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LAMINATIONS AND GROUPS OF HOMEOMORPHISMS OF THE CIRCLE

DANNY CALEGARI AND NATHAN M. DUNFIELD

ABSTRACT. If M is an atoroidal 3-manifold with a taut foliation, Thurston showed
that π1(M) acts on a circle. Here, we show that some other classes of essential lami-
nations also give rise to actions on circles. In particular, we show this for tight essen-
tial laminations with solid torus guts. We also show that pseudo-Anosov flows in-
duce actions on circles. In all cases, these actions can be made into faithful ones, so
π1(M) is isomorphic to a subgroup of Homeo(S1). In addition, we show that the fun-
damental group of the Weeks manifold has no faithful action on S1. As a corollary,
the Weeks manifold does not admit a tight essential lamination, a pseudo-Anosov
flow, or a taut foliation. Finally, we give a proof of Thurston’s universal circle theo-
rem for taut foliations based on a new, purely topological, proof of the Leaf Pocket
Theorem.
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1. INTRODUCTION

Let M be an atoroidal 3-manifold with a taut foliation F. The foliation F gives
rise to actions of π1(M) on 1-manifolds in two ways: the action on the space of
leaves in the universal cover, and the action on a universal circle. These actions are
very useful for understanding F. If M is an atoroidal 3-manifold with an essential
lamination, one still has an action of π1(M) on the space of leaves in the universal
cover, but this space is just an order tree, not a 1-manifold. Our main goal here is to
give analogues of the second kind of action: we construct actions of fundamental
groups of 3-manifolds on circles arising from certain kinds of essential laminations.
Before giving precise statements, we’ll discuss the case of taut foliations.

Date: Version: 1.134, Compile: 2018/10/23, Last commit: 2002/07/21 15:23:03.
1991 Mathematics Subject Classification. 57M25, 57M50.

1

http://arxiv.org/abs/math/0203192v2


2 CALEGARI AND DUNFIELD

Let M̃ denote the universal cover of M, and F̃ the foliation of M̃ covering a taut

foliation F of M. First, consider the leaf space L of F̃. The space L is simply con-
nected and locally homeomorphic to R, but is typically non-Hausdorff. We will still
refer to L as a 1-manifold. There is a natural action of π1(M) on L, and this action
has no global fixed point. In fact, after changing F slightly by a monotone equiva-
lence, we can ensure that the homomorphism π1(M) → Homeo(L) is injective (see
Theorem 7.10). Thus π1(M) is isomorphic to a group of homeomorphisms of a 1-
manifold.

Second, Thurston has shown that the foliation F gives rise to another action of
π1(M) on a 1-manifold, namely on a universal circle. This circle, S1univ, is constructed

by collating the circles at infinity of the leaves of F̃. As in the previous case, the ac-
tion on a universal circle is faithful (Theorem 6.3). Thurston’s paper [Thu] on this
topic is largely unwritten, so we provide a complete proof here. The main technical
tool for proving the existence of a universal circle is Thurston’s Leaf Pocket Theorem.
This theorem says, very roughly, that the leaves of F come together in many direc-
tions. Thurston’s proof of this theorem is analytic, and uses theorems of L. Garnett
on the existence and quality of harmonic transverse measures for foliations. We give
a new and purely topological proof of a slight variation of the Leaf Pocket Theorem,
Theorem 5.2, which applies more generally to essential laminations. In Section 6,
we use Theorem 5.2 to prove the existence of universal circles.

Now we will outline our results for essential laminations. For background and
more detailed definitions see Section 2. An essential lamination Λ of a 3-manifold
M is tight if the leaf space of Λ̃ is Hausdorff. Equivalently, leaves of Λ̃ are uniformly

properly embedded in M̃. The complementary regions ofΛ can be partitioned into
interstitial regions and guts. The interstitial regions are (typically noncompact) I-
bundles whose ∂I-bundles lie on Λ, and the compact guts make up the rest of the
complement.

Our main result is

3.2. Theorem. Let M be an atoroidal 3-manifold containing an essential lamina-
tion Λ. If Λ is tight and all the gut regions are solid tori, then π1(M) has a faithful
action on S1.

Here’s an outline of the proof. We can assume that Λ has non-empty guts (i.e. is
genuine), as otherwise it can be blown down to a taut foliation which gives rise to
an action on a universal circle. The first step in the proof is the following lemma,
which is of independent interest:

4.1. Filling Lemma. LetMbe a 3-manifold andΛ a genuine lamination all of whose
guts are solid tori. Then there is a genuine laminationΛ containing Λ, whose com-
plementary regions are all ideal polygon bundles over S1. Moreover, if Λ is tight, so
isΛ.

A lamination such asΛwhose complementary regions are all ideal polygon bun-
dles is said to be very full. A good example to keep in mind of a very full lamination
is the suspension of the stable lamination of a pseudo-Anosov surface homeomor-
phism in the corresponding surface bundle.
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The Filling Lemma 4.1 reduces the proof of Theorem 3.2 to the case where Λ is
tight and very full, which is handled in Theorem 3.1. The basic idea is to flatten out

Λ̃ into a geodesic lamination λ of H2, taking care so that λ inherits a group action of

π1(M) which is equivariant with respect to the map Λ̃→ λ. The action of π1(M) on
λ induces an action on the circle at infinity of H2, which is the desired circle action.

We can lessen the requirement that M be tight somewhat, when the non-Haus-
dorff behavior of the lamination is not too bad. See Section 3.4 and Theorem 3.8.
In particular Theorem 3.8 applies to the stable or unstable lamination of a pseudo-
Anosov flow. Thus (Corollary 3.9) fundamental groups of 3-manifolds with pseudo-
Anosov flows also act faithfully on the circle.

1.1. Nonexistence results. Given the results above, it is natural to ask the question:
Which atoroidal 3-manifolds have faithful circle actions? We show that not every
3-manifold has such an action. In particular, for the closed hyperbolic 3-manifold
with smallest known volume, we have:

9.2. Theorem. The fundamental group of the Weeks manifold does not act faith-
fully on the circle.

As a corollary of this and the above theorems on the existence of circle actions,
it follows that the Weeks manifold does not admit a tight essential lamination with
solid torus guts, a pseudo-Anosov flow, or a taut foliation. Using Agol’s volume esti-
mates for manifolds with tight laminations [Agol], one can show that any tight lam-
ination in the Weeks manifold would have solid torus guts. So we have the stronger
conclusion that the Weeks manifold contains no tight essential lamination (Corol-
lary 9.4). We conjecture that the Weeks manifold contains no essential lamination
at all, but this remains open. Also, the fundamental group of the Weeks manifold
appears to be the first known example of a rank-1 lattice which cannot act faithfully
on the circle. In contrast, Witte has shown that there are many higher rank lattices
with this property [Wit].

Examples of hyperbolic manifolds without taut foliations were already known
from the breakthrough work of Roberts, Shareshian, and Stein [RSS]. In fact, they
constructed infinitely many such examples by looking at certain Dehn fillings of
punctured torus bundles with negative trace. They showed the non-existence of
taut foliations by proving that the fundamental groups of these manifolds can’t act
on a simply-connected 1-manifold without a global fixed point. Given the multi-
tude of non-Hausdorff 1-manifolds, it is remarkable that such a proof can be made
to work. One of our original motivations for this paper was to reprove non-existence
of taut foliations by studying only actions on Hausdorff 1-manifolds, in particular
actions on S1.

The technique used for proving Theorem 9.2 is this. Let G be the fundamental
group of the Weeks manifold. First, we pass to a finite index subgroup N where the
action on S1 lifts to an action on R. A faithful action ofN on R is equivalent to a left-
invariant total order onN (see Section 7). The non-existence of such an order is then
shown by considering various possibilities for which elements ofN satisfy g > 1. For
some 3-manifold groups this can be done algorithmically as discussed in Section 8.
While the Weeks manifold was the only case where we managed to show that the
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fundamental group doesn’t act faithfully on the circle, we found many examples in
the Hodgson-Weeks census whose fundamental groups can’t act faithfully on R (see
Section 10).

1.2. Further Questions. Because essential laminations are very common, these re-
sults show that many 3-manifold groups are subgroups of Homeo(S1). So a natural
question is: Suppose that π1(M) is a subgroup of Homeo(S1). What does this tell
us about the algebraic properties of π1(M)? Of course, a general finitely generated
subgroup of Homeo(S1) can be quite strange, e.g it can contain Thompson’s infinite
simple group. However, the actions we construct have additional special properties;
for instance, they preserve the endpoints of a special kind of geodesic lamination of
H2. So one can hope that the existence of such an action implies something inter-
esting about π1(M).

1.3. Acknowledgments. The first author was at Harvard University when this work
was done, and was partially supported by an NSF VIGRE grant. The second author
was partially supported by an NSF Postdoctoral Fellowship. We thank Bill Thurston,
Rachel Roberts, and Ian Agol for useful conversations. We also thank Sergio Fenley
and the referee for their comments and suggestions on an earlier draft of this paper.
The main results in this paper were announced in a minicourse by the first author
at a conference at P.U.C. in Rio de Janeiro in August 2001. The first author would
like to thank the P.U.C. for their hospitality.

2. BACKGROUND ON ESSENTIAL LAMINATIONS

In this section, we summarize the definitions and some of the basic results about
taut foliations and essential laminations (for more detail see the references in [Gab]).
Throughout, Mwill be a closed 3-manifold. We’ll begin with taut foliations:

2.1. Definition. Let F be a foliation ofM by surfaces. The foliation F is taut if there
is a loop inM transverse to F which intersects every leaf.

We will use F̃ to denote the induced foliation of the universal cover ofM. The leaf

space L of F̃ is a simply-connected, not necessarily Hausdorff, 1-manifold. Some
basic properties of manifolds with taut foliations are summarized in the following
theorem:

2.2. Theorem (Novikov, Rosenberg, Reeb). Let M be a 3-manifold with a taut foli-
ation F. Then eitherM is finitely covered by S2× S1, and F is finitely covered by the

product foliation by spheres, or M̃ = R3 foliated by planes. In particular, every leaf
of F is incompressible, and every loop transverse to F is homotopically essential.

A codimension one lamination of M is a foliation of a closed subset, i.e. a closed
union of complete embedded surfaces—the leaves of the lamination—which inter-
sect small open charts of M in products of the form R2 × K, where K is any closed
subset of an interval, and each leaf locally intersects the open set as a horizontal
slice R2 × point. Globally, of course, a leaf might intersect a product chart in in-
finitely many horizontal slices. Typically, K consists of a union of intervals, isolated
points, and Cantor sets. Generalizing the notion of tautness for foliations is:
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2.3. Definition. A lamination Λ is essential if each complementary region is irre-
ducible and has boundary which is incompressible and end-incompressible. More-
over, we require that no leaf of Λ is a 2-sphere, or a torus leaf bounding a Reeb
component.

Here a leaf is end-compressible if it has an end-compressing monogon—that is, a
monogon D properly embedded in a complementary region C which is not homo-
topic (rel boundary) into ∂C. An end-compressing monogon is an obstruction to
finding a metric with respect to which leaves of Λ are minimal surfaces; excluding
such monogons ensures that essential laminations share many properties in com-
mon with taut foliations. In particular, manifolds with essential laminations have
universal cover R3 and any tight transversal is homotopically essential (see [GO]).

For an essential lamination, we can define the leaf space L of Λ̃, but this is now
just an order tree, not a 1-manifold; the vertices of L are the set of non-boundary

leaves of Λ̃ together with the set of closed complementary regions. If this leaf space

is Hausdorff, we say Λ is tight. This is equivalent to the leaves of Λ̃ being uniformly

properly embedded in M̃. That is, there is a proper increasing function f : R+ → R+

such that if p and q are distance t apart in the path metric on Λ̃, then p and q are at

least distance f(t) apart in M̃. When Λ is a foliation, tightness is equivalent to the
leaf space being R.

Regardless of whether Λ is tight, we have the following simple fact:

2.4. Lemma. Let Λ be an essential lamination. Then there is an ǫ > 0 such that
every leaf λ of Λ̃ is quasi-isometrically embedded in its ǫ-neighborhood. Such an ǫ
is called a separation constant for Λ.

Proof. By compactness of M, we can pick an ǫ so that every ball of radius 2ǫ in

Λ̃ is contained in a product chart. Here, by “product chart” we also require that
every transverse arc without backtracking and with endpoints in Λ is tight, that is,

can’t be homotoped rel endpoints into a leaf. Note that in M̃ any leaf λ intersects a

product chart at most once, as otherwise we can build a tight transversal loop to Λ̃
by starting with a transversal in the chart and an arc in λ.

Now consider the ǫ-neighborhood Nǫ of a leaf λ in Λ̃. We can cover the larger
neighborhood N2ǫ by a product charts . As noted above, λ intersects each of these
charts only once. BecauseM is compact, each of these charts has bounded geome-
try. Therefore, λ is quasi-isometrically embedded inNǫ.

2.5. Complementary regions. Let C be a complementary region to an essential
lamination Λ. We will consider decompositions of C along a union of properly em-
bedded annuli into two kinds of pieces, guts and interstitial regions. By definition,
gut regions are compact and interstitial regions are I-bundles over (typically non-
compact) surfaces. The annuli of the decomposition are called the interstitial an-
nuli, and we require that no two of them are isotopic in a gut region. By convention,
ifC is itself an I-bundle over a closed surface, the only allowed decomposition is the
trivial one with all of C being the interstitial region.

