar 

  • Georgiev MI, Kuzeva SL, Pavlov AI, Kovacheva EG, Ilieva MP (2007a) Elicitation of rosmarinic acid by Lavandula vera MM cell suspension culture with abiotic elicitors. World J Microbiol Biotechnol 23:301–304

    CAS  Google Scholar 

  • Georgiev M, Pavlov A, Bley T (2007b) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185

    CAS  PubMed  Google Scholar 

  • Goossens A, Rischer H (2007) Implementation of functional genomics in alkaloid producing plants. Phytochem Rev 6:35–49

    CAS  Google Scholar 

  • Ha S-J, Kim S-Y, Seo J-H, Oh D-K, Lee J-K (2007) Optimization of culture conditions and scale-up to pilot and plant scales for coenzyme Q10 production by Agrobacterium tumefaciens. Appl Microbiol Biotechnol 74:974–980

    CAS  PubMed  Google Scholar 

  • Haas C, Weber J, Ludwig-Mueller J, Deponte S, Bley T, Georgiev M (2008) Flow cytometry and phytochemical analysis of a sunflower cell suspension culture in a 5-L bioreactor. Z Naturforsch 63:699–705

    CAS  Google Scholar 

  • Hanchinal VM, Survase SA, Sawant SK, Annapure US (2008) Response surface methodology in media optimization for production of β-carotene from Daucus carota. Plant Cell Tiss Organ Cult 93:123–132

    CAS  Google Scholar 

  • Harada Y, Sakata K, Sato S, Takayama S (1997) Fermentation pilot plant. In: Vogel HC, Todaro CL (eds) Fermentation and biochemical engineering handbook. Principles, process design and equipment, 2nd edn. Noyes Publications, Westwood, New Jersey, USA, pp 1–66

    Google Scholar 

  • Hartonen K, Parshntsev J, Sandberg K, Bergelin E, Nisula L, Riekkola M-L (2007) Isolation of flavonoids from aspen knotwood by pressurized hot water extraction and comparison with other extraction techniques. Talanta 74:32–38

    CAS  PubMed  Google Scholar 

  • Hostettmann K, Marston A, Hostettmann M (1998) Preparative chromatography techniques—applications in natural products isolation, 2nd edn. Springer, Berlin

    Google Scholar 

  • Hu W-W, Yao H, Zhong JJ (2001) Improvement of Panax notoginseng cell culture for production of ginseng saponins and polysaccharide by high density cultivation in pneumatically agitated bioreactors. Biotechnol Prog 17:838–846

    CAS  PubMed  Google Scholar 

  • Huang T-K, McDonald KA (2009) Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem Eng J . doi:https://doi.org/10.1016/j.bej.2009.02.008

    CAS  Google Scholar 

  • Huang M, Xu Y, Lv Q, Ren Q (2008) Separation and purification of β-carotene from chlorophyll factory residues. Chem Eng Technol 31:922–927

    CAS  Google Scholar 

  • Iizuka Y, Kato R, Shibasaki-Kitakawa N, Yonemoto T (2005) Combination of extractive solvent addition and immobilization culture for continuous production of scopoletin by tobacco cells. Biotechnol Prog 21:603–607

    CAS  PubMed  Google Scholar 

  • Ito Y (2005) Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J Chromatogr A 1065:145–168

    CAS  PubMed  Google Scholar 

  • James E, Lee JM (2000) An improved optical technique for monitoring plant cell concentration. Plant Cell Rep 19:283–285

    CAS  PubMed  Google Scholar 

  • Kang CD, Sim SJ (2007) Selective extraction of free astaxanthin from Haematococcus culture using a tandem organic solvent system. Biotechnol Prog 23:866–871

    CAS  PubMed  Google Scholar 

  • Kang CD, Sim SJ (2008) Direct extraction of free astaxanthin from Haematococcus culture using vegetable oils. Biotechnol Lett 30:441–444

    CAS  PubMed  Google Scholar 

  • Kieran P (2001) Bioreactor design for plant cell suspension cultures. In: Cabral JMS (ed) Principles of multiphase reactor design. Harwood Academic Publishers, New Jersey, pp 391–426

