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LOCAL-GLOBAL PRINCIPLES FOR REPRESENTATIONS OF

QUADRATIC FORMS.

JORDAN ELLENBERG AND AKSHAY VENKATESH

Abstract. We prove the local-global principle holds for the problem of rep-
resentations of quadratic forms by quadratic forms, in codimension ≥ 7. The
proof uses the ergodic theory of p-adic groups, together with a fairly general
observation on the structure of orbits of an arithmetic group acting on integral
points of a variety.
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1. Introduction

1.1. General comments. Let (Zn, Q) and (Zm, Q′) be quadratic lattices (free
finitely generated abelian groups endowed with quadratic forms.) We say Q′ is
represented by Q if (Zm, Q′) can be embedded isometrically into (Zn, Q). The
problem of determining whether one quadratic form represents another goes back
to the beginning of modern number theory: for instance, Lagrange’s theorem on
sums of four squares says precisely that the quadratic form x2 + y2 + z2 + w2

represents every nondegenerate quadratic form of rank 1. The case m = 2, n = 3
(representations of binary forms by ternary forms) was already studied by Gauss
in Disquisitiones. Another question of this type (with n = 4, m = 2) is: are
there orthogonal vectors x1,x2 in the standard Euclidean lattice Z4 with prescribed
lengths? Schulze-Pillot’s paper [28] is an excellent survey of both classical and
modern work on this problem.

We say Q′ is everywhere locally representable by Q if the quadratic form Q′⊗Zp

embeds into the quadratic form Q ⊗ Zp for every p, and Q′ ⊗ R embeds in Q ⊗ R.
A result of the form “if Q′ is everywhere locally representable, it is representable”
is referred to as a local-global principle. Results of this kind are part of a general
program in arithmetic geometry to understand Hasse principles for varieties: in this
case, the representability of Q2 by Q1 corresponds to the existence of an integral
point on a certain affine variety X, and such a result amounts to the statement
that X has an integral point if it has a Zp-point for every p.
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2 JORDAN ELLENBERG AND AKSHAY VENKATESH

In the general case Siegel gave a mass formula and proved a local-global principle
when Q is indefinite. In the definite case one has an obstacle arising from the
possibile nontriviality of the genus; in other words, there may be many forms which
are isomorphic to Q over every Zp and R, but not over Z. Here we explain how to
overcome this obstacle by means of the ergodic theory of p-adic groups (“Ratner’s
theorem,” generalized to the p-adic case by Ratner [26] and Margulis-Tomanov [20])
and prove a local global principle (when the minimum integer represented by Q′

is sufficiently large) when n − m ≥ 7. The number 7 can likely be reduced here;
it seems likely that one can achieve n − m ≥ 3, under certain mild ramification
conditions – such as considering only those Q′ whose discriminant is not divisible
by some fixed large prime p – by means a more refined analysis of the maximal
subgroups of the orthogonal group.

Previously this type of result was known – by very different methods – in the
range where n ≥ 2m + 3; this result is due to Hsia, Kitaoka, and Kneser [16]. The
present method is closely related to work of Linnik and we discuss the connections
further in §1.4.2. In short, we are showing that a certain variety has a integral point

by using ergodic theory! This aspect is quite striking to the authors and contrasts
with the use of ergodic theory or dynamics to produce solution to Diophantine
inequalities (for example, Margulis’ proof of the Oppenheim conjecture). 1

1.2. Statement of theorem. The methods are quite robust and applicable over
an arbitrary number field, and indeed our main result (Prop. 1) is stated in that
generality, but we state the main implication only in the most classical setting.

Theorem 1. Let Q be a positive definite quadratic form on Zn. Then there exists

c := c(Q) such that Q represents all quadratic forms Q′ in m ≤ n−7 variables that

are everywhere locally representable, have squarefree discriminant, and minimum

≥ c(Q).

We recall that the discriminant of the quadratic form Q is the determinant of the
matrix (Q(ei + ej) −Q(ei)− Q(ej))ij , where ei is a basis of Zn, and the minimum
of Q is the smallest nonzero element of Q(Zn).

The assertion about “squarefree discriminant” is probably stronger than neces-
sary. We note that it is possible for the local-global principle to fail without such
an assumption, as was brought to our attention by W.K. Chan; however, we ex-
pect that one could formulate a more precise theorem that excluded precisely such
cases by a more detailed local analysis. Schulze-Pillot has indicated to us such a
sharpened version, utilising in particular the auxiliary condition of “bounded im-
primitivity of local representations” (see [28, p4], especially the paragraph after
(1.8)).

The assertion about minimum ≥ c(Q) (which is clearly necessary) should be seen
as a condition on local representability at ∞. A defect of the method is that it does
not yield an effective upper bound for c(Q).

On the other hand, the method of proof should yield a quantitative result. This
requires additional technical work and we have not aimed for it; however, the shape

1Of course, it is not precisely true that ergodic theory “produces” an integral point; conceptu-

ally, the point is not dissimilar to the Hardy-Littlewood method, where one deduces there exists
an integral point on an affine variety by proving equidistribution of integral points in some larger
space (an affine space in the Hardy-Littlewood setting, a union of varieties parametrized by the
genus of Q in our case.).
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of the quantitative result would be as follows: If r(Q, Q′), r̃(Q, Q′), g(Q) denote,
respectively, the weighted number of representations of Q′ by Q, the weighted
number of representations of Q′ by the spin genus of Q, and the mass of the spin
genus of Q, then

r(Q, Q′) ∼ r̃(Q, Q′)

g(Q)
,

as the minimum of Q′ approaches ∞. Note that r̃(Q, Q′) can be given exactly by
the Siegel mass formula for the spin genus.

The proof of Theorem 1 is given in Section 2. It is independent of the rest of
the introduction and of Section 3, and the reader interested only in this proof may
proceed immediately to Section 2. However, these intervening sections provide (we
hope) some context for the algebraic ideas underlying the method.

1.3. The role of the stabilizer. We take a moment to describe, in a quite general
context, a key feature of “integral orbit problems” – i.e., problems pertaining to the
orbits of an arithmetic group on the integral points of a variety – utilized in this
paper. This feature has been noted by many people in many contexts in number
theory. We attempt to present a quite general (though vague) version here, and
give a more precise discussion in Section 3. We also refer to Section 1.5 for more
discussion of the provenance of this type of idea.

Let G be a semisimple group over Q that acts on a variety X defined over Z; let
Γ be a lattice in G(Q) that preserves X(Z). Then evidently Γ acts on X(Z). An
important observation for the present paper is that the the set of orbits X(Z)/Γ
can be described in terms of the stabilizer Gx0

of a point x0 ∈ X(Z).
More precisely, X(Z)/Γ is “closely related” to both of the following two objects:

(1) A fiber of the map Ω\Gx0
(Af )/Gx0

(Q) → Ω′\G(Af )/G(Q), where Af is
the ring of finite adeles of Q and Ω, Ω′ are suitable open compact subgroups.

(2) A fiber of the map2 H1(Spec Z,Gx0
) → H1(Spec Z,G), where we have

chosen flat models for G and Gx0
over Spec Z (if this is possible) and the

cohomology is fppf.

We refer to Sec. 3 for a full explanation of what “closely related” means. For
now we remark that the second assertion is simply an integral version of the fact
that, if H ⊂ G are algebraic groups over a field k, then the G(k) orbits on G/H(k)
are parameterized by the kernel of H1(k,H) → H1(k,G). The first remark is
then not surprising, for it is well-known that H1 of algebraic groups over Z can be
interpreted in terms of suitable adelic quotients.

In the context of Theorem 1, we will take for X the variety parameterizing
isometric embeddings of a quadratic form Q′ into another quadratic form Q. Now,
all we wish to prove is that X(Z) is nonempty if certain local conditions are satisfied.
This will follow from establishing the surjectivity of the maps described above. In
the first picture, this surjectivity can be approached by studying the dynamics3 of
the action of Gx0

(Af ) on Gx0
(Q)\G(Af ). In practice, there is no loss in passing

from the adeles to a single completion Qp and applying dynamical results for actions
of the p-adic Lie group Gx0

(Qp).

2Here we have used algebro-geometric language. However, this will not be used in the proof of
Theorem 1.

3At a vague level one can see the existence of this hidden dynamical structure as a refinement
of the obvious fact that is possible to take g ∈ G(Q) which moves one Γ-orbit to another.
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1.4. Idea of the proof. We now give a more concrete outline of the plan of the
proof of Theorem 1. We also highlight historical uses of related techniques (es-
pecially by Linnik) in special cases. The key new ingredient (when compared to
existing methods for the analysis of such problems ) is Ratner’s theorem; to apply
this result, one needs in addition to reduce the question to classification of er-
godic measures – here Lemma 6 allows a considerable simplification – and to verify
appropriate “non-focussing” conditions.

The treatment of certain auxiliary issues necessary to apply Ratner’s theorem
is deferred to the Appendix. For the purpose of the present section, this can be
assumed.

1.4.1. Outline in elementary terms. We begin with a bit of hand-waving to give
the general idea. Let (Zm, Q′) be some quadratic form which is everywhere locally
represented by Q; we seek to prove that it is globally represented. By Hasse-
Minkowski, Q′ is globally represented by Q over the rational numbers: that is to
say, there exists an isometric embedding lQ of (Zm, Q′) into (Qn, Q⊗Q). However,
we still have a large symmetry group to play with: clearly, we can compose lQ with
any isometry γ ∈ SOQ(Q) and the result will still be an isometric embedding; thus,
we can attempt to find γ such that γ ◦ lQ actually has image in Zn. The idea of
this paper is to use Ratner’s ergodic theorems to show that one can find such a γ,
and indeed with Q replaced by the much smaller ring Z[1/p] for suitable p. That
the existence of such a γ should be a rather subtle matter can already be seen in
the case n = 3, m = 1, where the local-global theorem was established by Duke and
Schulze-Pillot and is very closely tied to subconvexity bounds for L-functions. In
any case, this description does not really capture the underlying symmetry of the
situation; we give a more detailed description in what follows.

1.4.2. Ternary quadratic forms and the work of Linnik. First, we start with a situ-
ation to which our theorem is not applicable, but which nevertheless illustrates the
main concepts that enter: namely n = 3, m = 1, i.e. the question of representability
of integers by ternary quadratic forms. This case was essentially completely settled
by W. Duke and R. Schulze-Pillot [7]; for now, we shall describe earlier work due
to Linnik that gave a weaker result [19] but is closer to our needs.