Such a partition of C into guts and interstices need not be unique: if R is an in-
terstitial region R = Σ × I over a surface Σ, and if Σ0 ⊂ Σ is a compact subsurface
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of Σ (possibly with boundary), then the subset Σ0 × I can be included into the gut.
Conversely, an I-bundle over a compact surface which is contained in the gut can
be included into the interstitial region. However, there exist several canonical (up to
isotopy) partitions of C into guts and interstices. One such canonical partition has
the property that every interstitial region is an I-bundle over a non-compact surface
(see [GO] or [GK3] ).

Often, it’s useful to make the distinction between essential laminations and gen-
uine ones:

2.6. Definition. An essential lamination is genuine if some complementary region
is not an I-bundle. Equivalently, there is a decomposition of the complementary
regions with non-empty guts.

An essential lamination which is not genuine can be filled in to a foliation by
adding leaves in the complementary I-bundles.

One way to think of the qualities essential and genuine for a lamination is in terms
of the proper essential surfaces (with boundary) contained in a complementary re-
gion. A lamination is essential if the complement admits no essential sphere, disk
or monogon; that is, it contains no essential surface of positive Euler characteris-
tic. An essential lamination is genuine if some complementary region contains an
essential surface of negative Euler characteristic.

The following is an example of a genuine lamination which is a good example to
think about throughout this paper.

2.7. Example. Let M be a surface bundle over the circle with fiber Σ and pseudo-
Anosov monodromy φ : Σ → Σ. There are a pair of geodesic laminations of Σ in-
variant under φ, the stable and unstable laminations λ±. Since these are invariant,
they suspend in the mapping torus M to a pair of laminations Λ± of M transverse
to the surface fibration. The complementary regions of the geodesic laminations
λ± of Σ suspend to complementary regions of Λ±. The complementary regions in
Σ are finite sided ideal polygons, each with at least 3 sides. These suspend to ideal
polygon bundles over S1. Such complementary regions decompose into compact
neutered ideal polygon bundles over S1 (the guts) and cusps S1 × R+ × I (the inter-

stitial regions). In particular, these laminations are genuine. In M̃, the pair (M̃, Λ̃±)

is a product (Σ̃, λ̃±)×R. As λ± is a geodesic lamination, the leaf space of λ̃± is Haus-

dorff. Thus the leaf space of Λ̃± is also Hausdorff, andΛ± is tight.

2.8. Tangential geometry. The tangential geometry of an essential lamination is
controlled by the following theorem of Candel [Can1], which can be thought of as a
uniformization theorem for Riemann surface laminations:

2.9. Theorem (Candel). LetΛ be a Riemann surface lamination such that for every
transverse measure µwe have:

χ(µ) < 0.

Then there is a continuously varying leafwise metric on Λ where the leaves are lo-
cally isometric to H2.



LAMINATIONS AND GROUPS OF HOMEOMORPHISMS OF THE CIRCLE 7

A lamination satisfying the conclusion of Candel’s Theorem is said to have hyper-
bolic leaves. For an essential lamination Λ of an atoroidal 3-manifold, every trans-
verse measure has negative Euler characteristic, and so Λ has hyperbolic leaves.

Now we restrict attention to a taut foliation F. Candel’s Theorem is very useful in
understanding the following bundle:

2.10. Definition. Let F be a taut foliation. The circle bundle at infinity, E∞ , is the
circle bundle over Lwhose fiber over a leaf λ is the circle S1∞(λ).

While the bundle E∞ is easy to understand as a set, its topology requires some

discussion. We topologize it as follows. For each transversal τ to F̃, the projection of
τ to L is an embedding, so it makes sense to talk about the restriction E∞ |τ. Consider

the restriction to τ of the unit tangent bundle of F, denoted UTF̃|τ. For a point p ∈ λ,

every vector v ∈ UTpF̃ determines a point e(v) ∈ S1∞(λ) by taking the endpoint of
the geodesic ray in λ starting at p in direction v. Thus there is a bijection

eτ : UTF̃|τ → E∞ |τ.

We topologize E∞ by declaring that this map is a homeomorphism for each τ.
We verify that this is well-defined. Suppose τ1 and τ2 are two transversals with the

same projection to L. For each leaf λ, the map

e−1
τ2

◦ eτ1 : UTτ1∩λλ→ UTτ2∩λλ

is determined by the geometry of a compact disk containing the points τ1 ∩ λ and
τ2 ∩ λ. In particular, since the geometry of the leaves λt intersecting the τi varies
continuously on compact subsets, the map

e−1
τ2

◦ eτ1 : UTF̃|τ1 → UTF̃|τ2

is a homeomorphism. Thus the topology of E∞ is well-defined.
This may seem like a tedious verification, but there actually is a subtle point here.

This construction uses in an essential way the full power of Candel’s Theorem. If we

merely knew that the leaves of F̃ were uniformly coarsely quasi-isometric to H2, the
map e−1

τ2
◦ eτ1 between unit tangent circles would depend on the global geometry

of the leaf λ, and not merely on the local geometry. But in general, the leaves λ

do not vary continuously as subsets of M̃ in any reasonable sense. This is the very
subtlety that makes Candel’s theorem nontrivial. There is an alternate construction
of the topology of E∞ without invoking Candel’s theorem, but it is more involved,
and uses the Leaf Pocket Theorem 5.2.

3. TIGHT LAMINATIONS

In this section, we prove that certain kinds of tight genuine laminations give rise
to faithful actions on the circle. Recall that a genuine lamination is very full if the
complementary regions are all finite-sided ideal polygon bundles over S1. Our basic
result here is:

3.1. Theorem. Let M be an orientable atoroidal 3-manifold containing a very full
essential laminationΛ which is tight. Then there is a faithful representation

ρ : π1(M) → Homeo+(S1).
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Moreover, the image of ρ preserves a dense lamination of S1.

Here, a lamination λ of S1 is essentially just a geodesic lamination of H2. Intrinsi-
cally, λ is a closed, symmetric subset of {S1 × S1 − diagonal} so that no two pairs of
points (p1, p2) and (q1, q2) in λ are linked on S1.

The hypothesis of very full is much stronger than just having solid torus guts; the
former requires in addition that the interstitial regions have as little topology as pos-
sible. An typical example of a lamination with solid torus guts which is not very full
is depicted in Figure 4.3. However, the Filling Lemma 4.1 shows that a lamination
with solid torus guts can be included as a sublamination of a very full lamination.
Moreover, this process preserves tightness. So as an immediate consequence of the
Filling Lemma and Theorem 3.1 we have:

3.2. Theorem. Let M be an orientable atoroidal 3-manifold, and Λ a tight lamina-
tion with solid torus guts. Thenπ1(M)has a faithful representation into Homeo+(S1).

While the restriction of solid torus guts might initially seem quite strong, in fact
many constructions of essential laminations yield examples of this type. Moreover,
for non-Haken manifolds, the gut regions are always handlebodies of some sort
[Bri1].

Now let’s prove Theorem 3.1.

Proof of Theorem 3.1. For any essential laminationΛ, the universal cover M̃ is topo-

logically R3, and the lifted lamination Λ̃ is topologically a product of a lamination
λ of R2 with R [GK1]. Moreover, the leaves of λ are proper. Thus λ is quite close to
being a geodesic lamination of H2. As ourΛ is very full, the complementary regions
of λ are all finite-sided ideal polygons. In essence, we’ll construct an action of π1(M)

on (R2, λ) so that the map (R3, Λ̃) → (R2, λ) is equivariant, and from this we’ll get

the required action on a circle. As Λ is very full, the complementary regions of Λ̃

are all products Pi × R for finite sided ideal polygons Pi. When turning (R3, Λ̃) into
a product, there are essentially two possible ways of flattening each Pi × R into a
complementary region of (R2, λ). The key to constructing the desired action on S1

is to do this flattening in a consistent, equivariant way.
So let’s begin the actual construction, which involves fitting the Pi together as

ideal polygons in the unit disk. First, downstairs in M, choose an orientation on
the core curve of each complementary region of Λ. Lifting upstairs, this defines a
(dual) orientation on each Pi which is preserved by the action of π1(M). As with any

essential lamination, there is a natural leaf space L associated to Λ̃. The leaf space

L is an order tree associated to Λ̃whose vertices are the set of non-boundary leaves

of Λ̃ together with the set of closed complementary regions. This order tree can be
canonically included in an R-order tree (see e.g. [GK2]); this makes the explanation
of the construction easier to follow, so we suppose this has been done. AsΛ is tight,
L is Hausdorff.

We will insert the Pi as ideal polygons in the unit disk D via a map π : Pi → D
which satisfies the following conditions:

1. If i 6= j, then the closed polygons π(Pi) and π(Pj) are disjoint.
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2. The circular ordering on the vertices of π(Pi) induced by ∂D agrees with that
arising from the orientation on Pi.

3. Suppose Pi is joined to Pj by an embedded arc in L joining a side ei of Pi to a side
ej of Pj. Then the corresponding edges π(ei) and π(ej) separate the interiors of
π(Pi) and π(Pj) inD.

Here’s how to construct π. Because the R-order tree L is Hausdorff, it is the union of
a countable number of finite simplicial trees Lj [GK2, §3]. Here, Lj is subdivided and
extended to get Lj+1. Consider Lj as a simplicial complex with no edges of valence

two. Each interior vertex of Lj corresponds to some complementary region of Λ̃, and
thus to some Pi. The edges of Lj coming into a vertex correspond to the edges of the
associated Pi. Thus, the orientation on Pi induces a cyclic ordering of the edges
around each vertex of Lj. There is a unique embedding π of Lj into the interior ofD
which respects these cyclic orderings (i.e. at each vertex v of Lj the ordering of edges
agrees with the clockwise ordering of the image edges about π(v)). For each vertex
v in Lj, place the corresponding Pi as an ideal polygon inD so that it contains π(v).
The resulting polygons satisfy (1-3), and moreover their placement was unique up
to homeomorphism ofD. Inducting up the Lj gives us the required map π.

Now, the closure

K =
⋃

i

π(Pi)

might not be all of D, but the components of D − K are easy to understand. Any
component C of D − K is a polygon whose sides alternate between arcs of ∂D and
geodesics inD which are limits of edges in π(∪i∂Pi). Moreover, we claim Cmust be
a quadrilateral. To see this, pick one Pi in each component of D − C and join them
by a finite simplicial tree L ′ in L. Embedding L ′ inD, we see that if there were more
than two components toD− C , then L ′ would have to have a vertex in C.

If we quotient out ∂D by collapsing the arcs in ∂D − K to points, we get a circle

because Λ̃ has no isolated leaves. Let φ : ∂D→ S1 be this monotone quotient map.
The closure of the edges of the π(∂Pi) is a geodesic lamination λK of D. The map φ
gives a map on pairs of endpoints of geodesics of λK which preserves unlinking, so
there is a well-defined image lamination λ = φ∗(λK) in S1. The endpoints of leaves
of λ are dense in S1. The action of π1(M) on

⋃
iPi induces an action on λ. Going

back to our original construction of π, it is not hard to see that this extends to a
continuous action on S1 which preserves orientation.

To finish the proof, we need show this action is faithful. Consider a nontrivial

element α ∈ π1(M) which acts trivially on S1. Then the action of α on M̃ would
stabilize every complementary region. So α defines the core curve of every com-
plementary region. It follows that α is central in π1(M), and that π1(M) contains a
Z + Z. This violates our assumption thatM is atoroidal. Thus we have constructed
the required faithful action on a circle.

3.3. Flips. If there are n complementary regions toΛ, the above construction gives
2n representations which are pairwise non-conjugate in Homeo+(S1) (they fall into
only 2n−1 conjugacy classes in the full group Homeo(S1)).
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Abstractly, this reflects an interesting operation on representations of groups

σ : G→ Homeo+(S1)

whose image preserves a lamination λ of S1. Given an orbit class of complemen-
tary regions to λ, we get a new representation as follows. Let P be a complementary
region of λ. We can “cut” D along the edges of each translate σ(γ)(P) into pieces
which are σ(γ)(P) itself, and the pieces on the other sides of the boundary edges of
σ(γ)(P). Then we can reverse the orientation of σ(γ)(P) and glue the other pieces
back so that each pair of sides is glued in the same way as before, but the relative
orientations are now switched. Do this in some order for each γ ∈ G, to get a new
lamination λP on which G acts. This action extends in the obvious way to a repre-
sentation σP : G → Homeo+(S1). Note that (σP)P = σ and (λP)P = λ for any P. We
call this operation the flip of σ along P.

If λ only has one orbit class of complementary region, this operation merely re-
verses the orientation of S1, but in general it seems somewhat mysterious. It might
be interesting to analyze this operation for some familiarG. For instance, one could
look at G = π1(M) for M a hyperbolic 3-manifold fibering over Σ, and λ the lift of
the stable lamination of the monodromy of the fibering.

The moral of these examples is that if a group G acts on a (R-, order-) tree T and
there is at least one way of embedding T in the plane in a G-equivariant way, there
are usually many such ways.

In the sequel, we will be interested in obtaining representations of G = π1(M) in
Homeo(S1) with Euler class e ∈ H2(G) equal to 0 (see Section 7). We suspect the
flip operation might be a useful tool in this regard. It is not hard to see that if λ has
n equivalence classes of complementary polygons, there is an expression of e as a
sum

e =

n∑

i=1

ei

such that the Euler class of σPj is

ePj
=

(
n∑

i=1

ei

)
− 2ej.