    Google Scholar 

  • Kiselev KV, Dubrovina AS, Veselova MV, Bulgakova VP, Fedoreyev SA, Zhuravlev YN (2007) The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. J Biotechnol 128:681–692

    CAS  PubMed  Google Scholar 

  • Kolewe ME, Gaurav V, Roberts SC (2008) Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol Pharm 5:243–256

    CAS  PubMed  Google Scholar 

  • Kurosumi A, Kobayashi F, Mtui G, Nakamura Y (2006) Development of optimal culture method of Sparassis crispa and a new extraction method of antineoplastic constituent. Biochem Eng J 30:109–113

    CAS  Google Scholar 

  • Linsmayer EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Google Scholar 

  • Luo J, Mei XG, Hu DW (2002) Improved paclitaxel production by fed-batch suspension cultures of Taxus chinensis in bioreactors. Biotechnol Lett 24:561–565

    CAS  Google Scholar 

  • Maciuk A, Georgiev MI, Toribio A, Zèches-Hanrot M, Ilieva MP, Nuzillard JM, Renault JH (2005) Purification of rosmarinic acid by strong ion-exchange centrifugal partition chromatography. J Liq Chromatogr Relat Technol 28:1947–1957

    CAS  Google Scholar 

  • Maltese F, van der Kooy F, Verpoorte R (2009) Solvent derived artifacts in natural products chemistry. Nat Prod Commun 4:447–454

    CAS  PubMed  Google Scholar 

  • Mandal V, Mohan Y, Hemalatha S (2007) Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Phcog Rev 1:7–18

    CAS  Google Scholar 

  • Matkowski A (2008) Plant in vitro culture for the production of antioxidants—a review. Biotechnol Adv 26:548–560

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037

    CAS  PubMed  Google Scholar 

  • Oksman-Caldentey K-M, Inze D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    CAS  PubMed  Google Scholar 

  • Pauli GF, Pro SM, Friesen JB (2008) Countercurrent separation of natural products. J Nat Prod 71:1489–1508

    CAS  PubMed  Google Scholar 

  • Pavlov A, Panchev I, Ilieva M (2000) Nutrient medium optimization for rosmarinic acid production by Lavandula vera MM cell suspension. Biotechnol Prog 16:688–670

    Google Scholar 

  • Pavlov A, Georgiev M, Ilieva M (2005a) Production of rosmarinic acid by Lavandula vera MM cell suspension in bioreactor: effect of dissolved oxygen concentration and agitation. World J Microbiol Biotechnol 21:389–392

    CAS  Google Scholar 

  • Pavlov A, Georgiev M, Panchev I, Ilieva M (2005b) Optimization of rosmarinic acid production by Lavandula vera MM plant cell suspension in a laboratory bioreactor. Biotechnol Prog 21:394–396

    CAS  PubMed  Google Scholar 

  • Pavlov A, Popov S, Kovacheva E, Georgiev M, Ilieva M (2005c) Volatile and polar compounds in Rosa damascena Mill 1803 cell suspension. J Biotechnol 118:89–97

    CAS  PubMed  Google Scholar 

  • Powell EE, Hill GA, Juurlink BHJ, Carrier DJ (2005a) Glucoraphanin extraction from Cardaria draba: part 1. Optimization of batch extraction. J Chem Technol Biotechnol 80:985–991

    CAS  Google Scholar 

  • Powell EE, Hill GA, Juurlink BHJ, Carrier DJ (2005b) Glucoraphanin extraction from Cardaria draba: part 2. Countercurrent extraction, bioactivity and toxicity testing. J Chem Technol Biotechnol 80:992–997

    CAS  Google Scholar 

  • Prakash G, Srivastava AK (2007) Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture. Process Biochem 42:93–97

    CAS  Google Scholar 

  • Prakash G, Srivastava AK (2008) Statistical elicitor optimization studies for the enhancement of azadirachtin production in bioreactor Azadirachta indica cell cultivation. Biochem Eng J 40:218–226

    CAS  Google Scholar 

  • Qian Z-G, Zhao Z-J, Xu Y, Qian X, Zhong JJ (2006) Novel synthetic 2,6-dichloroisonicotinate derivates as effective elicitors for inducing the biosynthesis of plant secondary metabolites. Appl Mircobiol Biotechnol 71:164–167