Gauss already observed in Disquisitiones that the number of primitive represen-
tations d = x2 + y2 + z2 is 12h(−4d) for d congruent to 1 mod 4, where h(−4d) is
the class number of the quadratic order Od := Z[

√
−d]. From now on we assume

d squarefree to avoid having to repeatedly specify that we consider only primitive
representations. Gauss’s formula can easily be understood in the framework of Sec-
tion 1.3; here the group G = SO(3), the space X is the quadric x2 + y2 + z2 = d,
and the stabilizer Gx0

is a form of SO(2).
One way to interpret Gauss’ formula is to construct an explicit map from solu-

tions {(x, y, z) ∈ Z3 : x2 + y2 + z2 = d} to binary quadratic forms of discriminant
−4d; such a map is given by associating to a solution (x, y, z) the restriction of the
Euclidean quadratic form to the orthogonal complement (x, y, z)⊥. Although this
is not a bijection, one can precisly quantify how far it is from being a bijection.

However, there is a more suggestive (for our purposes) way of phrasing the an-
swer, that is more familiar from the context of Heegner points on division algebras.
The set

(1) {(x, y, z) ∈ Z3 : x2 + y2 + z2 = d}/SO3(Z),
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carries an action of Pic(Od). This action is almost simply transitive; it fails to be
simply transitive because of problems at 2. More precisely, it is transitive, and its
kernel is the 2-torsion ideal class generated by a prime ideal of Z[

√
−d] above 2.

This Picard group is a quotient of the idele class group of Q(
√
−d); in particular, if

p is a split prime in Q(
√
−d), then the group Q×

p acts on (1); this action is trivial

on Z×
p and indeed factors through a finite cyclic group. Such actions are discussed

in a more general context in Section 3.
This particular case is not relevant to our paper, since the genus of the quadratic

form x2 + y2 + z2 contains only one element, and so the local-global principle is
evident. If one had replaced x2+y2+z2 by a general definite ternary quadratic form
Q(x, y, z), then the relevant algebraic statement is the following: Let {Q1, . . . , Qg}
be the genus of Q. Then

⋃

1≤i≤g

{(x, y, z) ∈ Z3 : Qi(x, y, z) = d}/SOQi
(Z)

still is a principal homogeneous space (or “almost” a principal homogeneous space)
for a suitable Picard group and carries an action of Q×

p for any p that is split

in Q(
√
−dD), where D is the discriminant of Q. Linnik’s method (in modern

language) is then to interpret this action in terms of a suitable collection of closed
orbits of Q×

p on a p-adic homogeneous space (i.e., the quotient of a p-adic Lie group
by a lattice), and then to prove equidistribution results about this collection of
closed orbits.

A modern interpretation and extension of Linnik’s work will appear in the second
paper of the sequence [10], and further work along these lines will appear in [21].

1.4.3. Higher rank quadratic forms and class number problems. A key observation
of this paper is that, in the higher rank case, one retains a residue of this type of
structure after passing to a suitable covering set; however, rather than the action of
the p-adic torus Q×

p (which one can think of as SO2(Qp)), one obtains the action of
a special orthogonal p-adic group in more variables. Again, this can be understood
in terms of Section 1.3; we first describe the action in more classical terms and then
give a “dictionary” between this description and Section 1.3.

Let Q be a positive definite quadratic form of rank n, Q′ a positive definite form
of rank m.

Let G = {Q = Q1, Q2, . . . , Qg} be the genus of Q. Let R be the set of isometric
embeddings of the lattice (Zm, Q′) into any of the lattices (Zn, Qi) for some 1 ≤
i ≤ g. We should like to know whether the forgetful map R → G is surjective;
Siegel’s mass formula gives explicit formulas for the size of R and G (appropriately
weighted), but gives no information about the nature of the map from R to G .

Unlike the case n = 3, m = 1 there are no direct group actions on R; the action
in that case was a special feature arising from the fact that the stabilizer (a form
of SO2) was abelian. What remains true in general is that we can cover R, G by

profinite sets R̃, G̃ :

(2)

R̃ −−−−→ G̃




y





y

R −−−−→ G
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Here:

• G̃ = Γ\G, where G is a p-adic spin group in n variables and Γ is a lattice
in G;

• The image of R̃ in G̃ is an orbit of a certain subgroup H ⊂ G, a spin group
in n − m variables.

The p-adic version of Ratner’s theorem allows us to understand that this H-orbit
is (fairly) dense in G̃ , so R → G is surjective. More precisely, we show that every

open subset of G̃ (in particular, the preimage of an element of G ) has nontrivial
intersection with all but finitely many of the H-orbits that arise (for various Q′) in
the above discussion.

The dictionary between the discussion above and Section 1.3 is as follows: we
take G = SO(Q) and X to be the variety parameterizing isometric embeddings of
Q′ into Q, i.e. the variety of linear maps ℓ : Zm → Zn so that Q ◦ ℓ = Q′. The
stabilizer Gx0

of a point x0 ∈ X(Q) is then an orthogonal group in n−m variables.

Then R (resp. R̃) corresponds to Ω\Gx0
(Af )/Gx0

(Q) (resp. Gx0
(Af )/Gx0

(Q))

whereas G (resp. G̃ ) corresponds to Ω′\G(Af )/G(Q) (resp. G(Af )/G(Q)). As we
remarked before, it is possible to replace the role of Af by Qp for a suitable p.

1.5. Connection to existing work. Schulze-Pillot has pointed out to us that the
set-up of the proof of Theorem 1 is quite close to that of Hsia, Kitaoka and Kneser
[16]. In essence, when the proof of Theorem 1 is unwound, we pass to the ring
Z[1/p], i.e. allow denominators at a suitable auxiliary prime p, and then pass back
to Z (cf. description in Section 1.4.1). This is also done in [16].

As far as the ergodic side of the present paper goes, the closest cognate to our
work is in the paper [12] of Eskin and Oh. They consider a situation analogous
to that discussed in the first situation of Sec. 1.3 but when the stabilizer Gx has
noncompact real points. In that case, there is no issue of local-global principle
(for, in the cases considered, the stabilizer Gx is semsimple and satisfies a suitable
version of strong approximation); the concern of [12] is instead to prove uniform
distribution results for integral points, using, in that case, the results of Ratner for
real groups and the results of Dani-Margulis [6]. In our (p-adic) setting, we do not
have the results of [6] available; Appendix A gives a self-contained proof (assuming
the classification of ergodic measures [20], [26]) of what we need.

As for the arithmetical side of the present paper, the presence of the kind of
group actions remarked on in Section 1.3 and elaborated in Section 3 has been noted
in many different instances, though perhaps not in a unified way. We mention in
particular the work of Linnik [19], Eichler [8], Kneser [18] and Weil [30] on quadratic
forms; the latter two papers already contain a framework essentially equivalent to
what we use for the proof of Theorem 1. More recently, we refer to the work of
Shimura [27] and the beautiful results of Bhargava [2], which of course go much
deeper.

Let us briefly contrast the present work with results on Diophantine inequali-
ties. When considering an irrational quadratic forms in n variables from the point
of view of Diophantine inequalities, e.g. the Oppenheim conjecture, it is natural
to consider the action and dynamics of an orthogonal group in n variables. How-
ever, when investigating the arithmetic properties of a rational quadratic form in
n variables, we will be led naturally to consider the action of a p-adic O(n− 1). In
general, a fundamental difference between irrational and rational quadratic forms
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seems to be the following: whereas for irrational quadratic forms one may utilize
only the dynamics of a real orthogonal group, one may study rational quadratic
forms through the dynamics of an adelic orthogonal group. This added freedom is
precisely why we are able to say something about positive definite quadratic forms:
though the real points of the associated orthogonal group are compact, the p-adic
points need not be.

We must emphasize that from the ergodic point of view there is not much novelty
except, perhaps, Lemma 6 in the appendix. The “deep” and important ingredient
is the classification of ergodic measures, due to Ratner and Margulis/Tomanov in
the setting we consider.
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to W.K. Chan, Hee Oh and Rainer Schulze-Pillot: all of whom took the time and
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and a Sloan Research Fellowship; the second author was supported by a Clay Math
Research Fellowship and NSF Grant DMS-0245606. We thank the Clay Mathe-
matics Institute for supporting collaborative visits during which this paper was
written.

2. Proof of Theorem 1

The scheme of proof is as follows. In Section 2.1 we give some background on
quadratic spaces over global and local fields. In Section 2.2 we introduce the notion
of spin globally representable and state the main Proposition 1 which is valid over an
arbitrary number field. In Section 2.3, we show that Proposition 1 implies Theorem
1. In Section 2.4 and Section 2.5, we explain how Proposition 1 is reduced to a
statement which can be approached by Ratner’s theorem, together with a result
about generation of spin groups by embedded spin groups of smaller dimension.
Finally, in Section 2.6 we resolve the necessary group-theoretic issues, concluding
the proof.

2.1. Quadratic spaces, lattices, genera. We begin with some relatively stan-
dard material on quadratic spaces.

Let F be a number field, O the ring of integers of F . Let (V, q) be a quadratic
space over F . By a lattice in V we mean a locally free O-submodule of V whose
rank is dimV . Let ΛV ⊂ V be a lattice on which q is integral, i.e., a lattice such
that q(ΛV ) ⊂ O.
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We shall assume that q is definite at all infinite places of F . 4 Attached to q we
have a bilinear form 〈v1, v2〉 := 1

2 (q(v1 + v2) − q(v1) − q(v2)). This bilinear form is

not necessarily integral, but takes values in 1
2O.

Let GL(V ), OV , SOV , SpinV be (respectively) the general linear, orthogonal, spe-
cial orthogonal, and spin groups of V . These are algebraic groups over F and con-
sequently we may speak of their points over any ring containing F . If δ ∈ V is such
that q(δ) 6= 0 we will denote by rδ ∈ OV (F ) the reflection through the orthogonal

complement of δ: that is to say w 7→ w − 2 〈w,δ〉
〈δ,δ〉 δ.