3.4. Laminations and cataclysms. The rest of this section is devoted to generaliza-
tions of Theorem 3.2 where we partially relax the requirement that the lamination
be tight. To start, we need to get a handle on what a non-tight lamination looks like.

If Λ is not tight, by definition the leaf space L of Λ̃ is a non-Hausdorff order tree.

Recall that two leaves µ and λ in Λ̃ are comparable if they can be jointed by a tight
transversal, and incomparable otherwise. A sequence {µi} of leaves in L is mono-
tone ordered if all of the {µi} lie in an ordered segment I ⊂ L, so that the µi form an
increasing sequence in I. We define a cataclysm to be a collection of incompara-

ble leaves {λj} of Λ̃, called the limit leaves, for which there is a monotone ordered
sequence µi, called the approximating sequence, which converges on compact sub-
sets in the Hausdorff topology to the union of the λj; that is, for all compact subsets
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K ⊂ M̃,

lim
i→∞

(µi ∩ K) =

(⋃

j

λj

)
∩ K

in the Hausdorff topology on closed subsets of K.
For any sequence pi ∈ µi which converges to some p ∈ λj, the sequence of

pointed metric spaces (µi, p) converges to (λj, p). In particular, if pi and qi are two
sequences with pi, qi ∈ µi where pi → p ∈ λj and qi → q ∈ λk for λj 6= λk, then the
leafwise distance from pi to qi in µi goes to infinity.

We define an equivalence relation on cataclysms as follows: two cataclysms C =

({λj}, {µi}) and C ′ = ({λ ′
j′}, {µ

′
i′}) are equivalent if {λj} and {λ ′

j′} are equal as sets, and if
for someN, the union

{µj}j≥N∪ {µ ′
j′}j′≥N

can be totally ordered in L.
The equivalence class of a cataclysm is determined by the collection {λj} of leaves,

since for any p ∈ λj and any pi → p contained in Λ̃ on the side of λi which contains
the other λj, the leaves µi with pi ∈ µi are an approximating sequence, unique up
to equivalence. It follows that the stabilizer of a cataclysm acts by permutations on

the set of limit leaves, and by isometry on their union, thought of as a subset of M̃.
The following condition is natural for trying to build circle actions:

3.5. Definition. A lamination Λ has orderable cataclysms if for each equivalence
class of cataclysm [C], there is an ordering on the set of limit leaves {λi} of [C] which
is invariant under the action of the stabilizer of [C] in π1(M).

We will show that orderable cataclysms can replace tight as a hypothesis in The-
orem 3.2, but let’s first give an example of this condition.

3.6. Example. Let X be a pseudo-Anosov flow, and denote the two dimensional sta-
ble and unstable singular foliations Fs and Fu. For ease of notation, we will focus
on Fu but of course similar statements are true for Fs. The foliation Fu lifts to a
singular foliation F̃u of M̃ invariant under the lifted flow X̃. Each nonsingular leaf

of F̃u is topologically a plane foliated by flow lines of X̃. If λ is a nonsingular leaf

of F̃u, the flow along λ by X̃ compresses the flowlines together. Thus the holonomy
along this foliation is defined in the positive direction for all time. In particular, it

is easy to see from this that λ is isometric to H2. The foliation λ ∩ X̃ is a foliation of

H2 by geodesics asymptotic to a unique point in S1∞. A singular leaf λ of F̃u has the
following structure. Let h1, . . . , hn be copies of H2 foliated by geodesics asymptotic
to pi ∈ S

1
∞(hi), and let γi ⊂ hi be one of these geodesics. Then γi separates hi into

two sides, h±
i . We obtain a quotient space

l =
⋃

i

hi

by gluing h+
i to h−

i+1 via an isometry taking γi to γi+1, where the indices i are taken
modulo n. Then λ = l, and the hi are called the faces of the singular leaf λ. The

image of the γi in l is a singular orbit of X̃ and covers a circular singular orbit inM.
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The singular foliation Fu can be split open into a laminationΛu whose leaves are

exactly the nonsingular leaves of the F̃u together with one leaf for every face of a
singular leaf. If X is pseudo-Anosov but not Anosov, then Λu is a very full genuine
lamination, and ifX is Anosov thenΛu = Fu. The foliation of the leaves of Fu by flow
lines of X gives rise to foliations of the leaves of Λu. Consider a cataclysm C with
limit leaves λi and approximating sequence µj. The foliations of the µj by flowlines

of X̃ converge on compact sets to the foliations of the λi. So if we pick points pij ∈ µj

so that pij is very close to λi, there is a natural order on the pij coming from the order

on the leaf space of the X̃ foliation of µj, which is R. This determines an order on the
indices i. As j → ∞, the order on the indices i is eventually constant, and therefore
determines a natural order on the set {λi}, which is invariant under the stabilizer in
π1(M) of [C]. Thus Λu has orderable cataclysms.

This natural order structure on the cataclysms of pseudo-Anosov flows was ob-
served by Fenley in [Fen], where he gives examples of pseudo-Anosov flows where
Λu is not tight.

3.7. Example. Not all cataclysms are orderable. Here is a simple example. Start with
a tight lamination Λ with a complementary region which is an ideal square bundle
over the circle where the monodromy is the rotation through angle π. Then fill in
that region with a saddle bundle over S1. In the universal cover, the bundle of sad-
dles lifts to R leaves which limit in either direction to a pair of distinct leaves cor-
responding to opposite sides of the ideal square. Either end gives a cataclysm with
two limit leaves. The stabilizer of the cataclysm corresponds to the monodromy
of the core of the complementary region downstairs; in particular, it interchanges
these two limit leaves, and this cataclysm is not orderable.

Now we’ll show:

3.8. Theorem. Let M be an orientable atoroidal 3-manifold containing a lamina-
tion Λ with solid torus guts and orderable cataclysms. Then π1(M) has a faithful
representation in Homeo+(S1).

Proof. By the Filling Lemma 4.1, Λ can be filled to a very full lamination. The proof
that filling preserves tightness further shows that filling preserves the set of equiv-
alence classes of cataclysms, and that no added leaf is a limit leaf of a cataclysm.
In particular, the filled lamination has orderable cataclysms. So from now on, we’ll
assume that Λ is very full.

The proof is now morally the same as for Theorem 3.1, but this time it’s easier to
do things a little more abstractly. A circular order on a set S is an assignment to each
triple of distinct elements (s1, s2, s3) an orientation of clockwise or anti-clockwise,
satisfying the obvious rules coming from triples of points on S1. Here, we will show
that the set of ends E of L has a natural circular order which is invariant under the
action of π1(M). We will complete E with respect to this circular order to get the
needed circle. (For a detailed definitions and basic properties of circular orders on
sets and left-invariant circular orders on sets acted on by a group, see e.g. [Tar].)

By definition, a circular order on an order tree L consists of two things: a circular
order on sets of segments with only a vertex in common, and a linear order on sets of
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segments which differ only by a vertex (for details see [GK2]). For the leaf space L of

our lamination Λ̃,we can define a circular order which is invariant under the action
of π1(M) as follows. A set of segments with only a vertex in common corresponds to

the set of faces of a closed complementary region C = Pi × R of Λ̃. As before, if we
fix orientations of the core curves of the complementary regions M − Λ, the faces
of C have a natural circular order. A set of segments which differ only in a vertex
corresponds to a cataclysm, and so has an order by assumption. In the cataclysm
case, we can certainly choose our orderings to be π1(M)-equivariant.

Thus L is an order tree with a π1(M)-invariant circular order. Let E be the set of
ends of L. If (e1, e2, e3) are three distinct ends in E, we define their circular order
as follows. Take any point p in L and consider rays ri starting at p and ending at
ei. By looking at the (circularly ordered) subtree T = ∪ri, we get a circular order
of the ends of the ri. This order is independent of the choice of point p, and so
we have a natural circular order on E which is invariant under the action of π1(M).
Up to homeomorphism, there is a unique way to embed E into a circle S1 so that
the embedding respects the circular orderings and is continuous with respect to
the topology on E induced by the order. The closure of the image of E may omit
some gaps, which we can collapse to get the promised circle on which π1(M) acts.
As in the proof of Theorem 3.1, if some element α ∈ π1(M) acts trivially on this
circle, it must fix every complementary domain; then π1(M) has a nontrivial center,
violating the assumption thatM is atoroidal.

3.9. Corollary. Let M be an atoroidal 3-manifold which admits a pseudo-Anosov
flow X. Then π1(M) admits a faithful representation in Homeo(S1).

Proof. If X is pseudo-Anosov but not Anosov, the singular unstable foliation can be
split open to a very full genuine lamination. As explained in Example 3.6, these
laminations have orderable cataclysms and so Theorem 3.8 applies. If X is Anosov,
the unstable foliation is a taut foliation, and the circle action comes from Theo-
rem 6.3.

3.10. Invariant laminations for cataclysms. For the sake of completeness, we give
a more precise description of the non-Hausdorff behavior of the leaf space at a cat-
aclysm. The following theorem shows that the set of limit leaves of a cataclysm can
be parameterized by a geodesic lamination of H2 in a (topologically) canonical way.

3.11. Theorem. Let Λ be an essential lamination, and let C be a cataclysm of Λ.
Then we can associate a lamination L of H2 to C in such a way that the comple-
mentary regions to L are in 1-1 correspondence with the limit leaves of C, and the
stabilizer Γ ⊂ π1(M) of [C] acts by homeomorphisms of H2 which preserve L, and
permute the complementary regions by the permutation action on the limit leaves
of C.

Proof. For each limit leaf λi, pick some point pi, and for each approximating leaf µj

pick pij such that the pij limit to pi as j→ ∞, for each i. Pick some small ǫ, and con-
sider for each limit leaf λi and each approximating leaf µj the subspace µj(i) ⊂ µj

consisting of points which are within ǫ of λi. Then for sufficiently small ǫ, the sets
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µj(i) and µj(k) are disjoint for i 6= k, since for any lamination with bounded geom-
etry, leaves are uniformly properly embedded in their ǫ neighborhoods for some ǫ,

and therefore pairs of points on incomparable leaves of Λ̃ are a uniform distance
apart. On the other hand, by the Leaf Pocket Theorem 5.2, for large j, µj(i) contains
a δ-net of points in the circle at infinity S1∞(µj) in the visual metric as seen from
pij. In particular, the boundary of the convex hull of the limit set of µj(i) defines a
collection of geodesics which separates most of µj(i) from µj(k) for i 6= k in some
definite order; the closure of the union of such geodesics is a geodesic lamination
Lj of µj. This lamination is dual to a planar order tree Tj whose vertices are the i
for which pij is sufficiently close to λi. In particular, there are a sequence of inclu-
sions Tj → Tj+1 → . . . and the union T∞ is a Hausdorff planar order tree dual to
a lamination L of H2, which is a limit of the Lj under an appropriate sequence of
homeomorphisms (not isometries) from µj → H2. It is clear that L does not depend
on the choice of approximating leaves, since if we insert some µj+1/2 between µj and
µj+1 then there are inclusions Tj → Tj+1/2 → Tj+1 → . . . and the limit is unchanged.
In particular, L depends only on [C], and therefore the stabilizer of [C] acts on it by
automorphisms.

4. THE FILLING LEMMA

This section is devoted to the proof of the following lemma, which is of indepen-
dent interest. It resolves the disparity between having solid torus guts and solid
torus complementary regions, and is used in Section 3 to reduce the construction
of actions on circles to the latter case.

4.1. Filling Lemma. Let M be an orientable 3-manifold and Λ a genuine lamina-
tion such that for some decomposition of M − Λ into interstices and guts, the guts
are neutered ideal polygon bundles over S1. Then Λ can be filled to a genuine lami-
nation Λ ⊃ Λ, whose complementary regions are all ideal polygon bundles over S1.
That is,Λ is very full. Moreover, ifΛ is tight, so isΛ.

Before giving the proof, let us point out another application. Gabai and Kazez
have shown that if an atoroidal manifold has a genuine lamination with some com-
plementary region a solid torus, then homotopic homeomorphisms are isotopic
[GK1]. The Filling Lemma extends that result to manifolds with genuine lamina-
tions where there is a decomposition of M − Λ with a solid torus gut region. Now
we’ll prove the Filling Lemma.

Proof. First, fill all product complementary regions with foliation. Now, each com-
plementary regionC ofΛ is a union of gut piecesGi together with a finite collection
of interval bundles Jk (the bases of the Jk need not be compact). The Jk are glued
to the Gi along the interstitial annuli. The first step of the proof is to add leaves to
reduce to the case where each Jk is a trivial I-bundle over a surface with a single
boundary component. Then, each Jk is attached to a single Gi along one intersti-
tial annulus, and each C contains exactly one gut region. After this basic reduction,
we’ll add on a product foliation to the boundary leaves of C, and perturb it so that
the new C is an ideal polygon bundle over S1.
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4.2. Basic reduction. First, we’ll insert finitely many leaves so that each I-bundle
Jk has only one interstitial annulus in its boundary. Let Jk be an I-bundle over a base
with at least two boundary components. Pick an interstitial annulusA bounding Jk,
joining it to a gut regionGi. Let λ and µ be the leaves of Λ that A runs between.

FIGURE 4.3. A Jk with two boundary components joins two gut re-
gionsGi andGj. The interstitial annulusAwe’re considering is one on
the left. Also shown is part of the new leaf ν which we’re adding. The
leaf ν is carried by the branched surface B.