    CAS  Google Scholar 

  • Raval KN, Hellwig S, Prakash G, Ramos-Plasencia A, Srivastava A, Büchs J (2003) Necessity of a two-stage process for the production of azadirachtin-related limonoids in suspension cultures of Azadirachta indica. J Biosci Bioeng 96:16–22

    CAS  PubMed  Google Scholar 

  • Renault JH, Nuzillard JM, Intes O, Maciuk A (2002) Countercurrent chromatography—the support-free liquid stationary phase in countercurrent chromatography. In: Barcelo D (ed) Wilson & Wilson’s comprehensive analytical chemistry, vol 38. Elsevier Science BV, Amsterdam, pp 49–83

    Google Scholar 

  • Reverchon E, de Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166

    CAS  Google Scholar 

  • Rischer H, Oresic M, Seppanen-Laakso T, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MCE, Inze D, Oksman-Caldentey K-M, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci U S A 103:5614–5619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ritterhaus E, Ulrich J, Westphal K (1990) Large-scale production of plant cell cultures. IAPTC Newsl 61:2–10

    Google Scholar 

  • Romanik G, Gilgenast E, Przyjazny A, Kaminski M (2007) Techniques of preparing plant material for chromatographic separation and analysis. J Biochem Biophys Methods 70:253–261

    CAS  PubMed  Google Scholar 

  • Routien JB, Nickell LG (1956) Cultivation of plant tissue. US Patent 2(747):334

    Google Scholar 

  • Samorski M, Muller-Newen G, Büchs J (2005) Quasi-continuous combined scattered light and fluorescence measurements: a novel measurement technique for shaken microtiter plates. Biotechnol Bioeng 92:61–68

    CAS  PubMed  Google Scholar 

  • Sarker SD, Latif Z, Gray AI (2005) Methods in biotechnologies, series 20: natural products isolation, 2nd edn. Humana Press, Totowa, NJ

    Google Scholar 

  • Schmidt-Traub H (2005) Preparative chromatography of fine chemicals and pharmaceutical agents. Wiley-VCH, Weinheim

    Google Scholar 

  • Silveira ST, Quines LKDM, Burkert CAV, Kalil SJ (2008) Separation of phycocyanins from Spirulina platensis using ion exchange chromatography. Bioproc Biosyst Eng 31:477–482

    CAS  Google Scholar 

  • Singh NK, Parmar A, Madamwar D (2009) Optimization of medium components for increased production of phycocyanin from Phormidium ceylanicum and its purification by single step process. Bioresour Technol 100:1663–1669

    CAS  PubMed  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228

    CAS  PubMed  Google Scholar 

  • Su WW, Arias R (2003) Continuous plant cell perfusion culture: bioreactor characterization and secreted enzyme production. J Biosci Bioeng 95:13–20

    CAS  PubMed  Google Scholar 

  • Ten Hoopen HJG, Vinke JL, Moreno PRH, Verpoorte R, Heijnen JJ (2002) Influence of temperature on growth and ajmalicine production by Catharanthus roseus suspension cultures. Enzyme Microb Technol 30:56–65

    Google Scholar 

  • Terrier B, Courtois D, Henault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Petiard V (2007) Two new disposable bioreactors for plant cell culture: the wave and undertow bioreactor and the slug bubble bioreactor. Biotechnol Bioeng 96:914–923

    CAS  PubMed  Google Scholar 

  • Toribio A, Delannay E, Richard B, Ple K, Zeches-hanrot M, Nuzillard JM, Renault JH (2007a) Preparative isolation of huperzine A and B from Huperzia serrata by displacement centrifugal partition chromatography. J Chromatogr A 1140:101–106

    CAS  PubMed  Google Scholar 

  • Toribio A, Nuzillard JM, Renault JH (2007b) Strong ion-exchange centrifugal partition chromatography as an efficient method for the large-scale purification of glucosinolates. J Chromatogr A 1170:44–51

    CAS  PubMed  Google Scholar 

  • Van Gulik WM, Ten Hoopen HJG, Heijnen JJ (1992) Kinetics and stoichiometry of growth of plant cell cultures of Catharanthus roseus and Nicotiana tabacum in batch and continuous fermentors. Biotechnol Bioeng 40:863–874