Let A (resp. Af ) be the ring of adeles (resp. finite adeles) of F .
It is well-known that GL(V, Af ) acts on the lattices in V ; by restriction we obtain

an action of OV (Af ) on the lattices in V ; via the map SpinV (Af ) → OV (Af ), we
obtain also an action of SpinV (Af ) on lattices. Recall that one says that two lattices
∆1, ∆2 in V are locally isomorphic if they are isomorphic as quadratic spaces over
each completion of O. With this definition, the equivalence relation corresponding
to the OV (Af )-orbits is exactly that of local isomorphism.

If L1, L2 are two locally free O-modules endowed with quadratic forms, we denote
by Isom(L1, L2) the set of isometric embeddings of L1 into L2.

For each finite place v, the stabilizer of a lattice ∆ in SOV (Fv) is an open

compact subgroup K∆,v. Let K̃∆,v be the preimage of K∆,v in SpinV (Fv). Put

K∆,f =
∏

v finite K∆,v and K̃∆,f =
∏

v finite K̃∆,v. In the case ∆ = ΛV we write

simply Kv, Kf , K̃v, K̃f .
We recall that, for each place v, one has a homomorphism (the “spinor norm”)

from SOV (Fv) to F ∗
v /(F ∗

v )2, which sends the product of reflections rvrv′ to q(v)q(v′).
Moreover the image of SpinV (Fv) in SOV (Fv) coincides with the kernel of the spinor
norm.

We will need some facts about quadratic forms over local fields. Continue to
assume that v is a finite place; let Ov be the closure of O in Fv.

Lemma 1. Suppose J is a nondegenerate quadratic space over Fv, and the residue

characteristic of Fv is larger than 2. Then:

(1) If dim(J) ≥ 3, then the spinor norm SOJ (Fv) → F ∗
v /(F ∗

v )2 is surjective.

(2) If dim(J) ≥ 5, then J is isotropic.

(3) If dim(J) ≥ 5, the spin group SpinJ (Fv) is generated by the unipotent

radicals of parabolic subgroups.

(4) If dim(J) ≥ 5, then the spin group SpinJ(Fv) is generated by the embedded

spin groups SpinP (Fv) for P a hyperbolic plane5 inside J .

(5) If dim(J) ≥ 5, then the subgroup of OJ(Fv) generated by reflections asso-

ciated to vectors of length 1 contains the image of SpinJ (Fv) in OJ(Fv).

Proof. We verify first the assertion about the surjectivity of the spinor norm. We
may assume dim(J) = 3. The question is unchanged by replacing the quadratic
form on J by any multiple of itself; thus, in suitable coordinates, the form takes the
shape x2 +q(y, z), where q(y, z) is a quadratic form in y, z. If q represents the value

4Otherwise, the spinor genus of ΛV contains a unique class by strong approximation as soon
as dim(V ) ≥ 3. In that case we shall regard the problem as solved, although in the general
(nonsquarefree discriminant case) there are complicated local issues involved. Note that the
assumption entails that F is totally real, but we shall not make any use of this.

5Recall that a hyperbolic plane is a two-dimensional nondegenerate quadratic space possessing
an isotropic vector.
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d ∈ F ∗
v , then it easily follows that all norms from the quadratic extension Fv(

√
−d)

are values of the spinor norm on SOJ (Fv). By class field theory, if d is not a square,
the group of norms from Fv(

√
−d) is an index 2 subgroup of F ∗

v determining the
square class of d. So it suffices to show that the nonzero values taken by q do not
all lie within a single coset of F ∗

v /(F ∗
v )2. But q itself is a multiple of a norm form

on a quadratic extension of Fv, whence the assertion.
We omit the proof of the second assertion, which is due to Hasse.
If J is isotropic, the group SpinJ (Fv) is projectively simple (any normal subgroup

is central, and in particular finite), as is proved in [1, Theorem 5.27]. This implies
the third, fourth and fifth assertions. �

Let v : Fv → Z ∪∞ be the associated valuation. Recall that we say that a sub-
space of a quadratic space is regular if the induced quadratic form is nondegenerate.
For any quadratic subspace Z of V ⊗ Fv we put val(Z) to be the valuation of the
discriminant of the quadratic form induced on Z∩ (Λ⊗Ov). In other words, choos-
ing an Ov basis w1, . . . , wr for Z ∩ (Λ ⊗ Ov), we put val(Z) := v(det(2〈wi, wj〉)).
(The inclusion of 2 is to guarantee that val(Z) ≥ 0, and is superfluous if the residue
of characteristic of Fv is bigger than 2, as will always the case in our discussion.)
Z is regular if and only if val(Z) < ∞.

Lemma 2. Suppose Zi is a sequence of subspaces of V ⊗ Fv such that val(Zi)
remains bounded. Then there exists a compact set Ω ⊂ SpinV (Fv) and a parti-

tion of (Zi) into finitely many subsequences, such that if Zi, Zj belong to the same

subsequence there exists ωij ∈ Ω with ωijZi = Zj.

Proof. Without loss, we may assume that dim(Zi) is fixed, say = r. Let Grassr be
the Grassmannian of r-dimensional subspaces in V . Then the result follows easily
from the following assertions:

(1) For any point Z ∈ Grassr(Fv), the map GLV 7→ Grassr given by g 7→
g.Z is submersive6 at the identity (in particular, the image of an open
neighbourhood of the identity in GLV (Fv) contains an open neighbourhood
of Z).

(2) For any point Z ∈ Grassr parametrizing a regular subspace, the map
SpinV (Fv) 7→ Grassr given by g 7→ g.Z is submersive at the identity (in
particular, its image of an open neighbourhood of the identity contains an
open neighbourhood of Z).

(3) The set {Z ∈ Grassr : val(Z) ≤ N} is compact.

The first two assertions may be checked at the level of tangent spaces. For the final
assertion it suffices to check that the complement of the subset in question is open.

This follows from the fact that g 7→ q
−val(g.Z)
v is continuous for g ∈ GLV (Fv). 7

�

Let L (V ) = SOV (Af ) ·ΛV be the set of lattices in V that are locally isomorphic
to ΛV , LSpin(V ) = SpinV (Af ) · ΛV the set of lattices “locally spin-isomorphic”
to ΛV . Then L (V ) is identified with the quotient SOV (Af )/Kf , and LSpin(V ) is

6We say a map of two smooth algebraic varieties V1 → V2 over a field k is submersive at
v1 ∈ V1(k) if the induced map on tangent spaces is surjective. If k is a local field this implies
(“implicit function theorem”) that the image contains a neighbourhood of the image of v1.

7Indeed, choose any g0 ∈ GLV (Fv); we claim there is a neighbourhood on which g 7→ val(g ·Z)
is the valuation of a polynomial function in the coordinates of g. Let Uv ⊂ GLV (Fv) be the
stabilizer of Λ ⊗ Ov. For u ∈ U , we have ug0Z ∩ (Λ ⊗ Ov) = u(g0Z ∩ (Λ ⊗ Ov)); thus, the map
u 7→ val(ug0Z) is the valuation of a polynomial in the coordinates of u.



10 JORDAN ELLENBERG AND AKSHAY VENKATESH

identified with SpinV (Af )/K̃f . The genus G (V ) of ΛV is the quotient of L (V ) by
SOV (F ). The spin genus GSpin(V ) of ΛV is the image of LSpin(V ) in G (V ). It is
well-known that G (V ) and so also GSpin(V ) are finite sets.

Moreover, G (V ) is identified with SOV (F )\SOV (Af )/Kf ; moreover, if we write,
for each v, Θv for the image of SpinV (Fv) → SOV (Fv), and put Θf =

∏

v finite Θv,
then GSpin(V ) is identified with SOV (F )\SOV (F )ΘfKf/Kf .

2.2. The notion of spin globally representable. Let W be a regular subspace
of V over F , with induced quadratic form qW , and ΛW = W ∩ ΛV the induced
lattice. Our main concern in the present document is to show that ΛW , endowed
with the quadratic form obtained from qW , embeds primitively isometrically into
every lattice in the spin genus of ΛV . (We say an embedding ℓ : ΛW → Λ′ is
primitive if the image of ΛW is saturated in Λ′, i.e. ℓ(ΛW ).F ∩ Λ′ = ℓ(ΛW ). If
disc(ΛW ) is squarefree, which will be the case for us, then any embedding ΛW → Λ′

is automatically primitive.) If this is the case, we shall say that W is spin globally

representable.
In other words: a subspace W is spin globally representable if, for every g ∈

SpinV (Af ), there exists a primitive isometric embedding of the lattice W ∩ΛV into
g.ΛV .

Fix a nonarchimedean place w of F , with residue characteristic > 2. We shall say
a subspace W ⊂ V is good if codim(W ) ≥ 7 and the w-valuation of the determinant
of ΛW is ≤ 1, i.e. val(W ⊗ Fw) ≤ 1 in the notation introduced prior to Lemma 2.
There is surely scope for considerable relaxation of both these conditions.

The following result (which we state over a general number field) is our key
result, and implies almost immediately Theorem 1.

Proposition 1. There exist a finite list of nontrivial subspaces E1, . . . , Ed ⊂ V such

that any good subspace W that does not contain any Ei is spin globally representable.

2.3. Proposition 1 implies Theorem 1. We explicate how this Proposition im-
plies Theorem 1.

We specialize to the field F = Q and will use the classical language of quadratic
forms. Let (Zn, Q) be a positive definite quadratic form on Zn. Let Q1, . . . , Qg be
the spin genus of Q. (In the language of Section 2.1, with (V = Qn, q = Q), the Qi

are the quadratic forms induced on a set of representatives for GSpin(V ).)
Let Q′ be a quadratic form with squarefree discriminant on Zm which is every-

where locally represented by Q. In what follows, we sometimes write QR for the
quadratic form induced by Q on Rn, for an arbitrary ring R.

Lemma 3. Q′ is globally represented by a form in the spin genus {Q1, . . . , Qg}.
See [15], which proves a slightly stronger assertion, without any assumption of

squarefree discriminant on Q′. We include a proof in the interest of keeping the
paper self-contained.

Proof. While this may be proven with the mass formula, we prefer to give a direct
proof. By Hasse-Minkowski, we may choose8 a subspace W ⊂ Qn such that the
restriction of QQ to W is isomorphic to Q′

Q. Choose L′ ⊂ W so that the quadratic
form induced on L′ is isomorphic to Q′. Moreover, by the definition of “local

8This “subspace version” of Hasse-Minkowski is easily decuced from the usual version; see [23,
Theorem 66:3]
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representability” we have for each p a subgroup L′
p ⊂ Zn

p such that the restriction
of QZp

to L′
p is isomorphic to Q′

Zp
.