Build a branched surface B from A, µ, and λ, bending A as shown in Figure 4.3.
The leaf we add will be carried by B, and will consist of one copy of A glued to stuff
parallel to µ and λ. Explicitly, take countably many copies of the two leaves λ and µ
in a product neighborhood, which accumulate only along λ and µ. Take the union
of this with A to get a two-complex which is singular along countably many circles
accumulating to the two boundary circles of A. Construct a surface carried by B
by performing a normal sum operation on each singular circle using a consistent
orientation. Let ν be the component of this new surface which contains most of
A. Add ν to Λ to get Λ ′. To decompose the complement of Λ ′ into I-bundles and
guts, use essentially the same interstitial annuli as for Λ. In the complement of Λ ′,
the I-bundle Jk has been split into a J ′k with one fewer boundary components, and
another I-bundle with one boundary component (consult Figure 4.3). Doing this
process at most once for each of our original interstitial annuli gives us a new Λ
where each Jk has only one boundary component.

Now, we’ll add finitely many more leaves so that each Jk is a trivial I-bundle. Sup-
pose some I-bundle J1 is nontrivial, and let G be the gut region it’s attached to via
the interstitial annulusA1. Let Σ1 be a copy of the base of J1 sitting in the middle of
J1. Let J2 be an I-bundle attached to G along A2. Choose a horizontal surface Σ2 in
J2 which has exactly one boundary component on A2. Let ν be the surface created
by gluing Σ1 and Σ2 together via an annulus inG. If we pick J2 so thatA1 andA2 are
adjacent on ∂G, the new laminationΛ ′ = Λ∪µ has essentially the same guts asΛ. If
J2 was also twisted, adding ν creates a new J ′k with two boundary components, so in
this case we add a second leaf as in the previous step so that all I-bundles still have
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a single boundary component. In any event, there are now fewer twisted I-bundles
J ′k in the complement of Λ ′. Thus, after adding finitely many leaves, we can make
all of the Jk trivial I-bundles over surfaces with one boundary component.

4.4. Main argument. Consider one of our complementary regions C. We need to
fill Λ so that C becomes an ideal polygon bundle over S1. As a rough outline, we’ll
begin by foliating each interstitial region Jk by planes and annuli in a very standard
way. Here, by “plane” we really mean a disc with a part of its boundary removed, and
similarly for annuli. The induced foliation of each interstitial annulus will consist
of a countable collection of circles, and a bunch of lines spiraling out to the circle
leaves. Each annulus leaf has a single circle boundary component and many line
boundary components. We’ll split open the foliation of each Jk along one of the
annulus leaves and glue these foliations together across the gut G to enlarge our
original lamination Λ. If we glue with care, the new leaves are all either annuli or
planes. The new interstitial I-bundles will have bases which are annuli of the form
S1× [0, 1), and so the complementary regions are all ideal polygon bundle over S1.

We’ll begin by constructing the foliation of each interstitial region. Let J be an
interstitial region Σ × I, where Σ is has exactly one boundary loop γ. Let A = γ × I.
We will foliate J by choosing some representation

σ̃ : π1(Σ) → Homeo(I)

so that the induced foliation of J as a foliated bundle has the above properties. We

will construct σ̃ from a representation σ : π1(Σ) → PSL2R by lifting σ to P̃SL2R.

The group P̃SL2R ⊂ H̃omeo(S1) acts on R, and we can identify Homeo(R) with
Homeo(I). We’ll want the representation σ to be faithful, and also that the non-
trivial images are hyperbolic elements. Moreover, we’ll need that in the lift

σ̃ : π1(Σ) → P̃SL2R

the rotation number of γ is zero. This way, σ̃(γ) will have countably many fixed
points, and will alternate between being increasing and decreasing on the comple-
mentary intervals.

Here’s why such a σ exists. The group π1(Σ) is a free group, possibly on infinitely
many generators. First, consider the case where π1(Σ) is finitely generated. Note
that the set of faithful representations is dense in the space of all PSL2R representa-
tions; this is because it is the complement of

⋃

g∈π1(Σ)

{
ρ : π1(Σ) → PSL2R

∣∣ ρ(g) = I
}

which is a countable union of proper algebraic subvarieties. For the trivial represen-
tation τ, if we look at the trivial lift τ̃ then the rotation number of τ̃(γ) is 0. For σ near
τ for which σ(γ) is hyperbolic, the rotation number of σ̃(γ) near τ̃(γ) is an integer
arbitrarily close to 0. Thus it is 0, and we can construct the needed σ. Moreover, by
taking a generic representation σ̃, we can also require that the stabilizer of all but a
countable set of points in R will be trivial, and the stabilizer of each element of that
countable set will be isomorphic to Z.
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Now suppose π1(Σ) is infinitely generated. Put a hyperbolic structure on Σ with
geodesic boundary. This gives a faithful representation σ : π1(Σ) → PSL2R where
the image of the boundary loop γ is hyperbolic. As π1(Σ) is free, there is a some lift

of σ̃ to P̃SL2R. While σ̃(γ) may not have rotation number 0, this time γ is a primitive
element ofH1(Σ); it is easy to construct a homomorphism ρ̃ fromπ1(Σ) to the center

of P̃SL2R so that the rotation number of ρ̃(γ) is minus that of σ̃(γ). Then σ̃ ′ : g 7→
ρ̃(g)σ̃(g) is the required homomorphism. Note that σ̃ ′ inherits from σ the property
that only a countable number of points have non-trivial stabilizer, and that when
the stabilizer is non-trivial it is Z.

By viewing P̃SL2R as a subgroup of Homeo(R) ∼= Homeo(I), we foliate J by F as
a flat foliated bundle with holonomy group σ̃(π1(Σ)). As desired, a countable set
of leaves in the interior of J will be cylinders, and all the rest will be planes. The
restriction of the foliation F to the annulusA is a 1-dimensional foliation G which is
a flat foliated bundle over γ = ∂Σwith holonomy generated by σ̃(γ) (see Figure 4.5).
The points t ∈ I parameterize the leaves λt of F and the leaves µt of G. Of course,

FIGURE 4.5. The element σ̃(γ) ∈ Homeo(I) has a countable collection
of fixed points, which suspend to (dark) circles, converging to either
end. The holonomy alternates between translating in one direction
and in the other, which suspends to (light) lines which spiral around
the (dark) circles. This figure depicts the restriction of the foliation G

to one half of A.

if there is β ∈ π1(Σ) with σ̃(β)(t) = s then λt = λs, so these labels are not unique.
Parameterize I = [−1, 1] in such a way that 0 is an unstable fixed point of σ̃(γ). So
the interior of λ0 is an annulus, and the suspension of the point 0 in A is a closed
loop in F which splits A into two foliated annuli A±. The interior of each leaf λt of
F is topologically either an annulus or a plane. However, the boundary of each λt

consists of the leaves

∂λt =
⋃

β∈π1(Σ)

µβ(t).

For each t, the set of boundary components consists of at most a single closed loop
and countably many lines if λt is an annulus, and countably many lines if λt is a
plane.

Now we’ll extend F slightly intoG in the following way. Let λ = λ0, which is topo-
logically a cylinder, and let µ0α denote the non-circle boundary components of λ.
Recall µ0 denotes the boundary circle of λ0. We split A into two foliated annuli A±
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along the circle µ0, and we denote the foliations byG±. See Figure 4.6. We extend the

FIGURE 4.6. The foliated annuliAj are split open to annuli foliated by
G±
j , which are glued together inG by matching their holonomy.

foliation to a pair of solid toriA+× I ⊂ G andA−× I ⊂ Gwhich are interval bundles
over annuli neighborhoods of ∂A in ∂G−A. We foliate these solid toriA±× I by the
product of the foliations G± with I. This completes our construction of the foliation
of the interstitial region J.

We do this procedure simultaneously for all the interstitial regions Jk which bound
G. For each object X constructed in J, let Xk denote the corresponding object con-
structed in Jk.

4.7. Gluing the interstitial foliations. We would like to glue the foliated annuli
ends of the A±

k × I together to foliate a product neighborhood of ∂G −
⋃

kAk (as
suggested by Figure 4.6). Consider a pair of interstitial annuli A1 and A2 which are
separated by an annulus of ∂G −

⋃
kAk. The task is to glue the foliated annulus A−

1

to the foliated annulus A+
2 , being careful about the topology of the resulting leaves.

Doing the gluing amounts to finding a conjugacy between the dynamics of σ̃1(γ1)

on [−1, 0] and σ̃2(γ2) on [0, 1] with the orientation reversed. There are many choices
of such conjugacies; the set of fixed orbits of σ̃1(γ1) on [−1, 0] is a countably infinite
discrete sequence accumulating only at −1, and the set of fixed orbits of σ̃2(γ2) on
[0, 1] is a countably infinite discrete sequence accumulating only at 1. These sus-
pend to closed circles in G−

1 and G+
2 respectively, which can be glued together. On a

complementary interval in A−
1 and A+

2 , the dynamics of σ̃1(γ1) and σ̃2(γ2) have no
fixed points, so the set of conjugacies is parameterized by Homeo(I). We need to
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choose these conjugacies, simultaneously for all adjacent pairs (A−
k , A

+
k+1), so that

in the resulting foliation the leaves containing the middle leaves λ0k are annuli.
Consider one of the leaves λ0k, whose boundary lines are denoted µ0α

k . Since all
but countably many leaves of each Fj are planes, it is easy to glue so that boundary
lines µ0α

k are glued to lines of some Gj which are boundaries of planar leaves λ0αj of

Fj. However, this is not enough to ensure that the new leaf (λ0k)
′ which contains λ0k

is an annulus. The leaf (λ0k)
′ is built up of pieces which are leaves from the Fj, and so

far we’ve only ensured that those pieces that touch λ0k are planar. Moreover, we have
to worry about whether the planar pieces of (λ0k)

′ could be glued together in a cycle,
adding to the fundamental group of (λ0k)

′. We’ll solve these problems by building
up the gluings inductively. More precisely, start by gluing one boundary line of λ0k
to a planar leaf. Now glue another one, making sure we don’t add any fundamental
group. Now glue a boundary component of one of the planar leaves we added to a
new planar leaf. Now go work on some other λ0j for a bit, etc. At each stage, we can
avoid creating any fundamental group since we’ve only made finitely many gluings.
We can formalize the order of induction as follows. Note that when we’re done,
each leaf (λ0k)

′ will be built up from an annulus and infinitely many planes glued
together along lines in their boundaries. The dual graph to the pattern of gluings is
a rooted tree Tk, where the root corresponds to the single annulus piece, and every
vertex has valence the cardinality of the natural numbers. So start with a finite set
of such trees Tk and choose a bijection from the union of their edges to the natural
numbers, so that each embedded path from a root vertex outward is labelled by an
increasing sequence of numbers. Then do the gluings in the order of the labeling.
Since there are only countably many bad choices for any given gluing, we can find a
good choice arbitrarily close to any initial guess, and choose them so that the size of
the biggest unglued gap goes to zero; thus this process defines the full gluing map
of all the annuli pairs (A−

k , A
+
k+1).

Next, we’ll “blow air” into F along the leaves (λ0k)
′ to get the final lamination. We

can extend F to a singular foliation Fs by adding a finite set of annuli Bj, parallel to
the annuli components of ∂G−

⋃
kAk, which end in pairs on the circles µ0

k. The only
singular leaf of Fs is the single branched surfaceBwhich is the union of the (λ0k)

′ and
the Bj. Then B is topologically a train-track bundle over S1 with fiber the train-track
T obtained from an ideal polygon P by collapsing the cusps of P to single branches.
It is clear that B can be split open to a ∂P bundle over S1, by Denjoying each leaf
(λ0k)

′ before gluing on the annuli Bj. Thus Fs can be split open to a nonsingular
lamination Λ ⊂ C with a single complementary region which is an ideal polygon
bundle over S1. Repeating the construction for every complementary region C of
the original Λ, we obtain a lamination of M all of whose complementary regions
are ideal polygon bundles over S1.

4.8. Tightness is preserved. To finish the proof of the Filling Lemma, it remains
to check that the construction preserves tightness. We’ll make this clear by getting
an explicit description of the quasi-isometry type of the original complementary
regions, and understanding how the added leaves are embedded in these regions.

LetΛ be a genuine lamination with solid torus guts, and take a metric onMwhich

makes the leaves of Λ hyperbolic. Let G̃ be the universal cover of a complementary
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region. We want to describe its quasi-isometry type (with respect to the induced

path metric). Each leaf of ∂G̃ is isometric to H2. The boundaries of interstitial
annuli lift to quasigeodesics in leaves of ∂G bounding quasiconvex regions which
are the lifts of the base surfaces of the interstitial regions. There are only finitely
many interstitial annuli, and so the modulus of quasi-isometry of these geodesics
is uniformly bounded. The gut regions lift to solid tori of bounded thickness which
are contained in bounded neighborhoods of these quasigeodesics in the various

boundary leaves of ∂G̃ which they border. Thus, up to coarse quasi-isometry, G̃ is
a tree of hyperbolic planes. That is, it’s obtained from countably many copies of H2,
glued together in pairs along convex subsets bounded by complete geodesics. A
finite number of copies of H2 come together along a boundary geodesic, and the
pattern of gluings is treelike—every loop in the union is contained in some copy of
H2.