    PubMed  Google Scholar 

  • Van Gulik WM, Ten Hoopen HJG, Heijnen JJ (1993) A structured model describing carbon and phosphate limited growth of Catharanthus roseus plant cell suspension in batch and chemostat culture. Biotechnol Bioeng 41:771–780

    PubMed  Google Scholar 

  • Van Gulik WM, Ten Hoopen HJG, Heijnen JJ (2001) The application of continuous culture for plant cell suspension. Enzyme Microb Technol 28:796–805

    PubMed  Google Scholar 

  • Vasil IK (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27:1423–1440

    CAS  PubMed  Google Scholar 

  • Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25

    CAS  Google Scholar 

  • Wang SJ, Zhong JJ (1996) A novel centrifugal impeller bioreactor. I. Fluid circulation, mixing, and liquid velocity profiles. Biotechnol Bioeng 51:511–519

    CAS  PubMed  Google Scholar 

  • Wang W, Zhao Z-J, Xu Y, Qian X, Zhong JJ (2006) Efficient induction of ginsenoside biosynthesis and alteration of ginsenoside heterogeneity in cell cultures of Panax. Appl Microbiol Biotechnol 70:298–307

    CAS  PubMed  Google Scholar 

  • Xie JJ, Lu J, Qian ZM, Yu Y, Duan JA, Li SP (2009) Optimization and comparison of five methods for extraction of coniferyl ferulate from Angelica sinensis. Molecules 14:555–565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhao Z, Qian X, Qian Z, Tian W, Zhong JJ (2006) Novel, unnatural benzo-1,2,3-thiadiazole-7-carboxylate elicitors of taxoid biosynthesis. J Agric Food Chem 54:8793–8798

    CAS  PubMed  Google Scholar 

  • Yanpaisan W, King NJC, Doran PM (1999) Flow cytometry of plant cells with applications in large-scale bioprocessing. Biotechnol Adv 17:3–27

    CAS  PubMed  Google Scholar 

  • Zhang Z-Y, Zhong JJ (2004) Scale-up of centrifugal impeller bioreactor for hyperproduction of ginseng saponins and polysaccharide by high-density cultivation of Panax notoginseng cells. Biotechnol Prog 20:1076–1081

    CAS  PubMed  Google Scholar 

  • Zhao D, Xing J, Li M, Lu D, Zhao Q (2001) Optimization of growth and jaceosidin production in callus and cell suspension cultures of Saussurea medusa. Plant Cell Tissue Organ Cult 67:227–234

    CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    CAS  PubMed  Google Scholar 

  • Zhong JJ, Fujiyama K, Seki T, Yoshida T (1993) On-line monitoring of cell concentration of Perilla frutescens in a bioreactor. Biotechnol Bioeng 42:542–546

    CAS  PubMed  Google Scholar 

  • Zhong JJ, Fujiyama K, Seki T, Yoshida T (1994a) A quantitative analysis of shear effects on cell suspension and cell culture of Perilla frutescens in bioreactors. Biotechnol Bioeng 44:649–654

    CAS  PubMed  Google Scholar 

  • Zhong JJ, Konstantinov KB, Yoshida T (1994b) Computer-aided on-line monitoring of physiological variables of cell cultures of Perilla frutescens in a bioreactor. J Ferment Bioeng 77:445–447

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. V. Georgiev for preparing Fig. 1, and Profs. J.J. Zhong (Shanghai Jiao Tong University), Y. Xu, and X. Qian (East China University of Science and Technology, Shanghai, China) for providing us with the relative prices of the novel elicitors synthesized and used in their laboratories. Special thanks goes to D. Ullisch, R. Huber, and Prof. Dr. J. Büchs (chair of Biochemical Engineering, Aachen University of Technology, Germany) for providing us with the MTP cultivations data. This work has been supported by a National Science Fund of Bulgaria under contract number DO 02-261/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milen I. Georgiev.

Additional information

This paper is dedicated to Prof. Dr. Mladenka P. Ilieva on the occasion of her 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiev, M.I., Weber, J. & Maciuk, A. Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83, 809–823 (2009). https://doi.org/10.1007/s00253-009-2049-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2049-x

Keywords

Navigation