We may choose for each p, an element gp ∈ SpinQ(Qp) with the property that
gpL

′
p = L′ ⊗ Zp, in such a fashion that gp fixes Zn

p for almost all p. Indeed there
exists an isometry h : L′

p → L′ ⊗ Zp of quadratic Zp-modules; extend h ⊗ Qp to a
global isometry by Witt’s theorem. This gives an element gp ∈ SOQ(Qp) with the
property that gpL

′
p = L′⊗Zp. To do better, we just note that because dim(Tp) ≥ 3,

where Tp is the orthogonal complement of Wp, the spinor norm on SOTp
is surjective

by Lemma 1. So we can modify gp by an element of SOTp
, thought of as an element

of SOQ stabilizing Wp, to be in SpinQ(Qp).
We set Λp = gpZn

p and Λ = {λ ∈ V : λ ∈ Λp for all p}. Then (Λ, Q|Λ) is
evidently in the spin genus of (Zn, Q).

We also note that W ⊗ Qp = L′ ⊗ Qp = (gpL
′
p) ⊗ Qp, so that (Λ ∩ W )p =

gp(Z
n
p ∩ L′

p ⊗ Qp) = gpL
′
p, where at the last stage we have used the fact that the

discriminant of Q′ is squarefree. So Λ ∩ W = L′, that is to say, Q′ is represented
by the quadratic form Q|Λ which belongs to the spin genus of (Zn, Q). �

We may now complete the proof of Thm. 1.

Proof. (of Thm. 1) Let Q be as in the statement of the theorem. Let n − m ≥ 7
and let Q′

i, for i ≥ 1, be a sequence of quadratic forms with squarefree discriminant
on Zm, with minima approaching ∞, and all of which are locally representable by
Q. By the previous Lemma (or the mass formula), Q′

i is represented by a form in
the spin genus of Q.

Let {Q = Q1, . . . , Qg} be the spin genus of Q. Partitioning (Q′
i) into subse-

quences, we may assume that all the Q′
i embed into a fixed Qj, say Qh for some

1 ≤ h ≤ g. Realize Qh as a quadratic form on Zn. So, in other words, we have sub-
modules Li ⊂ Zn such that the quadratic form induced by Qh on Li is isomorphic
to Q′

i. Because the discriminant of each Q′
i is squarefree, we have Li = Zn ∩ Wi,

with Wi = Q.Li.
Fix a prime p; we will apply Proposition 1 with w = p, F = Q, V = Qn, ΛV = Zn.

By that Proposition, there is a finite collection of nontrivial subspaces {E1, . . . , Ed} ⊂
Qn such that any good W not containing any Ej is spin globally representable.
The Wi = Q.Li are automatically good in the sense defined prior to Proposition
1 (because of the assumption of squarefree discriminant and of codimension ≥ 7).
Moreover, the Wi cannot contain any Ej if i is large enough; for otherwise the
minimum of Q′

i would not approach ∞.
Applying Prop. 1, we conclude that the Wi = Q.Li are spin globally repre-

sentable for sufficiently large i. Translating back to quadratic forms, this means
precisely that Q′

i embeds into each Qj , for 1 ≤ j ≤ g and sufficiently large i; in
particular, all but finitely many Q′

i are represented by Q1 = Q. So we are done. �

2.4. Reduction of Prop. 1 to Ratner’s theorem. Our aim is now to prove
Proposition 1.

In the setting of Prop. 1, let T be the orthogonal complement of W (since W
is regular, we have W ⊕ T = V ) and define GL(T ), OT , SOT , SpinT accordingly.
These groups are embedded in GL(V ), OV , SOV , SpinV respectively, and, in this
embedding, they are identified with the subgroups that fix W pointwise. 9

9Indeed, there is a natural map of Clifford algebras Cliff(T ) → Cliff(V ), which is injective.
This induces an injective map SpinT → SpinV ; clearly the image is contained in the subgroup



12 JORDAN ELLENBERG AND AKSHAY VENKATESH

Consider the set RSpin(W, V ) of lattices ∆ ∈ SpinV (Af ) · ΛV with the property
that ∆∩W = ΛW . Then the action of SpinT (Af ) preserves RSpin(W, V ). There is
a natural map RSpin(W, V ) 7→ GSpin(V ), namely, that which sends a lattice ∆ to its
class [∆] in the spin genus. Moreover, W is spin globally representable if this map is
surjective. Note that ΛV ∈ RSpin(W, V ), by definition, and so also SpinT (Af )·ΛV ⊂
RSpin(W, V ). To show that ΛW embeds primitively isometrically into every lattice
in the spin genus of V , it will suffice, then, to show that SpinT (Af ) ·ΛV ⊂ LSpin(V )
surjects onto GSpin(V ). For this, it will suffice to check that the closed subset

SpinT (F )\SpinT (Af ) of SpinV (F )\SpinV (Af ) intersects each K̃f -orbit.
We will prove Prop. 1 in the following formulation. As in that Proposition, we

regard as fixed a certain nonarchimedean place w of F , with residue characteristic
> 2; the notion of good is defined w.r.t. this place.

Proposition 2. Let Wi ⊂ V be a sequence of good subspaces, with the property

that no infinite subsequence of the Wi has a nontrivial common intersection. Then

Wi is spin globally representable for all sufficiently large i.

In fact, it is clear that Prop. 1 implies Prop. 2. We now explain how Prop. 2
implies Prop. 1. Suppose that Prop. 1 is false. We define a sequence W1, W2, . . . of
subspaces of V inductively as follows: let Σk be the set of nonempty intersections
of subsets of W1, . . . , Wk, and let Wk be a subspace of V which is not spin globally
representable and does not contain any subspace in Σk−1. (We can chose such a
subspace by the negation of Prop 1.) It is then clear that any r-fold intersection
among the Wi has codimension at least r. In particular, no infinite subsequence of
W1, . . . , has nontrivial intersection, contradicting Prop. 2.

In the setting of Prop. 2, we have now a sequence of orthogonal complements Ti

and associated groups OTi
, SOTi

, SpinTi
etc.

Prior to applying Ratner’s theorem, we must switch from an adelic to an S-
arithmetic setting. We recall we have fixed a nonarchimedean place w of F . Set
K̃(w) =

∏

v 6=w K̃v, where the product is restricted to finite places.

By the strong approximation theorem, it follows that SpinV (F )·SpinV (Fw)·K̃f =

SpinV (Af ). Then the adelic quotient SpinV (F )\SpinV (Af )/K̃(w) is naturally iden-

tified with Γ\SpinV (Fw), where Γ is the projection of SpinV (F ) ∩ SpinV (Fw)K̃(w)

to SpinV (Fw). Note that Γ is a cocompact lattice in SpinV (Fw).
We want to show that – at least for big enough i – the quotient SpinTi

(F )\SpinTi
(Af )

intersects each K̃f -coset in SpinV (F )\SpinV (Af ); it will suffice to see that Γ ∩
SpinTi

(Fw)\SpinTi
(Fw) intersects each K̃w-coset in Γ\SpinV (Fw).

We now wish to reduce to a situation where we are studying orbits of a fixed

group (not a varying sequence of groups like the SpinTi
(Fw)).

Note that Wi ⊗ Fw is a certain quadratic subspace of V ⊗ Fw; in view of the
assumption that Wi is good, val(Wi ⊗Fw) ≤ 1 and Lem. 2 is applicable. Partition-
ing our original sequence (Wi) into appropriate subsequences, we may assume that

fixing W pointwise. To see that this is in fact the image, it suffices to check that Cliffeven(T )
is exactly the centralizer of W in Cliffeven(V ). Take an orthonormal basis {e1, . . . , er} for T
and extend it to an orthonormal basis {e1, . . . , en} for V . For a subset J ⊂ {1, . . . , r}, we put
eJ =

∏

i∈J ei, where the product is taken w.r.t. an increasing ordering of the elements in J . Then

it is easy to verify that ejeJe−1

j = (−1)|J|eJ if j /∈ J and (−1)|J|+1 otherwise. The assertion

follows from this.
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there is a fixed Ww ⊂ V ⊗ Fw and a compact subset Ω ⊂ SpinV (Fw) such that, for
each i, there is ξi ∈ Ω with ξi(Ww) = Wi ⊗ Fw.

Let Tw be the orthogonal complement of Ww inside V ⊗ Fw, and denote by
SpinTw

the spin group of Tw. Then SpinTi
(Fw) = ξiSpinTw

(Fw)ξ−1
i .

Definition 1. We say that a sequence of subsets Xi of a topological space is be-
coming dense if every open subset intersects Xi for all sufficiently large i.

Put G = SpinV (Fw), H = SpinTw
(Fw). We claim that if the closed subsets

Γ\ΓξiH are becoming dense in Γ\G, then Wi is spin globally representable for all

sufficiently large i. Indeed, we need to check that ΓξiHξ−1
i intersects each K̃w coset

ΓgK̃w; note there are only finitely many possibilities for ΓgK̃w. Equivalently, we
need to check that that ΓξiH intersect ΓgK̃wξi. But, ξi being constrained to a
compact set, the number of possibilities for K̃wξi is finite; so the latter statement
would certainly follow if we know that ΓξiH are becoming dense.

2.5. Application of the theorem of Ratner, Margulis/Tomanov; conclu-
sion of proof of Prop. 1 and 2. As was indicated in the previous section, Prop.
1, or equivalently Prop. 2, will follow from the following statement:

Claim: Let V a quadratic space over F , Tw a subspace of V ⊗ Fw of dimension
≥ 7, G = SpinV (Fw), H = SpinTw

(Fw) and Γ the arithmetic cocompact lattice in
G defined in the previous section. Let ξi ∈ G belong to a fixed compact subset of
G and have the property that ξiHξ−1

i is the stabilizer in SpinV (Fw) of a certain
F -subspace Wi, where no infinite subsequence of the Wi have a nontrivial common
intersection. Then Γ\ΓξiH is becoming dense in Γ\G as i → ∞.