More precisely, each interstitial region is covered by a product Σ̃i× Iwhich is uni-

formly quasi-isometric to a region Σ̃i ⊂ H2 bounded by a collection of complete

geodesics. Each leaf λ of ∂G̃ is tiled by isometric copies of the Σ̃i. Pairs of leaves

of ∂G̃ are glued together along such tiles, and n-tuples are glued together around

each boundary geodesic of ∂Σ̃i. We can make a graph with two kinds of vertices:

the first kind correspond to the boundary geodesics of tiles ∂Σ̃i. The second kind

correspond to the tiles themselves Σ̃i. The edges correspond to a choice of a tile
and a boundary leaf in that tile. This gives a graph which is a simplicial tree. (Sim-
ilar trees of hyperbolic planes arise as quasi-isometric models for Cayley graphs of
Baumslag-Solitar groups [FM], but there the tiles are glued along regions bounded
by horocycles, not geodesics.)

Looking back at our construction, the final laminationΛwas obtained fromΛ by
inserting new leaves into complementary regions to Λ so that the added leaves λ
are everywhere transverse to the I-bundle regions and parallel to the boundary in

the gut regions. Such leaves are covered in G̃ by hyperbolic planes which project
homeomorphically to the H2 slices in our quasi-isometric model. It is clear that a
sequence of such slices cannot converge to a pair of distinct slices, and so the leaf

space of the leaves inside G̃ is Hausdorff. Thus Λ is tight if Λ is. This completes the
proof of the Filling Lemma.

5. LEAF POCKET THEOREM

Let F be a taut foliation with hyperbolic leaves. Consider a leaf λ of F, and a
point p in λ. Given a geodesic ray r starting at p, we can ask: Can we choose a
transversal τ at p so that the holonomy of τ is defined along all of the ray r? A yes
answer is equivalent to the other leaves not pulling away from λ along r too fast.
Thurston showed the surprising fact that there are always many directions where
the corresponding ray has this property. In fact, the set of directions where this is
true is dense in the tangent space to λ at p. This section is devoted to the proof of
this theorem, generalized from foliations to essential laminations. The existence of
so many directions of “pinching” of the leaves of F allows one to piece together the
circles at infinity of the individual leaves into a universal circle (see Section 6).
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We’ll begin with the definition of a marker, which is a way of keeping track of how
the leaves of an essential lamination come together.

5.1. Definition. Let Λ be an essential lamination of M with hyperbolic leaves. A
marker for Λ is a map

m : I× R+ → M̃

with the following properties:

1. There is a closed set K ⊂ I such that for each k ∈ K, the image of k×R+ in M̃ is

a geodesic ray in a leaf of Λ̃. Further, for k ∈ I− K,

m(k× R+) ⊂ M̃ − Λ̃.

We call these rays the horizontal rays of the marker.
2. For each t ∈ R+, the interval m(I × t) is a tight transversal. Further, there is a

separation constant ǫ forΛ, such that

length(m(I× t)) < ǫ/3.

We call these intervals the vertical intervals of the marker.

The main theorem of this section is:

5.2. Leaf Pocket Theorem for Laminations. LetΛ be an essential lamination of an
atoroidal 3-manifold M. Then for every leaf λ of Λ̃, the set of endpoints of markers
is dense in S1∞(λ).

This theorem generalizes Thurston’s corresponding theorem for foliations given
in [Thu]. The proof here is completely topological, in contrast to Thurston’s proof
which relies on the existence of harmonic measures for foliations. See Remark 5.11
for more on harmonic measures and their relationship to the Leaf Pocket Theorem.
As such, our conclusion is slightly different from that of [Thu]. Precisely, Thurston
showed the following. For any ǫ > 0 there is a t > 0 such that if λ and µ are a pair
of leaves which are joined by a transversal τ of length ≤ t, then for a random walk
γ in λ starting at τ ∩ λ, the holonomy transport of τ along γ has uniformly bounded
length with probability at least 1− ǫ.

The rest of the section is devoted to the proof of the Leaf Pocket Theorem.

Proof. In outline, the proof goes like this. A minimal set of Λ is a nonempty closed
union of leaves which is minimal with respect to that property. A closed union of
leaves Σ is minimal if and only if every leaf in Σ is dense in Σ. The main case of

the theorem is for leaves of Λ̃ which cover leaves in a minimal set. While not every
leaf of Λ is contained in a minimal set, the closure of every leaf in Λ contains some
minimal set. Once we know the theorem for leaves in minimal sets, it is not hard to
prove the theorem for all leaves.

To continue the outline, let Σ be a minimal set of Λ. First we show that some leaf
of Σ has nontrivial fundamental group. Then there is a closed geodesic γ in a leaf of
Σ. Using the holonomy around γ, we construct an “immersed sawblade” inΛ, from

which we build a collection of markers in Λ̃. We show that any leaf in Σ̃ intersects at

least one of these markers. We then show that in any given leaf λ of Λ̃, the endpoints
of these markers is dense in S1∞(λ).
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Let’s begin the proof in the case of a minimal set Σ of Λ, that is, for leaves λ of Λ̃

which lie in the inverse image Σ̃ ⊂ Λ̃ of Σ.

5.3. Each leaf of Σ̃ has a marker. First, we claim that Σ contains a leaf with a non-
trivial closed geodesic. Suppose to the contrary that every leaf of Σ is simply con-
nected. Since M is atoroidal, the lamination Λ has hyperbolic leaves, and so each
leaf of Σ is a hyperbolic plane. Since the holonomy on Σ is trivial, it’s easy to con-
struct a nontrivial invariant transverse measure supported on Σ. In codimension 1,
Plante showed that leaves in the support of an invariant transverse measure have
polynomial area growth [Pla]. This is a contradiction as the hyperbolic plane has
exponential growth. So there is a leaf λ of Σwhich contains a closed geodesic γ.

(Note: In [Pla], Plante was concerned only with foliations, but his proof applies
to laminations as well. The only new issue is the step which involves passing to a
co-orientable finite cover, since not all laminations are virtually co-orientable. How-
ever, one can find an open neighborhood N(Λ) of Λ where Λ can be extended to a
foliation, and pass if necessary to a finite cover ofN(Λ) where the foliation becomes

co-orientable. That is, one can find a 3-manifold N̂ and a compact co-oriented lam-

ination Λ̂ in N̂which maps by either an embedding or a double cover to a subman-

ifold of M, taking Λ̂ to Λ. Plante’s theorem applies to Λ̂, and therefore also to Λ.)

FIGURE 5.4. Holonomy transport of some small transversal around γ
sweeps out an immersed sawblade.

Now we’ll use γ to show that each leaf of Σ̃ intersects a marker. We think of γ as
an interval, whose endpoints are the same point in λ. If Σ is a closed isolated leaf
then constructing markers is trivial, so we assume this is not the case. As λ is in a
minimal set, the geodesic γ is a limit of leaves of Λ on at least one side. Let τ be
a tight transversal with lower endpoint in λ to a non-isolated side of λ, sufficiently
small so that the holonomy transport of τ around γ exists. Moreover, if λ is not
isolated in Σ, choose τ on a non-isolated side in Σ. Then, by minimality of Σ, every
leaf of Σ intersects τ.

Consider the holonomy transport T : I×γ→Mof τ around γ. Even though γ(0) =
γ(1), we do not usually have T(I, γ(0)) = T(I, γ(1)). However, either T(I, γ(1)) ⊂



LAMINATIONS AND GROUPS OF HOMEOMORPHISMS OF THE CIRCLE 23

T(I, γ(0)) or vice versa. See Figure 5.4. By reversing the orientation on γ if neces-
sary, we can ensure T(I, γ(1)) ⊂ T(I, γ(0)). We will call the image of T an immersed

sawblade, and denote itG. The universal cover G̃ ofG lifts to M̃where it runs along
a lift of λ. See Figure 5.5 for one possible configuration which makes clear why G is

FIGURE 5.5. Lifts of a sawblade G̃ running along λ.

called an immersed sawblade. If we take τ short enough so that G has height less
than 1/3 a separation constant for Λ, a lift of the immersed sawblade G must con-

tains the image of a marker m. More precisely, consider any lift of τ to M̃ and look

at the lift of G̃ which contains it. The sawblade structure of G̃ forces holonomy of
τ to be defined for all time in the positive direction along the lift of γ. Sweeping

the lift of τ along the lift of γ gives a marker m which is contained in G̃. Actually,
m isn’t quite a marker because the definition requires that each horizontal ray be a
geodesic. Shrinking τ and thus G if necessary, we can ensure that each horizontal
ray has uniformly small geodesic curvature in its leaf. Then each horizontal ray of
m is a K-quasigeodesic for a uniform Kwhich we can make arbitrarily close to 1. We
can then straighten these to genuine geodesics to construct a real marker. Making

K small enough, the final marker lies in a small δ-neighborhood of G̃.

Taking the possible lifts of τ to M̃ gives us an equivariant family M of markers in

M̃. Now consider any λ ′ in Σ and some leaf λ̃ ′ in Σ̃ which covers it. As noted above,

λ ′ must intersect the transversal τ. Thus one of the markers in M intersects λ̃ ′. So
every leaf of Σ̃ intersects a marker.

5.6. Endpoints of markers. Consider the familyM of markers coming from the lifts

of τ above. Let λ be any leaf of Σ̃. Consider the collection of geodesic rays in λwhich
are horizontal rays of markers of M. These rays originate from the intersections of
lifts of τwith λ. We want to show that the endpoints of these rays are dense in S1∞(λ).

Equivalently, let G denote the set of all lifts of G̃ to M̃, and look at the intersections of
G with λ. We need to show that the endpoints of these quasigeodesic rays are dense
in S1∞(λ).
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First, we’ll show there are infinitely many intersections of G with λ. Since Σ is
minimal, there is a uniform R such that for any point p in any leaf of Σ, the disk in
that leaf about p of radius R intersects τ. This is because the function of leafwise
distance to τ is upper semi-continuous on Σ. Applying this to λ, we have that any
point p ∈ λ is within R of a lift of τ, and therefore within R of an intersection of G
and λ. Thus, there are infinitely many quasigeodesic rays γi contained in λ ∩ G.

Next, we’ll show that any two distinct γi and γj have disjoint endpoints in S1∞(λ)
(in particular, Figure 5.5 depicts an impossible configuration). Downstairs in M,
choose a δ so that the leafwise δ-neighborhood of G deformation retracts to G.

Note that γi and γj come from distinct lifts of G̃ in G, as otherwise some lift of τ
intersects λ twice. Lifting the δ-neighborhood of G upstairs, we see that in λ the δ-
neighborhoods of γi andγj are disjoint. By shrinking τ if necessary, we can make the
uniform quasigeodesic constant for all the γk so small, that the δ/3 neighborhood
of any γk contains a geodesic ray. If γi and γj had a common endpoint, consider the
corresponding geodesic rays that they are δ/3-close to. There are points on these
geodesic rays that are less than δ/3 apart, and so the distance between γi and γj is
less than δ. But this contradicts that γi and γj have disjoint δ-neighborhoods in λ.
So γi and γj have disjoint endpoints.

From now on, we’ll replace the original γi by the corresponding geodesics. Note
that the γi have disjoint δ/3-neighborhoods, and that the γi are an R + δ net for λ.
Now suppose that the endpoints of the γi are not dense. Let I be an open interval
in S1∞(λ) containing no endpoints. Let J be a closed interval contained in I. Let
H be the half-space associated to the smaller interval J. As the γi are a net, there
must be an infinite sequence of disjoint γi, call them αk, which intersectH. Passing
to a subsequence, we can assume that the terminal endpoints of the αk converge
to a point p in S1∞(λ), and that the initial endpoints converge to a point q in λ ∪
S1∞(λ). The point q is in H ∪ J, and, by assumption, p can’t be in I. So p 6= q. But
then the αk converge to the geodesic ray joining q to p, which contradicts that the
αk have disjoint δ/3-neighborhoods. Thus the endpoints of markers are dense in
S1∞(λ). This proves the theorem in the case of leaves in minimal sets.

5.7. Properties of markers. Before moving on, we note that we actually know more
than just that the endpoints of the markers are dense in S1∞(λ). If Σ is not a compact
leaf, then every leaf of Σ intersects the interior of τ many times. Thus there must

be a markerm for each leaf λ in Σ̃ so that λ is in the interior of marker (in the sense
that the vertical intervals of the marker intersect λ in their interior). If, on the other
hand, Σ is a compact leaf then all the markers we construct have endpoints in Σ,
and extend only to one side of Σ. In this case, we repeat the construction on the
other side of γ to get dense sets of markers extending in both directions.

5.8. Leaves not in minimal sets. The basic idea here is that leaves that are not in
minimal sets get very close to leaves which are in minimal sets, and pick up markers
that way. Fix a leaf λ of Λ, and a point p in λ. For each unit vector v tangent to λ at
p, we need to show that there is a marker intersecting λ whose endpoint in S1∞(λ)
is arbitrarily close (in the visual sense) to v. Fix an ǫ > 0. Let Sǫ be the sector of λ
bounded by two geodesic rays starting at p, so that the angle between the two rays
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is ǫ, and so that v points down the center of Sǫ. We claim the closure of Sǫ inΛmust
contain a minimal set. Pick a sequence of points mi in Sǫ marching out towards
infinity so that the disk about mi in λ of radius i is contained in Sǫ. Ifm is any limit
point in M of the mi, the closure of Sǫ contains the entire leaf containing m, and
thus contains any minimal set in the closure of that leaf. Let Σ be such a minimal
set.