To complete the proof of Prop. 2, we shall require two further results. Firstly,
we need a suitable consequence of the theorems of Ratner and Margulis-Tomanov;
this is stated in Prop. 3 below and proved in the Appendix. The second is a
group-theoretic result about generation of spin groups.

Proposition 3. Suppose ξi ∈ G remain within a compact set and, for any subse-

quence of i, the subgroups ξiHξ−1
i generate10 G. Let µi be the H-invariant probabil-

ity measure on Γ\ΓξiH. Then any weak limit of the measures µi is the G-invariant

probability measure on Γ\G.

Proof. This is given in the Appendix. Note that one needs to verify the conditions
enumerated in Section A.3; these follow from Lemma 1 and standard facts. �

Proposition 4. Let Wi be subspaces of a quadratic space V over a nonarchimedean

local field Fw and let G = SpinV (Fw). Suppose that codim(Wi) ≥ 7 and that no

infinite subsequence of the Wi have a common nonzero intersection. Then the

subgroup generated by the stabilizers of Wi in G, is in fact all of G.

The proof is given in Sec. 2.6. Together these results prove immediately the
Claim above, and therefore also Prop. 1, 2.

2.6. Proof of Prop. 4. In this section we give the proof of Prop. 4. During
this section, we will work exclusively with the Fw-points of certain algebraic groups
over Fw. Consequently, for brevity, we write simply (e.g.) OV or SpinV instead of
OV (Fw) or SpinV (Fw).

10It will suffice that they generate a Zariski-dense subgroup of G, as will be clear from the
proof.
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We will need a few lemmas. As before we set Ti = W⊥
i ; then no infinite subse-

quence of the Ti are contained in a common proper subspace. Recall that by OTi

we mean the stabilizer of Wi in the orthogonal group OV . We will first prove that
the subgroup generated by OTi

is all of OV , and finesse the claimed result from
this. Let Ξ be the subgroup generated by all the OTi

.
We shall first check that Ξ acts transitively on vectors in V of length 1.
Let U be any nondegenerate subspace of V of dimension at least 7, and Π the

orthogonal projection from V to U⊥. Recall that rw denotes the reflection through
the hyperplane perpendicular to w, whenever w ∈ V is such that q(w) 6= 0.

Lemma 4. Let v ∈ V and w ∈ V so that q(w) 6= 0. Suppose w /∈ U ∪ U⊥ and

v /∈ U⊥. There exists g ∈ 〈OU , rw〉 such that Π(gv) − Π(v) = Π(w) and gv /∈ U⊥.

Proof. We will find such a g of the form rwσ, for an appropriate choice of σ ∈ OU

to be made at the end. Write v = u0 + u⊥
0 , with u0 ∈ U, u⊥

0 ∈ U⊥. Note that
gv /∈ U⊥ if σv /∈ 〈U⊥, w〉, which is certainly true if σu0 does not belong to the line
spanned by the projection of w to U .

Now

Π(gv − v) = Π(rwσu0) + Π(rwu⊥
0 − u⊥

0 )

Now rwu⊥
0 − u⊥

0 is a certain multiple of w. We therefore want to solve Π(rwσu0) =
Π(w)−Π(rwu⊥

0 −u⊥
0 ); the right hand side is certainly a multiple of Π(w). Moreover,

we want σu0 not to belong to the line spanned by the projection of w to U .
The map u 7→ Π(rwu) is, by assumption that w /∈ U ∪ U⊥, a surjection from U

onto the line spanned by Π(w). Let K be its kernel.
K is a certain subspace of U of codimension 1. Choose a nondegenerate subspace

J ⊂ K of codimension at most 2 inside U . (Let K⊥ be the orthogonal complement
to K within U . If K⊥ ∩K is trivial, we can take J = K; otherwise, K⊥ ⊂ K, and
one can take for J any codimension 1 subspace of K not containing K⊥).

We claim that every J-coset (and consequently every K-coset) has nonempty
intersection with every level set of the form {u ∈ U : q(u) = c} Indeed, it suffices
to check that for any linear functional l on J and for any c′ ∈ Fw, the equation
q(u) + l(u) = c′ is solvable with u ∈ J ; but because J is nondegenerate, we can
convert this (after an affine change of coordinates) to the equation q(u) = c′′. This
is solvable as long as dim(J) ≥ 5, by Lemma 1. More precisely, the intersection of
the J-coset with the level set is the Fw-points of an affine quadric of dimension at
least 4. But such a quadric is automatically isomorphic over Fw to an open subset
of projective space; in particular, its Fw-points are Zariski dense.

It follows that there exists u ∈ U − {0} satisfying q(u) = q(u0) and Π(rwu) =
Π(w) − Π(rwu⊥

0 − u⊥
0 ). Moreover (by the Zariski density) this u can be chosen

to avoid the line spanned by the projection of w to U . Now choose σ so that
σu0 = u. �

Lemma 5. Ξ acts transitively on vectors v ∈ V satisfying q(v) = 1.

Proof. Take v1, v2 with q(v1) = q(v2) = 1. By virtue of the assumption that
no infinite subsequence of Ti are contained in a proper subspace, there exists Ti

perpendicular to neither v1 or v2; call it U0. Let Π be the orthogonal projection
onto U⊥

0 .
Again, because no infinite subsequence of Ti are contained in a proper subspace,

the subspaces Ti not contained in U0 or U⊥
0 span V . Therefore, the subspace of
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U⊥
0 spanned by Π(ti) with ti ∈ Ti, q(ti) 6= 0 and ti /∈ U0 ∪ U⊥

0 is a linear subspace
of U⊥

0 that is also topologically dense; so it coincides with U⊥
0 .

It follows that there exist a finite list ti ∈ Ti with q(ti) 6= 0, ti /∈ U0 ∪ U⊥
0 for

all i and so that Π(v1) − Π(v2) =
∑

i Π(ti). Repeated applications of the previous

Lemma show that there is g ∈ Ξ with Π(gv1) = Π(v2) and gv1 /∈ U⊥
0 . Thus the

projection of gv1 and v2 to U0 both have the same norm and are both nonzero.
Modifying g by an element of OU0

as necessary, we see that Ξ maps v1 to v2 as
required. �

Now, Ξ by definition is the subgroup generated by the OTi
. It follows from this

and Lemma 5 that Ξ contains all reflections through vectors of length 1 (for there
exists such a vector in any of the Ti). By Lemma 1, Ξ contains the image of SpinV

in OV . Since (by Lemma 1 again) the spinor norm is surjective on SOTi
, we deduce

from this that Ξ contains also SOV , and so Ξ = OV .
We are now ready to complete the proof of Prop. 4.

Proof. Let P be the class of hyperbolic planes inside V . For any P ∈ P and any
Ti, we first claim that the orbit OTi

·P ⊂ P coincides with the orbit SpinTi
·P . For

this, it suffices to check that if HP is the stabilizer of P in OTi
, then HP surjects

onto the finite quotient OTi
/SpinTi

. But HP contains the pointwise stabilizer, in
OTi

, of the projection of P to Ti; it is easy to see that HP contains the orthogonal
group of a nondegenerate subspace W0 of Ti of codimension ≤ 4. Since dim(Ti) ≥ 7,
we see that the dimension of W0 is ≥ 3; then OW0

contains a reflection and the
spinor norm is surjective on SOW0

by Lemma 1.
Let Ξ0 be the subgroup of SpinV generated by the stabilizers of the Wi. Then it

follows from the remark above that the Ξ0-orbits on P coincide with the Ξ-orbits.
But, by Witt’s theorem, Ξ = OV acts transitively on P. So Ξ0 also acts transitively
on P.

Now there exists at least one P ∈ P that is a subspace of some Ti, because,
since dim(Ti) ≥ 7, Ti is isotropic (Lemma 1). So Ξ0 contains SpinP for this choice
of P . Thus Ξ0 contains the subgroup of SpinV generated by {SpinP : P ∈ P}.
This coincides with SpinV by Lemma 1. �

3. Algebraic structures associated to integral orbits.

This section is an expansion of the brief remarks in Section 1.3. It is devoted to
a discussion of “class number problems,” and the role of the stabilizer. We have
included this material since we believe it gives the correct context for our work;
however, we note that the proof of Theorem 1 is independent of the material in this
section.

Much of the material in this section may be found, implicitly or explicitly and in
various contexts, in the work of many authors (see Section 1.5 for some references).
Indeed, the study of class number problems begins with Gauss. Our goal in this
section has been to give a coherent discussion of such problems in a quite general
setting.

3.1. Class number problems. Let G be an algebraic group over Q; let ρ : G →
GL(V ) be a Q-linear representation of G. Let v0 ∈ V be so that the orbit G.v0 is a
closed variety X; let H be the isotropy subgroup of v0. H must be reductive; indeed,
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this is equivalent to X being affine. Let Γ be a congruence lattice in G := G(R)
and let Λ be a Γ-stable lattice in V . We set11 XZ := X(Q) ∩ Λ.

It is worth remarking that all the morphisms of groups we discuss depend on the
choice of v0 ∈ X .12

Class number problem: Understand the parameterization and distribution of Γ-
orbits on XZ.

In Section 3.2 we carry this out in a rather ad hoc way, first parameterizing orbits
over Q and then passing to Z. In Section 3.4 we describe a more unified, but less
concrete approach in terms of torsors. Either way, the material of this Section is
intended to justify the approximate discussion of Section 1.3. Although to apply
either of the parameterizations (of Section 3.2 or Section 3.4) requires (possibly
complicated) local computations, the discussion still has considerable explanatory
power at a heuristic level. For example, the situations where the Γ-orbits on X(Z)
can be given the structure of a group (or at least a principal homogeneous space
for a group) should be precisely those where the stabilizer Gx is abelian, as in the
case of representations of integers by ternary forms discussed in Section 1.4.2.

3.2. Parametrization of orbits. Let Af be the ring of finite adeles and let Kf be
the closure of Γ in G(Af ); thus Γ = G(Q)∩Kf . The quotient Kf\G(Af)/G(Q) is
finite; we refer to it as the genus of Γ. Fix a set of representatives {1 = g1, . . . , gh}
for the cosets. For each 1 ≤ i ≤ h, set Λi = g−1

i ·Λ (recall that G(Af ) acts naturally

on lattices in V ) and Γi = G(Q)∩ g−1
i Kfgi. Then Λi is stable under Γi, and Λ1 =

Λ, Γ1 = Γ. We will eventually describe a parameterization of
⋃

i Γi\(X(Q) ∩ Λi).
As is common in this genre of problem, it is significantly easier to understand this
union of orbits than the individual orbits themselves.

3.2.1. Parametrization of Q-orbits. The orbits of G(Q) on X(Q) are parameterized
by the kernel of the map of pointed sets

H1(Gal(Q/Q),H(Q)) → H1(Gal(Q/Q),G(Q)).

Explicitly, given a representative x ∈ X(Q) for an orbit, there exists g ∈ G(Q) such
that gv0 = x; for each σ ∈ Gal(Q/Q), we have gσv0 = x, so that σ 7→ g−1gσ defines
an element of the former set.

3.2.2. Parametrization of Z-orbits within a Q-orbit. We fix a Q-orbit G(Q).x and
are interested in parameterizing Γ-orbits on G(Q).x∩XZ. Let C be the set of such
classes. More generally, let Ci be the set of Γi-orbits on G(Q).x∩Λi. Thus C1 = C .
As is usual in such problems, it will be simpler to parameterize

⋃

i Ci, the union of
classes associated to the genus of Γ.

Let G(Af )int = {g ∈ G(Af ) : g.x ∈ Λ⊗Ẑ}; thus G(Af )int =
∏

p G(Qp)
int, where

G(Qp)
int := {gp ∈ G(Qp) : g.x ∈ Λ ⊗ Zp}. We note that Kf .G(Af )int = G(Af )int.

Then the set of δ ∈ G(Q) such that δ.x ∈ XZ is exactly G(Q)∩G(Af )int. It follows

11We note that XZ may be empty without the following discusion becoming vacuous; indeed,
the following discussion may be used to prove XZ is nonempty, as is done in the text.

12It would be instructive to understand how the objects in this paper vary with choice of
basepoint, and whether a more canonical construction is possible. For instance: the solutions to
x2 + y2 + z2 = d, as we have seen, are in bijection with a class group, but not canonically so; the
canonical structure on this set is that of a torsor for a class group.



LOCAL-GLOBAL PRINCIPLES FOR REPRESENTATIONS OF QUADRATIC FORMS. 17

that C is naturally identified with the quotient G(Q)∩Kf\G(Q)∩G(Af )int/Gx(Q),
that is to say:

C
∼→ Kf\KfG(Q) ∩ G(Af )int/Gx(Q)

Similarly,

Ci
∼→ Kf\KfgiG(Q) ∩ G(Af )int/Gx(Q).

We conclude that the union
⋃

i Ci is naturally identified with
⋃

i

Ci

∼=→ Kf\G(Af )int/Gx(Q)

Thus
⋃

i Ci is easy to describe: it maps to Kf\G(Af )int/Gx(Af ), which can be
computed purely locally; and the fiber above the class Kf .q.Gx(Af ) is identified
with q−1Kfq ∩ Gx(Af )\Gx(Af )/Gx(Q):

⋃

i

Ci =
⋃

q∈Kf\G(Af )int/Gx(Af )

q−1Kfq ∩ Gx(Af )\Gx(Af )/Gx(Q).

Note that Kf\G(Af )int/Gx(Af ) is precisely the set of Kf orbits on G(Af ).x ∩
(Λ ⊗ Ẑ). The computation of this set of orbits is a purely local problem.

Thus what we have shown may be phrased: the union of classes Ci, where i
varies over the genus of Γ, is parameterized by a certain union of adelic quotient
spaces associated to Gx.

3.2.3. A diagram. We can summarize this discussion in the following diagram,
where the left-hand vertical sequence of sets is exact in the sense that the first
term is exactly the fiber over an element q of the last term.

(3)

q−1Kfq ∩ Gx(A)\Gx(A)/Gx(Q)
g 7→qg−−−−→ Kf\G(Af )/G(Q)





y

=





y

⋃

i Ci −−−−→ i ∈ {1, 2, . . . , h}




y

{q ∈ Kf\G(Af )int/Gx(Af )}
In practice, this subdivides the study of the original orbit set C = C1 into two

sub-problems:

(1) Local problem: understand the set of orbits Kf\G(Af )int/Gx(Af ).
(2) Global problem: in order to “recover” C from the union ∪iCi, we must un-

derstand the behavior of the maps from q−1Kfq ∩ Gx(A)\Gx(A)/Gx(Q)
to Kf\G(Af )/G(Q). It is this which can be approached via ergodic meth-
ods, for it is evidently related to the dynamics of the action of Gx(A) on
G(Af )/G(Q).

We note that the term at the bottom left is trivial if Kf acts trivially on X(Qp)∩
(Λ ⊗ Zp) for each p, i.e., there is locally only one orbit on integral points. In this
case, if we can show that the top horizontal map of adelic quotients is surjective,
we will have shown that X(Q) ∩ Λi is nonempty for all i. As we shall see, in the
context of representations of quadratic forms this will show exactly that a form Q′

is represented by, not only some form in the genus of Q, but every form in the genus
of Q.
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3.3. Examples. We give several examples but do not carry out the local compu-
tations in any detail.

(1) Quadratic forms. Let Q be a quadratic form on the Z-lattice Λ of rank n.
Let V = Λ ⊗ Q, G = SO(Q) and Γ the stabilizer of Λ in G(Q); ρ is the
natural representation of G on V .

Let 0 6= d ∈ Z. The level set Q(x) = d is a closed subvariety X ⊂ V
which is a homogeneous space for G. Witt’s theorem shows that G(Q) acts
transitively on X(Q). The stabilizer Gx of a point x ∈ X(Q) is the orthogo-
nal group ø(〈x〉⊥), and the adelic quotient q−1Kfq∩Gx(A)\Gx(A)/Gx(Q)
is closely related to the genus of the quadratic form induced on 〈x〉⊥.

The considerations of the previous section show that the Γ-orbits on

representations of d by a quadratic form in n variables are closely related
to the genus of a certain collection of quadratic forms in n − 1 variables.

This observation is, of course, not new and seems to be classical. It
is quite explicitly presented in Kneser’s article [18]. Shimura’s book [27]
carries out some of the difficult local computations associated to precisely
implementing this.

Some particular and familiar corollaries of this observation are:
(a) The case previously discussed, and due to Gauss: that the number of

representations of n by the form x2 + y2 + z2 is related to the class
number of Q(

√−n) (and therefore to genera of quadratic forms of rank
2).

(b) If the signature of Q is (n − 1, 1), and n ≥ 4, then the representation
numbers show the following curious behaviour: the number of orbits
on Q(x) = d, as d varies through squarefree integers, grows roughly
as |d|n

2
−1±ε as d → −∞; on the other hand it grows very slowly (say

as |d|ε) as d → ∞. The difference is that the stabilizer Gx in the
former case is compact at ∞, and in the latter case is semisimple and
noncompact at ∞, therefore satisfying strong approximation. 13

(2) Class groups of number fields. Let V be an n-dimensional Q-vector space
together with a Z-lattice VZ, G = SL(V ) and Γ = SL(VZ), and consider the
representation ρ of G on the vector space W = Symn(V ∗) of homogeneous
polynomials of degree n on V , defined by ρ(g)f = f(xg). Then Λ =
Symn(V ∗

Z ), a lattice in W that is preserved by ρ(Γ).
Suppose w ∈ W is a degree-n form which factors over Q̄ into a product

ℓ1 · . . . · ℓn of linear forms; we refer to the square of the determinant of
the resulting element of Hom(V, Zn) as the discriminant of w. For each
nonzero integer d, write Xd for the closed subvariety of W parametrizing
forms which factor into linear forms over Q̄ and have discriminant d. Then
Xd is a homogenous space for G, and the stabilizer in G of a point in Xd is
the semidirect product of a torus with a finite group scheme geometrically
isomorphic to An. We call a form in Xd primitive if, for every prime p|d,
the reductions of ℓ1, . . . , ℓn have the property that every subset of size n−1
intersects transversely. Then the Γ-orbits of primitive points of Xd(Z) will

13Recall that if H is a semisimple, simply connected Q-group for which H(R) is noncompact,
then H(Q) is dense in H(Af ), and in particular the quotient space Ω\H(Af )/H(Q) is a singleton
for any open subgroup Ω. Even if H fails to be simply connected, this set is parameterized in a
completely understandable way by the center Z(H) and in particular has “very few” elements.
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parametrize classes in Picard groups of certain orders of degree n over Z

with discriminant d. When n = 2, this reduces to the classical Gauss
correspondence between binary quadratic forms and narrow class groups of
quadratic orders. When n = 3, this is quite close to the case considered in
the introduction to [4], which eventually replaces this space with a simpler
one and thereby provides a concrete parametrization of ideal classes in cubic
rings.

(3) M. Bhargava in his sequence of papers ([2], [3], [4]) has studied many lovely
examples of class number problems in the case where the G-action is pre-

homogeneous: that is to say, the ring of invariants for G acting on V is
generated by a single polynomial f . In these cases, Bhargava develops new
composition laws and relates the classification of integral orbits to various
structures in algebraic number theory (e.g. class groups of orders and n-
torsion in class groups of orders.) For example, he studies the action of
(SL2)

3 on the space (Z2)⊗3 and shows that the orbits are related to triples
of ideal classes for quadratic orders with product 1. A remarkable feature
of his constructions is that they completely deal with the (rather compli-
cated) local problems implicit in our discussion above; it is to avoid these
local problems that we have restricted our attention to representations of
forms with squarefree discriminant in the present paper.

3.4. Orbits over more general bases: relation with torsors. It is an inter-
esting open problem to understand the extent to which the framework of “class
group problems” can be generalized to base schemes other than Spec Z. Certainly
it is well-known that some version of Gauss composition for quadratic forms can be
carried out over an arbitrary commutative ring (see, e.g., Kneser [17]). Because we
will not need to work over an arbitrary base in the present paper, we will confine
ourselves to a few speculative remarks here.

One possibility for the general set-up is as follows. Let S be a scheme, X → S
an fppf morphism, and G → S an fppf group scheme. Suppose that G acts on X ;
this action defines and is defined by a morphism

m : G × X → X × X

defined by m(g, x) = (gx, x). Suppose that m is also fppf; in this case, we say the
action of G on X is faithfully flat.