Fix a point q in a leaf σ of Σ. As q is in the closure of Sǫ, there exist points pi in Sǫ
which converge to q inM. We can assume that locally near q, the pi all lie to a fixed
side of σ. Let vi be the unit tangent vector to λ at pi which points directly away from
the base point p. By passing to a subsequence, we can assume that the vi converge
to a vectorw tangent to σ at q. As σ is in a minimal set, there exists a marker whose
endpoint in S1∞(σ) makes an angle of < ǫ/2 withw. Initially, that marker might not
come near the point q, but at the cost of shortening the vertical intervals we can
drag it over so that one of the vertical intervals contains q. Moreover, we can choose
this marker so that it lies to the same side of σ as the pi’s. This marker intersects λ in
horizontal rays which nearly contain the geodesic rays given by (pi, vi). For i large
enough, these horizontal rays must be contained in the enlarged sector S2ǫ. Thus
the endpoints of these markers make a visual angle of at most 2ǫ with our initial
vector v. It follows that the endpoints of markers are dense in S1∞(λ).

5.9. Remark. Note that the proof actually shows a little more about the set of mark-
ers than just that their endpoints are dense in S1∞(λ). Namely, if λ is non-compact,
then the endpoints of markers which intersect λ in their interior are dense. If λ is
compact, then the endpoints of markers which extend to a fixed side of λ are dense.

5.10. Remark. Notice that the “essential” hypothesis in this theorem is excessive. All
that is necessary is thatΛ is compact, codimension one, and has hyperbolic leaves.
Also, while Theorem 5.2 generalizes Thurston’s original theorem from foliations to
all essential laminations, this does not allow one to generalize his theorem on the
existence of universal circles to the case of genuine laminations.

5.11. Remark. A more analytic proof of this theorem might run along the following
lines: The set of harmonic probability measures supported on a compact lamina-
tion Λ is a compact convex set; the extremal points in this set (those which can’t
be written as a nontrivial convex sum of harmonic probability measures) are the
ergodic harmonic measures [Gar, Can2]. The holonomy transport along a random
walk in a leaf preserves the (infinitesimal) harmonic measure of a transversal, on
average. It follows by an analytic argument that the holonomy of some transversal
does not blow up for a.e. random walk on a leaf in the support of an ergodic har-
monic measure. If λ is a leaf not in the support of any ergodic harmonic measure, a
random walk on λ is dispersive, and must eventually wander arbitrarily close to the
support of an ergodic measure.

6. UNIVERSAL CIRCLES

Let M be an orientable 3-manifold with a taut foliation F. In the last section, we
saw that the leaves of F̃ come together in many directions. In this section, we’ll ex-
plain how this allows the construction of a master universal circle by assembling the
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circles at infinity of the leaves of F̃. This universal circle comes equipped with an
action of π1(M). A simple example to keep in mind is that of a surface bundle over
S1, where one can identify the circles at infinity of any two leaves using the product

structure of M̃. In this case, the universal circle can be identified with any particu-
lar circle at infinity. In general, the branching behavior of the leaf space makes the
relation between the universal circle and the circle at infinity of a leaf more compli-
cated.

We’ll start with the precise definition of a universal circle. Recall that two leaves

are in F̃ are comparable if they can be joined by an arc transverse to F̃. Then:

6.1. Definition. A universal circle, S1univ, for F is the following data:

1. A representation

ρuniv : π1(M) → Homeo(S1univ).

2. For every leaf λ of F̃, a monotone map

φλ : S
1
univ → S1∞(λ).

3. For every α ∈ π1(M), the following diagram commutes:

S1univ

φλ

��

ρuniv(α)
// S1univ

φα(λ)

��

S1∞(λ)
α

// S1∞(α(λ))

4. For any leaf µ, the associated gaps are the maximal connected intervals in S1univ

mapped to points by φµ. The complement of the gaps in S1univ is the core asso-
ciated to µ. We require that for any pair (µ, λ) of incomparable leaves, the core
associated to λ is contained in a single gap associated to µ, and vice versa.

The purpose of this section is to prove:

6.2. Theorem (Thurston). LetF be a taut foliation of an orientable 3-manifold with
hyperbolic leaves. Then there exists a universal circle for F.

Moreover, one has:

6.3. Theorem. IfM is atoroidal, the action of π1(M) on the universal circle is faith-
ful.

Theorem 6.2 is announced in [Thu], but unfortunately this paper is mostly un-
written. Thurston has outlined a construction of S1univ in several lectures, and given
many details. An alternate construction of S1univ when F is co-orientable is given in
[Cal1]. As a public service, we give a complete proof here. The basic idea is to look
at certain sections of the circle bundle E∞ over the leaf space L, namely the “spe-
cial sections” which are canonically defined. The set of all special sections, S, has a
natural circular order, and can be completed to form S1univ. The map S1univ → S1∞(λ)
comes from restricting sections in S to λ. Since special sections are canonically de-
fined, they are invariant under the action of π1(M) on E∞ , and this gives the action
of π1(M) on S1univ. The hard work in proving Theorem 6.2 is all in the Leaf Pocket
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Theorem 5.2, which is used to define the correct sections. The arguments in this
section are mostly formal.

6.4. Monotone maps of circles. We’ll warm up to our study of special sections by
investigating some generalities about monotone maps between circles. A monotone
mapφ : S1 → S1 is a degree one map which does not reverse (but might degenerate)
the cyclic ordering on triples of points. Note that it is implicit in this definition that
we are considering maps between oriented circles. A map is monotone if for every
p ∈ S1, the preimage φ−1(p) is contractible. This use of the word monotone agrees
with the standard use from decomposition theory, in the sense of R. L. Moore.

6.5. Definition. A monotone relation between an ordered pair of circles S11 and S12
is a third circle S112 and two monotone maps φi : S

1
12 → S1i for i = 1, 2.

For ease of notation, we denote a monotone relation between two circles by the
name of the source of the two monotone maps to these circles. The monotone maps
are part of the data, of course.

The following lemma gives a pushout construction for monotone maps.

6.6. Lemma. Consider three circles S11, S
1
2, and S13. Let S112 be a monotone relation

between S11 and S12, and S123 a relation between S12 and S13. Then there is a canonical
(leftmost) monotone relation S113 between S11 and S13.

Proof. The mapping cylinder of a monotone relation is literally a cylinder whose in-
terior is foliated as a product, but for which distinct intervals of leaves converge to
a single point in the target circle (see Figure 6.7). The mapping cylinders of our two

FIGURE 6.7. The mapping cylinder of a monotone relation.

monotone relations can be glued along the intermediate S12 to give a cylinderCwith
a foliation which is singular along the middle and two boundary circles. Using a
leftmost rule, we will resolve these singularities to construct the mapping cylinder
of the composite. If p ∈ S12 is singular, the leaf through p consists of the union of a
cone and a line, or of two cones. (Throughout, consult Figure 6.8.) The boundary
of this singular leaf is a train track with 3 or 4 branches and a single switch at p. If
the train track has 3 branches, we can split it open until the switch is on a bound-
ary circle of C. If the track has 4 branches, we resolve the switch by pushing the
upper left branch over the right branch, and then split open as before. The regions
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FIGURE 6.8. Monotone relations can be composed by splitting the as-
sociated singular foliations according to the leftmost rule.

bounded by split open tracks can be foliated by a product foliation. The result is a
foliation of the interior ofCwhich is singular along the two boundary circles, which
are canonically identified with S11 and S13. This gives the needed relation.

If we think of monotone relations between ordered pairs, then Lemma 6.6 shows
us how to compose monotone relations. The topological realization of the pushout
as a canonical splitting of a singular foliation of a cylinder implies that the compo-
sition of monotone relations is associative.

Lemma 6.6 generalizes to continuous families of monotone maps, as follows. The
reader may wish to skip ahead to Section 6.10 to see how this material is needed in
the sequel before proceeding. Consider a continuous family of monotone maps

φt : S
1× t→ S1× t

parameterized by t in an interval I. Let C = S1× I be a parameterized cylinder, and
let φ : C→ C be the map associated to the φt, which preserves the I-coordinate.

The cylinder C is foliated by {point} × I. The image of this foliation under φ is
denoted by Fφ, and Fφ is said to be monotonely parameterized byφ. The foliation is
singular, since distinct leaves are not disjoint. While leaves may overlap, they can’t
cross. It is clear from the definition that a monotone parameterization of C gives a
monotone relation between the circles of ∂C.

6.9. Lemma. Let C = S1 × I be a parameterized cylinder, and let F be a singular
foliation of C transverse to every S1× {point}. Then F is monotonely parameterized
by a canonical leftmost φ.

Proof. We can think of the singular foliation F as a foliation by train tracks, in the
generalized sense that continuous families of branches may coalesce at a switch. A
dense subset of F can be exhausted by finite train-tracks Fi. These can be desin-
gularized, pushing left branches over right branches to the right boundary where
they can be split open, and right branches under left branches to the left boundary
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where they can be split open. This gives a family of trivial (product) laminations in
C of the form Si × I where Si is a finite set, which maps by a monotone family of
maps to the train track Fi. As the Fi accumulate in C, so do the Si, and in the limit
we construct a monotone family of maps from C foliated as a product to C foliated
by F. This limiting map gives our canonical monotone parameterization of F. It is
easy to check that the map does not depend up to homeomorphism on the choice
of exhaustion by Fi, and is natural.

6.10. Leftmost sections for comparable leaves. Fix a co-orientation of F̃. For a

pair (λ, µ) of comparable leaves in F̃, we will write λ > µ to mean that λ lies above
µ with respect to our co-orientation. Consider such a pair λ > µ. Let I ⊂ L be the
interval joining λ to µ. Then C = E∞ |I is topologically a cylinder foliated by circles
S1∞(ν) for λ ≥ ν ≥ µ. In this subsection, we will define certain sections of C, the
leftmost sections. The leftmost sections of C are defined in terms of the endpoints

of markers, so we’ll begin with a discussion of markers. Let m be a marker for F̃

which intersects only leaves in I. Then the endpoints of the horizontal rays of m
form an interval in C ⊂ E∞ which is transverse to the circle fibers. From now on,
we will abuse notation and refer to the interval of endpoints in E∞ as a marker. By
the Leaf Pocket Theorem 5.2, the markers are dense in each circle fiber S1∞(ν) of C.
Moreover, even if we only look at markers which extend to a fixed side of S1∞(ν),
then these markers are dense in S1∞(ν) (see Remark 5.9). The key to understanding
the whole set of markers is the following:

6.11. Lemma. Let m1 and m2 be two markers in C. If m1 and m2 are not disjoint,
their union m1 ∪m2 is also an interval transverse to the circle fibers (in particular,
m1 ∩m2 is a subinterval of eachmi).

Proof. Suppose the markers intersect. Let λ be a leaf where the endpoints ofm1 and
m2 are the same, and µ be a leaf where the endpoints of the mi differ. Remember
that we required that the vertical intervals in our markers are very thin, and have
length < ǫ/3 for some separation constant ǫ. In particular, the vertical intervals of
themi from λ to µ have length< ǫ/3. Let γλ

i denote the horizontal ray ofmi in λ and
similarly with γµ

i . Shortening the markers horizontally if necessary, we can make γλ
1

lie in an ǫ/3 neighborhood of γλ
2. If we start at some point p on γµ

1, we can join it to
a point q in γµ

2 by a path of length < ǫ by going up along m1 to γλ
1, over to γλ

2 in λ,
and down m2 to γµ

2. But the γµ
i diverge in µ, so the distance in µ between p and q

can be made arbitrarily large. But the distance in M̃ between p and q is at most ǫ.
This contradicts that ǫ is a separation constant for F, as µ is not quasi-isometrically
embedded in its ǫ-neighborhood.

By the above lemma, we can amalgamate intersecting markers into one larger
interval. If we take a maximal such union of markers, we get an intervalm which is
quite possibly open at either end. We’ll abuse notation and call such anm a marker.
Because of the density of markers, the endsm can’t wiggle violently, and the closure
of m is a closed interval transverse to the circle fibers of C. The closures of two
maximal markers can intersect only in at most their endpoints. Thus, the set of all
markers gives us something which approximates a singular foliation ofC, not unlike
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Figure 6.8. Later, we’ll describe how to “integrate” the set of markers into a proper
singular foliation.

Now we’re in a position to define the leftmost sections of C. First, an admissible
section is a section τ : I → C whose image does not cross, but might run into, any
marker. The leftmost section starting at p ∈ S1∞(µ) is an admissible section τ : I→ C
which is anticlockwisemost among all such sections in the following sense: for any
leaf ν ∈ I, the value τ(ν) is anticlockwisemost among all endpoints of admissible
sections starting at p and ending on S1∞(ν).

6.12. Lemma. The leftmost section exists and is continuous.

Proof. For a fixed p in S1∞(µ), we will construct a series of approximations to the left-
most section. Consider a finite set of markers M which intersects every leaf S1∞(ν).
Consider paths γ : [0, 1] → C which are almost sections in the sense that the com-
position of γ and the projection [0, 1] → I is a monotone surjection. It makes sense
to say such a path is admissible. Define τM to be the leftmost admissible path in
this sense. Explicitly, τM is constructed by starting at p, heading left until we hit a
markerm ∈ M, going up alongm until it ends, then left again until we hit a marker,
etc. See Figure 6.13
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FIGURE 6.13. An approximate leftmost section τM.