Now choose a basepoint x0 ∈ X(S), and let H ⊂ G be the stabilizer of x0. Then
for any other x ∈ X(S) one can define the space of paths Px0,x to be m−1(x, x0).
The association x 7→ Px0,x assigns to every x an fppf H-torsor over S; evidently, if
x and y are in the same G(S)-orbit, the H-torsors Px0,x and Px0,y are isomorphic.
So one gets a map from the set of orbits G(S)\X(S) to the fppf cohomology group
H1(S, H), whose image is just the kernel of the natural map H1(S, H) → H1(S, G).
In particular, if H1(S, G) is trivial and H is abelian, the orbit set acquires the
structure of a group. This is very likely related to the composition laws presented
in [3], [4], and seems likely to suggest further composition laws on integral orbit
spaces.

There are several potential advantages to studying the problem of integral orbits
in this generality. For instance, in the case S = Spec Z,

• The cohomology set H1(Spec Z, H) incorporates, in one step, the Galois-
cohomological data recorded by H1(Spec Q, H), and the adelic data recorded
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by the kernel of H1(Spec Z, H) → H1(Spec Q, H). For instance, in the
case treated by Bhargava in [4], where G = GL2 × GL3 × GL3 and X =
Z2 ⊗Z3 ⊗Z3, the class in H1(Spec Q, H) keeps track of a cubic field, while
the extra data coming from H1(Spec Z, H) yields an ideal class in some
order of that field.

• Certain restrictions are imposed on us by the requirement that the mul-
tiplication map m be flat. This condition implies in particular that the
stabilizer of any point x ∈ X(S) is flat over S.

For instance, if Xd ⊂ A3 is the space of binary quadratic forms of dis-
criminant d, then the action of SL2 on Xd need not be flat; if p2|d, and
x is a form in Xd(Z) which reduces to 0 mod p, then the stabilizer of x
is evidently not flat. One can fix this problem by considering instead the
quasi-affine scheme obtained by removing the origin from Xd. In more
classical language, we have restricted our attention to primitive quadratic
forms. In general, a natural candidate for the correct notion of “x ∈ X(S)
is primitive” for an integral orbit problem over a base S should be “the
stabilizer of x is flat over S.” One nice feature of Bhargava’s work is that
it does not restrict itself to primitive situations. As one might expect from
the above discussion, Bhargava typically finds a subset of primitive orbits
among the set of all orbits which admit a composition law, while the set of
all orbits does not. (For example, in [4], the composition law on 2 × 3 × 3
cubes applies precisely to those cubes which are projective in Bhargava’s
sense.)

We remark, finally, that this framework is natural for understanding the manner
in which various classical constructions depend on choice of basepoint x0; rather
than fixing a basepoint, it is probably best to consider the gerbe G\X ; any choice
of x0 ∈ X(S) provides an isomorphism between this gerbe and the classifying stack
of the stabilizer of Hx0

, but there is no such canonical isomorphism in general.

4. Extensions and problems

As remarked, the methods used to prove Theorem 1 can be extended and opti-
mized in several ways.

It is applicable also to other embedding problems (e.g., pertaining to hermitian
forms; a slightly more “exceptional” example is the embeddings of a cubic order into
matrix algebras over the octonions, considered in [13]) as well as to other equidis-
tribution problems (for instance, one can expect to understand, by this technique,
the distribution of all integral, positive definite, quadratic forms of discriminant
D → ∞ inside the moduli space PGLn(Z)\PGLn(R)/POn of homothety classes of
quadratic forms; the case n = 2 is a theorem of W. Duke, whereas for n > 2 and
indefinite quadratic forms, the analogous result is due to A. Eskin and H. Oh; the
p-adic methods of this paper allow the treatment of the outstanding case). As re-
marked previously, we also have not optimized the results even for quadratic forms;
the condition n ≥ m + 7 is not the limit of the method, and our method should
also yield an asymptotic for the representation numbers.

Let us remark on some more amibitious extensions and problems:

(1) Effectivity; bounds for Fourier coefficients of Siegel modular forms.
As remarked, a fundamental defect of Theorem 1 is its ineffectivity. This

arises from the ineffectivity of Ratner’s theorem. Were one to have, in the
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context of Proposition 3, an effective estimate on the rate of convegence
of the µi to their limit, this would yield an effective version of Theorem
1. While it is plausible that existing proofs of Ratner’s theorem may be
effectivized, a much bigger challenge is to obtain a reasonable rate of con-
vergence (say, polynomial in the relevant parameters).

In this context, it should be noted that Margulis has given a beauti-
ful effective proof of the convergence of the invariant measures on closed
SO(2, 1)(R)-orbits on SL3(Z)\SL3(R) to their limit. Although the present
situation is quite different, and more complicated (because there are many
intermediate subgroups) this result certainly makes it plausible that an
effective result is possible.

In any case, another significant payoff of such an effective result would
be a nontrivial estimate on the Fourier coefficients of Siegel modular forms
arising from θ-series of quadratic forms.

(2) Representations in codimension 2.
We have remarked at various points that the natural limit of the method

presented in this paper is n = m + 3; for, in the case n = m + 2, one is
forced to consider actions of a p-adic torus SO2(Qp) on a homogeneous
space Γ\SOn(Qp).

However, there is nevertheless a natural approach to the case n = m+2,
replacing our use of Ratner theory by the emerging theory of torus rigidity
(see, in particular, the survey and announcement [9]). The idea is to replace
the use of Qp by a product of two completions Qp × Qq, and consider the
action of SO2(Qp)×SO2(Qq) on Γ\SOn(Qp)×SOn(Qq). For suitable p and
q, the group SO2(Qp) × SO2(Qq) ∼= Q∗

p × Q∗
q is a “higher rank” torus, and

one expects a certain degree of ridigity for the invariant ergodic measures.
There are several obstacles to this approach. For one, the relevant mea-

sure rigidity statements are not (yet) available. Moreover, they require a
pre-condition: positive entropy. Another more serious obstacle is that, in
the torus case, one does not have a good way of ruling out concentration
of limit measures on intermediate subgroups.

Nevertheless, it does not seem entirely impossible that these obstacles
can be overcome. We refer, in particular, to the series of papers [10] where
essentially the analogous question is considered, but replacing SOn with
PGLn and SO2 with a maximal torus, and it is shown how to overcome
these obstacles in several situations. In particular, satisfactory results are
obtained for n = 3.

Appendix A.

We now give the proof of Proposition 3.
The ideas follow the “linearization” technique which we learned from [6]; how-

ever, we simply the computations considerably by Lemma 6. This Lemma was
noted, in an entirely different context, by the second author jointly with M. Ein-
siedler and E. Lindenstrauss. It was pointed out to us by Y. Shalom that it appears
already in the paper of Glasner and Weiss [14].

It is important to note that, while the “trick” of Lem. 6 makes the proofs much
easier, the original ideas of [6] carry over to the p-adic setting without essential
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change, and this would be needed to treat the case where H does not have property
(T) (notation of Prop. 5).

A.1. Ergodicity of limit measures for a group with T .

Lemma 6. [14] Let H be a locally compact, second countable group with property

(T ). Let µi be a sequence of ergodic H-invariant probability measures on a locally

compact space X. Then any weak limit µ∞ of the µi is also an ergodic H-invariant

measure.

( We note that property (T ) could be replaced for a uniform spectral gap for the
H-action on the representations L2(X, µi). This is not an entirely idle comment,
as it allows one to apply the same reasoning in many cases when H has rank one,
by suitable bounds on automorphic spectrum.)

Proof. In the interest of self-containedness, we present a proof, at least in the case
when H is a discrete group. This suffices for the present application (for we apply
it when H is a p-adic Lie group which admits a lattice with property (T)); however,
the proof is easily modified to handle the general case.

Thus, take S to be a generating set for H . By Property (T), we may choose
δ > 0 so that for any unitary H-representation ρ → Isom(V ) on a Hilbert space V
not containing the trivial representation, and for any 0 6= v ∈ V , we have

sup
s∈S

‖ρ(s)v − v‖ > δ‖v‖

Let T := 1
2|S|

∑

s∈S(s + s−1) ∈ C[H ], the group algebra of H . It follows that there

is some β < 1 – depending only on δ – such that ‖Tv‖ ≤ β‖v‖ for all v ∈ V , where
V is as above.

Let f, g ∈ Cc(X), the space of continuous compactly supported functions on X ,
and write f̄i = f −

∫

X f(x)dµi(x). We note that ‖f̄i‖L2(µi) ≤ ‖f‖L2(µi). Clearly

〈T nf, g〉L2(µi) = 〈T nf̄i, ḡi〉L2(µi) +

∫

fdµi

∫

gdµi.

Note that, using the ergodicity of µi, we have the bound

〈T nf̄i, ḡi〉L2(µi) ≤ βn‖f‖L2(µi)‖g‖L2(µi).

Therefore

(4)

∣

∣

∣

∣

∫

T nf(x)g(x)dµi(x) −
∫

f(x)dµi

∫

g(x)dµi

∣

∣

∣

∣

≤ βn‖f‖L2(µi)‖g‖L2(µi)

The assertion (4) passes to the limit i → ∞, and the corresponding assertion
holds also replacing µi by µ∞. It then extends from Cc(X) to L2(X) by density.
Thus for f, g ∈ L2(X, µ∞) we have:

(5)

∣

∣

∣

∣

∫

T nf(x)g(x)dµ∞(x) −
∫

f(x)dµ∞

∫

g(x)dµ∞

∣

∣

∣

∣

≤ βn‖f‖L2(µ∞)‖g‖L2(µ∞)

If S is a H-invariant measurable subset for µ∞, take f = g = 1S, the characteristic
function, and take n → ∞ to see that µ∞(S)2 = µ∞(S), i.e. S is null or conull. �
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A.2. Growth properties of p-adic polynomials. Let F be a number field, w a
nonarchimedean place of F , and Fw the corresponding completion.

For any k > 0 and x = (x1, . . . , xk) ∈ F k
w we put ‖x‖ = supi |xi|. A ball in F k

w

is a subset of the form {x : ‖x − x0‖ ≤ δ}. The ultrametric property assures us
that two balls are disjoint or one is contained in the other. Put Ow[M ] = ̟M

w Ow,
where ̟w is a uniformizer at w.

Lemma 7. Let t > 0. Let θ : Ow → Ok
w be a polynomial map of degree d so that

supλ∈Ow
‖θ(λ)‖ ≥ t. Then there is a continuous function cd,k,t(ε), with cd,k,t(0) =

0, depending only on d, k, t and such that

meas{λ ∈ Ow : ‖θ(λ)‖ ≤ ε} ≤ cd,k,t(ε).

This follows from the fact that the space of θ is compact and does not have θ = 0
as a limit point; moreover, the assertion is true “for each θ individually.” We omit
the easy formalization.

Lemma 8. Fix d, k. There is a continuous function ck,d(x) with ck,d(0) = 0 which

has the following property.

Fix ε > 0. Let θ : Fw → F k
w be a nonconstant polynomial map of degree d,

and x ∈ Fw so that ‖θ(x)‖ ≤ ε. Then there is a ball Bx containing x such that

supλ∈Bx
‖θ(λ)‖ ≤ 1 and meas(λ ∈ Bx : ‖θ(λ)‖ ≤ ε) ≤ ck,d(ε)meas(Bx).

Proof. Choose a maximal ball Bx containing x that satisfies the condition supλ∈Bx
‖θ(λ)‖ ≤

1. We claim that there is a constant c′ depending only on k, d so that supλ∈Bx
‖θ(λ)‖ ≥

c′; this follows from the interpolation formula

(6) θ(x) =
d+1
∑

i=1

θ(xi)

∏

j 6=i(x − xj)
∏

j 6=i(xi − xj)

For simplicity let us assume that d + 1 is smaller than the residue characteristic
qw of Fw, the general case being similar. Suppose Bx is the ball {λ : |λ − x|w ≤
q−K
w }. We may choose {x1, . . . , xd+1} ∈ Bx so that |xi − xj |w = q−K

w . On the
other hand if λ belongs to the enlarged ball B′ = {λ : |λ − x|w ≤ q1−K

w } then

|∏i6=j(λ−xj)|w ≤ q
−d(K−1)
w . From this we see that supλ∈B′ ‖θ‖ ≤ c′qd

w, which will

contradict the maximality of B′ if c′ is too small.
Now we apply the previous Lemma to the map θ, rescaled so that it is regarded

as a map from Ow to O
k
w. �

A.3. Convergence of limit measures. Now let G be an algebraic group over a
number field F , and w a nonarchimedean place of F . Set G = G(Fw), let Γ be an
arithmetic lattice of G, and let H be an algebraic subgroup of G, H = H(Fw).

We do not strive for generality and make the following assumptions, which are
satisfied in the context of the application in the text:

(1) G is anisotropic over F , so that Γ\G is compact. (The general case is
treated by a suitable variant of [20, Theorem, §11.6]. )

(2) The Lie algebra Lie(G) is simple as a Lie algebra over Fw.
(3) The subgroup G+ ⊂ G generated by Fw-points of unipotent radicals of

parabolic Fw-subgroups coincides with G. (If this fails, the statements
must be slightly modified accordingly).

(4) H is semisimple, H has property (T) and the subgroup H+ ⊂ H generated
by Fw-points of unipotent radicals of parabolic Fw-subgroups coincides with
H . (The last condition is absolutely essential, of course).
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Let ξ̇i ∈ Γ\G be so that the orbits ξ̇iH are closed; let µi be the H-invariant

probability measure on ξ̇iH .

Proposition 5. Suppose ξi ∈ G remain within a compact set and, for any sub-

sequence of i, the subgroups ξiHξ−1
i generate14 G. Then any weak limit of the

measures µi is the G-invariant probability measure on Γ\G.

For any closed subgroups H, L ⊂ G, let

X(H, L) = {g ∈ G : Ad(g)Lie(H) ⊂ Lie(L)}.
We deduce Prop. 5 from

Lemma 9. Notation being as in Prop. 5, assuming by passing to a subsequence

that µi → µ∞.

Let L be a proper subgroup of G containing H, so that15 dim(L) < dim(G). Let

η̇ ∈ Γ\G so that η̇L is closed and supports an L-invariant probability measure.

Then there is a compact subset X0(H, L) ⊂ X(H, L) so that either:

(1) For infinitely many i, ξ̇iH is contained in η̇L.X0(H, L), or

(2) µ∞(η̇L) = 0.

Let us first deduce Prop. 5 from Lem. 9. By Lem. 6, µ∞ is an ergodic16

H-invariant measure. By the measure classification theorem of Ratner [26] and
Margulis/Tomanov [20], µ∞ is algebraic: it is the L-invariant measure supported
on the closed subset η̇L ⊂ Γ\G, where L ⊃ H is a closed subgroup and L is the
stabilizer of µ in G.

It suffices to show that L = G. Suppose otherwise. Since the ξi belong to a
compact set and η̇L is compact, Lemma 9 demonstrates that (after passing to a
subsequence of i) there is a compact subset C ⊂ X(H, L), and a finite set F ⊂ Γ
such that ξi ∈ F.η.C for all i. Passing to a further subsequence of i, we may assume
that there is a fixed γ ∈ Γ so that ξi ∈ γηC for all i. Then

Ad(ξi)Lie(H) ⊂ Ad(γη)Lie(L)

for all i. In particular, Ad(ξi)H , in its adjoint action on Lie(G), preserves Ad(γη)Lie(L).
(The passage from Lie(H) to H is effected using the fact that H is generated
by unipotent subgroups). The assumption on generation shows that G preserves
Ad(γη)Lie(L) also; since Lie(G) was assumed simple, this shows that Lie(L) =
Lie(G). This concludes the proof of Prop. 5.

Proof. (of Lem. 9)
Let r be a (vector space) complement to Lie(L) inside Lie(G) which is stable by

the conjugation action of H (this is possible because, since H is semisimple, the
adjoint action of H on the Lie algebra is completely reducible).

14It will suffice that they generate a Zariski-dense subgroup of G, as will be clear from the
proof.

15On account of the assumption that G+ = G and using the simplicity of Lie(G), any proper
unbounded subgroup has lower dimension than G, as may be deduced from a theorem of Tits, see
[25].

16In fact, Lemma 6 was proved here only for H a discrete group. Although Lemma 6 is valid
in general, as is shown in [14], let us explicate how to obtain the desired conclusion in our context

from this weaker form. In the present context, the fact that H has compact orbits on Γ\G implies
that H admits a lattice Λ ⊂ H; then Λ also has property (T), which is inherited by lattices. Each
µi is H-ergodic and so also (by Howe-Moore) Λ-ergodic. Applying Lemma 6 shows that µ∞ is
Λ-ergodic, so also H-ergodic.
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Let B1 be an open compact neighbourhood of 0 in r, and Br = ̟r−1
w B1, for r ≥ 1.

We may assume that B1 is sufficiently small that the exponential map17 is well-
defined on B1, and moreover the map (η̇L)×B1 → Γ\G given by (x, r) 7→ x exp(r)
is a homeomorphism onto an open neighbourhood N1 of η̇L. Define Nr to be the
image of η̇L×Br under this map. Let π : N1 → B1 be the natural projection map,
so that Nr = π−1Br. Set X0(H, L) = X(H, L) ∩ exp(B1).

Let U ⊂ H be a one-parameter unipotent subgroup and θ : Fw → U an isomor-
phism.

By the ergodicity of the U -action on ξ̇iH , for measure-generic points yi ∈ ξ̇iH the
limit measure of the trajectory yiU is the measure µi for all i (i.e., the θ(Ow[−M ])-
invariant probability measure on yiθ(Ow[−M ]) approaches the H-invariant proba-

bility measure on ξ̇iH , as M → ∞). For such yi, the closure yiU coincides with

ξ̇iH .
Suppose yi is generic and belongs to N1. (If such does not exist, then µi(N1) = 0

and we are done immediately). We may write yi = xi exp(ri) for some xi ∈ η̇L, ri ∈
B1.

So, for λ ∈ Fw, we have

(7) π(yiθ(λ))) = π(xi exp(ri)θ(λ))

= π(xiθ(λ) exp(Ad ◦ θ(−λ)ri)) = Ad ◦ θ(−λ)ri,

so long as Ad ◦ θ(−λ)ri ⊂ B1.

Next we claim that either ξ̇iH ⊂ η̇L.X0(H, L); or the map λ 7→ Ad ◦ θ(−λ)ri,
which is visibly polynomial from Fw to r, is nonconstant for such yi. Indeed, the
closure yiU is precisely ξ̇H , so, if λ 7→ Ad ◦ θ(−λ)ri were constant, we would have
in particular

ξ̇iH ⊂ η̇L. exp(ri) = η̇. exp(ri).(exp(ri)
−1L exp(ri)).

This implies that the Lie algebra of H is contained in the Lie algebra of exp(ri)
−1L exp(ri).

Therefore exp(ri) ∈ X0(H, L) and ξ̇iH ⊂ η̇L.X0(H, L); so we are in the first case
mentioned in the Lemma.

Otherwise, set Zl = {λ ∈ Fw : yiθ(λ) ∈ Nl}, so that Fw ⊃ Z1 ⊃ Z2 ⊃ . . . .
We note that the points yiθ(λ) are generic (in the sense above that their U -orbit
is equidistributed w.r.t. µi) for all λ ∈ Fw. Applying Lemma 8 to the maps
λ 7→ π(yiθ(λ)), we see that, given ε > 0, there exists M big enough so that we can
cover ZM by balls Bj all contained in Z1, and so that meas(Bj∩ZM )/meas(Bj) ≤ ε
for each ball.

It follows that, given any ball Q ⊂ Fw, there is a larger ball Q′ such that
meas(Q′ ∩ ZM )/meas(Q′) ≤ ε. (Either each ball Bj corresponding to points in
Q ∩ ZM is contained in Q, or one such ball Bj0 contains Q. In the former case,
note that the family of maximal balls in the collection {Bj} are disjoint and cover
Q ∩ ZM ; take Q′ = Q. In the latter case take Q′ = Bj0 .) So the limit measure of
the trajectory yiU assigns mass ≤ ε to the neighbourhood NM .

Thus, if hypothesis (1) of the Lemma is not satisfied, we must have µi(NM ) ≤ ε,
for all i; so the same is true for µ∞ and so µ∞(η̇L) = 0, as required. �

17Which maps a neighbourhood of 0 in the Lie algebra into G, equivariantly for the conjugation
of G
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