Note that if we add additional elements to M, the intersection of τM with any
fixed S1∞(ν) moves to the right. The leftmost section τ to the full set of markers
is essentially the righthanded limit of all the τM. To be precise, let’s work in the
universal cover of C which is R × I, and consider the τM to be based at some fixed
lift p̃ of p. Then we define a section τ : I→ C by

τ(ν) = sup
M

(
min(τM∩ S1∞(ν))

)
.

Here’s why this supremum exists: First note that we can restrict the supremum to
only markers M which contain some fixed set of markers M0. Then, for any M ⊃ M0,
the path τM lies to the left of the the rightward analogue of τM0

.
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FIGURE 6.15. Some special sections, showing how they can coalesce.

Because of the density of markers in every circle S1∞(λ), it is not hard to see that τ
is continuous. Since the supremum was taken over all finite subsets M, the section
τ is admissible with respect to the full set of markers. Finally, if γ is any admissible
section, it lies to the right of any τM, and hence to the right of τ. So τ is the promised
leftmost section starting at p.

While a given leftmost section is continuous, the leftmost sections may not vary
continuously as a function of p. However, any two leftmost sections do not cross,
though they can coalesce. Symmetrically, given a point q in the top boundary com-
ponent S1∞(λ), we can talk about the rightmost (downward) section of C starting at
q. Note that rightmost sections starting at S1∞(λ) and leftmost sections starting at
S1∞(µ) also do not cross.

6.14. Monotone relations between comparable leaves. We will give two different
points of view on how the leftmost sections of C give a monotone relation from
S1∞(µ) to S1∞(λ).

Given a ν ∈ I and a p in S1∞(ν), we define the special section of C, denoted τp, to
be the section which is the leftmost section going up from S1∞(ν) to S1∞(λ), and the
rightmost section going downward from S1∞(ν) to S1∞(µ) (see Figure 6.15). By the
above, two special sections do not cross, though they may coalesce. Let S denote
the set of all special sections, that is, all sections of C which are of the form τp for
at least one p. The paths in S give us a singular foliation of C of the type discussed
in Lemma 6.9. By that lemma, the singular foliation can be split open to give a
monotone relation from S1∞(µ) to S1∞(λ).

Another point of view on this monotone relation is the following, which is a warm
up for the general construction of the universal circle. Because S consists of non-
crossing paths, it has a natural circular order as follows (see the proof of Theo-
rem 3.8 for the definition of a circular order). Consider three distinct sections

(τp1
, τp2

, τp3
).
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The non-crossing property guarantees that if (τp1
(ν), τp2

(ν), τp3
(ν)) are clockwise

ordered for some ν ∈ I, then for any other ν ′, the triple (τp1
(ν ′), τp2

(ν ′), τp3
(ν ′)) is

either clockwise ordered or degenerate. Thus, we say that (τp1
, τp2

, τp3
) are clock-

wise ordered if for some ν the points (τp1
(ν), τp2

(ν), τp3
(ν)) are clockwise ordered.

(Actually, one can have three distinct τpi
which intersect each circle in only two

points, but such paths still have a natural circular order by perturbing the τpi
slightly

to disjoint paths).
Let S̄ be the closure of S in the space of sections I → C. It is easy to check that

every τ ∈ S̄ is admissible, and that any two sections in S̄ do not cross. We claim that
S̄ is isomorphic, as a circularly ordered set, to a circle. For this, we just need to check
that S̄ is compact under the topology induced by the circular order. But this is the
case because the topology induced by the order is the same as the one induced as a
subspace of the space of all sections. Henceforth, we will denote the circle S̄ by S1µλ.

For any ν ∈ I, we have a monotone map from S1µλ to S1∞(ν) by evaluation of sec-
tions. In particular, we have our promised monotone relation by looking at the re-
strictions to µ and λ. The circle S1µλ should be thought of as the universal circle of
the foliation restricted to I.

6.16. The universal circle for R-covered foliations. Before doing the general case,
let’s construct the universal circle in the case where the leaf space L = R. For p ∈
S1∞(ν) we can define the special section, τp, of E∞ as above (that is, it’s the leftmost
section upward from p, and the rightmost section downward). Let S denote the set
of all such special sections, which has a natural circular order. Moreover, we have
surjective monotone maps S → S1(ν) for each ν ∈ L via evaluation.

We claim that S is invariant under the action of π1(M) on E∞ . The only thing to

worry about is that if F is not co-orientable, then the action of π1(M) on F̃ can re-
verse the co-orientation we used to define leftmost. However, sinceM is orientable,
if γ ∈ π1(M) flips the co-orientation then γ also reverses the orientation of all the
circle fibers of E∞ . This has the affect of exchanging leftmost upwards paths with
rightmost downwards paths and vice versa. Thus S is preserved by π1(M).

To construct the universal circle, we just need to complete S into a circle. Up to
homeomorphism, there is a unique way to embed S into a circle S1 so that the em-
bedding respects the circular order and is continuous with respect to the topology
on S induced by its order. The closure of the image of S might omit some gaps,
which we can collapse to get a monotone map from S to a circle S1univ, which is the
promised universal circle. Because no τp is isolated to either side in S, it follows that
S actually embeds in S1univ.

The action of π1(M) on S extends naturally to an action on S1univ. Likewise, we
have natural monotone maps from S1univ to each S1∞(ν). It easy to check that S1univ

has all the properties of Definition 6.1, and so we’ve proved Theorem 6.2 in the case
where L = R.

6.17. Turning corners. To build a universal circle in general, we need to figure out
how to relate the circles at infinity of incomparable leaves. Recall that two incom-
parable leaves λ1 and λ2 are part of the same cataclysm if they are both limits of a
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sequence νi of comparable leaves (see Section 3.4). The following lemma is the key
to constructing special sections in the non–R-covered case.

6.18. Lemma (Turning corners). Let λ1 and λ2 be a pair of incomparable leaves of
the same cataclysm. Then there is a canonical monotone relation between S1∞(λ)
and S1∞(µ).

Proof. Roughly, the monotone relation is the inverse limit of the circles at infinity
in the approximating leaves of the cataclysm. We’ll assume that λ1 and λ2 are a
limit from below. That is, there are intervals in the leaf space Ii = [µ, λi], whose
intersection is I = [µ, λ1) = [µ, λ2) (this is the situation shown inside the circle in
Figure 6.24). Let Ci denote the cylinder E∞ |Ii , and C the half-open cylinder E∞ |I.
Let Mi be the set of markers heading downward from S1∞(λi) into Ci. Essentially,
the needed monotone relation is obtained by completing the set of markers M =

M1 ∪M2 into a circle.
First we claim that if m1 ∈ M1 and m2 ∈ M2 then m1 and m2 are disjoint in C. If

not, as in the proof of Lemma 6.11, we can join points xi ∈ λi by a path γ of length
less than a separation constant ǫ. A leaf µ ∈ I close to the λi intersects γ in a pair
of points yi, one close to each xi. The distance between the yi in µ can be made
arbitrary large by choosing µ close enough to the λi. As the yi are distance less than

ǫ in M̃, this violates that ǫ is a separation constant.
We can define a map fi : M → S1∞(λi) as follows. For a marker m ∈ M, look at

the (possibly half-open) marker m ∩ Ci. Denote by m the closure of m ∩ Ci in Ci.
If m is in Mi, then of course m is just m. In general, the density of markers implies
that m is an interval transverse to the circle fibers of Ci. We define fi(m) to be the
point of intersection of m with S1∞(λi). Consider pairs of markers in M1 and M2.
Because the λi are incomparable, the intersection of these pairs of markers with any
S1∞(ν) in C are unlinked. This implies that for i 6= j, fi(Mj) consists of a single point
pi ∈ S

1
∞(λi). The set M has a circular order coming from intersecting markers with

C. The completion/blow-down of M is a circle S1λ1λ2 which is the needed relation.

Explicitly, we can construct S1λ1λ2 by cutting each S1∞(λi) at pi and gluing the result-

ing intervals together to form a circle. The map of the relation fi : S
1
λ1λ2

→ S1∞(λi) is

just the identity on the interval coming from S1∞(λi), and maps the interval coming
from S1∞(λj) to the point pi.

6.19. Remark. The construction in Lemma 6.18 has the following important prop-
erty. Take two points qi ∈ λi on a pair of incomparable leaves situated as above.
Consider the rightmost (downward) section τi on Ci. We claim that these sections
τi differ onC. Pick a sequence of leaves µj converging to the λi. Denote by Mi(j) the
intersection of Mi with µj. The subsets Mi(j) are nonempty for large j, and they are
disjoint. Moreover, no pair of points in M1(j) links a pair of points in M2(j). Because
the τi are rightmost sections, it follows that either τ1(j) = τ1(µj) is separated from
τ2(j) for some j by pairs of points in M1(j), or else (m1(j), τ1(j),m2(j)) is anticlock-
wise ordered for each pair of markersm1 ∈ M1,m2 ∈ M2. Conversely, either τ2(j) is
separated from τ1(j) for some j by pairs of points in M2(j), or else (m2(j), τ2(j),m1(j))
is anticlockwise ordered for each pair of markersm1 ∈ M1,m2 ∈ M2. It follows that
either the τi(j) are separated from each other by Mi(j), or else for large j, there are
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m1(j),m2(j) such that (m1(j), τ1(j),m2(j), τ2(j)) are anticlockwise ordered; in partic-
ular, τ1(j) and τ2(j) are distinct in this case too. Note that the τi(j) only fail to be
separated from each other by pairs of points in some Mi(j) if and only if the points
qi are precisely the special points pi used in the explicit construction of S1λ1λ2 .

6.20. Special sections in general. For a point p ∈ S1∞(λ), we will define the associ-

ated special section, τp, as follows. For a leaf µ in F̃ there is a unique minimal broken
“path” that joins λ to µ in L consisting of finitely many ordered intervals and turns.
That is, there is a sequence

λ = µ0, µ1, µ2, µ3, . . . , µn = µ

where (µ2i, µ2i+1) are comparable, and (µ2i+1, µ2i+2) are limit leaves of the same cat-
aclysm (see Figure 6.21). Call this path γλµ. We define τp on the restriction of E∞ to
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FIGURE 6.21. The path γλµ.

γλµ by starting at p in S1∞(λ) and then extending out along γλµ in the following way.
On the segments of L joining µ2i to µ2i+1, we use the leftmost section when γλµ is
heading upwards and the rightmost section when γλµ is heading downwards. For
the turns between µ2i+1 and µ2i+2, we use the monotone relation of Lemma 6.18,
which associates a point in S1∞(µ2i+2) with S1∞(µ2i+1), to continue τ(p). This then
defines the value of τp at µ.

In order to construct the universal circle we need to understand how τp depends
on p ∈ S1∞(λ). If q is another point in the same S1∞(λ), then τp = τq for any leaf µ
which is incomparable to λ. Moreover, for q in an arbitrary S1∞(µ), the two sections
τp and τq can differ on only part of L in the following sense. Let γ̄λµ denote the union
of γλµ with all ν which are part of the same cataclysm as some (µ2i+1, µ2i+2). We say
that a lineA ⊂ L is between λ and µ if it intersects γ̄λµ. Then:

6.22. Lemma. Suppose τp and τq are sections which differ on a leaf ν ∈ L. Then ν
lies on a lineA which lies between λ and µ.
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Proof. Suppose that ν does not lie on a line between λ and µ. Then the paths γλν

and γµν intersect in a nontrivial subpath γ ending at ν. Note that the orientations
of γλν and γµν agree on γ, and that γ contains at least one turn. The sections τp and
τq coalesce as they pass through that turn, and so τp(ν) = τq(ν).

On the other hand, we have:

6.23. Lemma. Let τp and τq be two distinct sections, and A a line in L which lies
between τp. Then τp and τq differ on A.

Proof. If λ and µ are comparable, then as τp and τq are distinct they must differ on
the interval I = [λ, µ] in L. As the line A contains I, the two sections differ on A. So
now assume that λ and µ are incomparable. As in Figure 6.24,Amust pass through
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FIGURE 6.24. Where the sections can differ.

a turn of γλµ. Thus we have an interval I of A where the two sections come in via
different branches of the cataclysm. So the situation looks like the magnified picture
in Figure 6.24. As noted in Remark 6.19, the way the monotone relation works for
incomparable leaves implies that the two sections differ on I.

Now let S denote the set of all special sections τp. We want to put a natural cir-
cular order on S by declaring that a triple (τp1

, τp2
, τp3

) is clockwise ordered if the
restrictions of the τpi

to some line A ⊂ L are clockwise ordered. To know that this
makes sense, we need to check:

6.25. Lemma. Given three distinct sections (τp1
, τp2

, τp3
), there exists a line A so

that the restriction of the τi to A has a non-degenerate circular order. Moreover,
this circular order is independent of the choice ofA.

Proof. Let λi be the leaf where pi ∈ S
1
∞(λi). The midpoint of the λi is defined analo-

gously to the midpoint of three points in an R-tree. More precisely, we let Γ be the
union of the three paths γλiλj . The midpoint is constructed by making Γ Hausdorff
by amalgamating the cataclysms, taking the midpoint in the resulting tree, and then
pulling back that midpoint to L. The midpoint consists of either a single point in L
or several points of the same cataclysm. Given Lemma 6.22, if ν is a leaf where all
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FIGURE 6.26. Some possible cases.

the τpi
differ, then for each pair (i, j) there is a lineAij containing νwhich intersects

γ̄γiγj
. So a natural place to look for the needed line is near the midpoint of the λi.

There are several cases. First, consider the case where the midpoint is several points
of the same cataclysm. There are two subcases corresponding to Figure 6.26(a) and
(b). In case (a), the proof of Lemma 6.23 shows that the three sections differ on the
interval I shown. In case (b), first notice that τp2

and τp3
differ on the interval I.

Therefore, τp1
differs from at least one of τp2

and τp3
on I. Without loss of generality,

assume that τp1
6= τp2

. TakeA to be the line shown in Figure 6.26(c). AsA is between
λ1 and λ3, the sections τp1

and τp3
differ on A. As I ⊂ A, we know that the τpi

are
distinct onA, and so have a non-degenerate circular order.

In the case that the midpoint is a single point µ, take any line A containing µ.
The midpoint µ lies in every γλiλj , and so A lies between each pair (λi, λj). By
Lemma 6.23, the τi restricted toA are distinct, and so have a non-degenerate circu-
lar order.

It remains to prove that the circular order is independent of the choice of the line
A. Because of Lemma 6.22, this is simple to check in each of the above cases, and
we leave this to the reader.

Now that we’ve defined special sections in general and shown they have a circu-
lar order, the proof of Theorem 6.2 follows as in the R-covered case by completing
S into a circle. The only difference is that now we need to check Property (4) of
Definition 6.1, but this is clear from the construction in Lemma 6.18, and from Re-
mark 6.19 immediately following it.

6.27. Remark. Note that there is no claim of uniqueness for the universal circles
constructed by this or other methods. Even if one asks for minimal universal circles,
it is not a priori clear that they should be unique. On the other hand, for R-covered
foliations or those with one-sided branching, there is a unique minimal universal
circle [Cal2, Cal3].

6.28. Faithfulness of the action. Finally, we conclude this section by proving Theo-
rem 6.3, namely that the action of π1(M) on S1univ is faithful providedM is atoroidal.
If F is R-covered, then sinceM is atoroidal there is a transverse pseudo-Anosov flow
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which can be split open to a pair of very full genuine laminations Λ± transverse to

each other and to F. These laminations are covered by genuine laminations Λ̃±

which arise from a pair of invariant laminations Λ±
univ of S1univ. If γ acts as the iden-

tity on S1univ, it acts as the identity on the leaf space of either genuine lamination,
and therefore it fixes the singular flowlines of the pseudo-Anosov flow (see [Cal2]
Corollary 5.3.16); in particular, it acts as a nontrivial translation along these flow-
lines. But the dynamics of the flow expands the transverse measure on one singular
lamination and contracts the transverse measure on the other, and therefore the ac-
tion on the leaf spaces of the singular foliations is nontrivial, giving a contradiction.
So we can assume that the leaf space L has branching (in this case, we will not need
the assumption thatM is atoroidal).

Let K be the kernel of the map π1(M) → Homeo(S1univ). Let λ be any leaf of F̃, and
k a non-identity element in K. We claim that kλ and λ are comparable and distinct.
Note that k can’t fix λ setwise, because if it did it would act identically on S1∞(λ)
and hence identically on λ. If λ and kλ are incomparable, we know that the maps
S1univ → S1∞(λ) and S1univ → S1∞(kλ) blow down different gaps. As k acts identically on
S1univ, this is impossible.

Fix a branch point λ in L. By our above observations, the set Kλ is infinite and
contained in a line A ⊂ L. Now consider a leaf µ which is in the same cataclysm as
λ. Again, Kµ is contained in a line B. For each k, the leaf kµ is in the same cataclysm
as kλ. So there are infinitely many pairs of non-separable points (kλ, kµ) where
one point is in A and other in B. This is not possible for two lines in L, and so we
have a contradiction. Thus the action on S1univ is faithful in the branching case. This
completes the proof of Theorem 6.3.

7. GROUP ACTIONS ON 1-MANIFOLDS AND LEFT ORDERINGS

In this section, we discuss the algebraic interdependence between the existence
of actions of a group G on various 1-manifolds. The main reason for this is to im-
prove the usefulness of the (non)existence of such a group action as a criterion for
the existence of foliations and laminations. In particular, we want to promote an
action of π1(M) on S1 to an action on R. This is because it is much easier to decide
whether a group G admits a a faithful action on R than on S1.

We’ll begin with a more algebraic criterion for a group G to act faithfully on R. A
group G is left-orderable if there is a total order on G which is invariant under left
multiplication. If G has a faithful representation into Homeo+(R), then G is left-
orderable for the following reason. Pick an infinite sequence of points p1, p2, · · · ∈ R

such that the intersection of the stabilizers of these points in G is trivial. Then say
α > β if for the smallest iwhere one ofα andβdoes not fixpi, we haveα(pi) > β(pi).
Conversely, for a finitely generated group G, it is not hard to show that the exis-
tence of a left-invariant order gives rise to a faithful representation in Homeo+(R),
so these conditions are actually equivalent (see e.g. [Ghys]). For actions on circles,
one can use the analogous notion of a circular order to the same effect.

7.1. Lifting representations. Given a group G and a representation

ρ : G→ Homeo(S1),



38 CALEGARI AND DUNFIELD

when does ρ lift to a representation ρ̃ : G → Homeo(R)? Here we want the lift to
respect the universal covering map π : R → S1 in the sense that

π ◦ ρ̃(g) = ρ ◦ π(g) for all g inG.

The topological group Homeo(S1) has two connected components; the compo-
nent of the identity is the subgroup Homeo+(S1) of orientation preserving homeo-
morphisms. If H1(G;Z/2Z) = 0, every homomorphism from G to Homeo(S1) has
image in Homeo+(S1).

There is a universal central extension of Homeo+(S1)

1→ Z → ˜Homeo+(S1) → Homeo+(S1) → 1

where the group H̃omeo(S1) is the group of periodic homeomorphisms of R with
period 1; i.e. those that commute with the translation Z : t→ t+ 1.

Since ˜Homeo+(S1) is the universal central extension of Homeo+(S1), the obstruc-
tion to lifting a homomorphism ρ : G → Homeo+(S1) is an element of H2(G;Z)
called the Euler class e(ρ) of ρ (for more, see [Ghys]). We will give a geometric inter-
pretation of e(ρ) later, but for the moment we study the implications forG = π1(M)

whereM is a rational homology sphere.

7.2. Theorem. LetM be a rational homology sphere and ρ : π1(M) → Homeo+(S1)
a faithful homomorphism. Then the commutator subgroup [π1(M), π1(M)] is left-
orderable.

Proof. Let G = π1(M). By assumption H1(M;Z) is finite, so that e(ρ) ∈ H2(G;Z) ∼=

H1(M;Z) is torsion. We will show that ρ restricted to [G,G] lifts to ˜Homeo+(S1).

For each g ∈ G, there is a lift of ρ(g) to ρ̃(g) ∈ ˜Homeo+(S1). This lift is not unique,

and distinct lifts differ by powers of the generator Z of the center of ˜Homeo+(S1). If
c ∈ [G,G], we can express c as a product of commutators

c =
∏

i

[gi, hi].

Consider the element in ˜Homeo+(S1) given by

ρ̃(c) =
∏

i

[ρ̃(gi), ρ̃(hi)].

Since Z is central, this depends only the description of c as a product of commu-
tators, not on the choices of the {ρ̃(gi), ρ̃(hi)}. We will show that ρ̃(c) is indepen-
dent of the choice of expression as a product of commutators. Then ρ̃ : [G,G] →
˜Homeo+(S1) will be a homomorphism which is a lift of ρ as required.
If we have another description of c as a product of commutators

c =
∏

i

[g ′
i, h

′
i]
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then the relation

id =
∏

i

[gi, hi]

(
∏

j

[g ′
i, h

′
i]

)−1

determines a map from a surface Σ→M ′, and therefore an element [Σ] ∈ H2(G;Z).
To see that ρ̃ is well-defined on [G,G] it suffices to show that

Zn =
∏

i

[ρ̃(gi), ρ̃(hi)]

(
∏

j

[ρ̃(g ′
j), ρ̃(h

′
j)]

)−1

is trivial in ˜Homeo+(S1). But by the definition of the Euler class, we have that

n = e([Σ])

is zero, because e is torsion. So the representation lifts to ˜Homeo+(S1) on [G,G], and
we are done.

In case of a general action on S1 we have:

7.3. Theorem. LetM be an irreducible rational homology sphere, and

ρ : π1(M) → Homeo(S1)

a faithful homomorphism. Let K ⊂ π1(M) be the kernel of the homomorphism
from π1(M) to Z/2Z defined by the orientation of ρ. Then the subgroup [K, K] is
left-orderable.

Proof. Consider the manifold M ′ corresponding to K. If M ′ is also a rational ho-
mology sphere, then we are done by the preceding theorem. If instead H1(M) 6= 0,
then K = π1(M

′) itself is left-orderable for reasons that have nothing to do with the
existence of ρ, namely the following theorem of from [BRW, Cor. 3.4]:

7.4. Theorem (Boyer, Rolfsen, Wiest). A compact, orientable, irreducible 3-mani-
fold withH1(M) 6= 0 has left-orderable fundamental group.

In either case, we’re done.

7.5. Remark. The necessity of passing to a dihedral cover in general in Theorem 7.3
reflects the fact that finite dihedral groups act faithfully on S1. For instance, let M
be a 3-manifold with a dihedral coverN→M, where π1(M)/π1(N) = Dn, such that
π1(N) is left-orderable. Let ρ : π1(M) → Homeo(S1) have image the standard action
of the dihedral group Dn on S1. The kernel is exactly π1(N), and we can modify
ρ to a monotonely equivalent faithful action ρ ′ by blowing up the (finite) orbit of
some point in S1, inserting a faithful action of π1(N) at some blown up interval, and
transporting this action around the orbit byDn.

7.6. Corollary. Let M be an orientable atoroidal 3-manifold which contains a taut
foliation, a tight essential lamination with solid torus guts, or a pseudo-Anosov flow.
Then there is a finite cover ofMwith left-orderable fundamental group. The cover-
ing group is either an abelian group, or a Z/2Z extension of an abelian group.
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Proof. By the results of previous sections, in every case of the hypothesis of the the-
orem, there is a faithful representation of π1(M) into Homeo(S1). If H1(M;Z) 6= 0,
then π1(M) is left-orderable by Theorem 7.4. Otherwise, the result follows from
Theorem 7.3.

7.7. The Euler class and multisections. A more geometric way to think about Eu-
ler classes is via foliated bundles and multisections. A representation ρ : π1(M) →
Homeo+(S1) determines a foliated S1 bundle E overM, by taking the quotient of the

trivial bundle M̃× S1 by π1(M) acting via

γ(m, θ) = (γ(m), ρ(γ)(θ)).

Another interpretation of the Euler class e of ρ is the obstruction to finding a section
of this foliated bundle. For any integer n, the class ne is the obstruction to finding
an order nmultisection of this bundle. The existence of such a multisection gives a
representation of π1(M) on the group of homeomorphisms of n copies of R, as fol-
lows. An order nmultisection can be parameterized on a small open set B ⊂ M by
n sections si : B → E. The “labels” on these sections can be analytically continued
along a path inM, but after traveling around a loop γ ⊂M, the labels are permuted
by some element in the symmetric group on n letters:

σ(γ) ∈ Sn.

Pick a point p in B, and consider the cover of the fiber S1p by n copies of R, where
the basepoint of the ith copy of R maps to si(p). As we wind around a loop γ based
at p, we can see how much holonomy transport of some leaf twists in S1p relative to
the section si. But after traveling around the loop, the section si gets relabelled
as sσ(γ)(i). This holonomy transport gives an identification of the ith copy of R

with the σ(γ)(i)th copy of R, and one gets a representation of π1(M) in the group
Homeo+(R× {1, . . . , n}).

7.8. Flips and canceling Euler classes. Let M be a 3-manifold, and suppose that
M contains a taut foliation, a tight essential lamination with solid torus guts, or a
pseudo-Anosov flow. Then there is a faithful representation π1(M) → Homeo(S1).
We would like to find a subgroup K of π1(M), of as large index as possible, where
the representation lifts to Homeo+(R). From what we have said above, it might
seem that the worst case is when H1(M;Z/2Z) 6= 0. But there are some instances
where the nature of these representations helps out, using the flips discussed in
Section 3.3.

Suppose Λ is a tight essential lamination of M with solid torus guts, and sup-
pose further that there is a homomorphism σ : π1(M) → Z/2Z such that the core

of each gut region maps to the identity. Let M̂ be the 2-fold cover correspond-

ing to the kernel of σ. Then Λ lifts to a tight essential lamination of M̂ with two
solid torus gut complementary regions for each solid torus gut region of Λ. By the
Filling Lemma 4.1, we can assume the complementary regions to Λ were actually

ideal polygon bundles over S1, and the same is therefore true for Λ̂. The comple-

mentary regions to Λ̂ come in pairs Ci
1, C

i
2 corresponding to the complementary
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regions Ci toΛ. The representation ρ : π1(M) → Homeo(S1) restricts to a represen-

tation ρ : π1(M̂) → Homeo(S1). If, for each complementary region Ci, we perform
a flip of exactly one of the Ci

j, we get a new representation ρ ′ which is evidently both
orientation-preserving and has Euler class 0. In particular, ρ ′ lifts to a faithful rep-

resentation in Homeo+(R), and π1(M̂) is left-orderable. Unfortunately, we see no
means of exploiting this trick for algorithmic purposes, since the condition that σ
be trivial on the core of every gut region seems hard to verify in practice.

7.9. Actions on leaf spaces of taut foliations. For completeness, we include a proof
of the following fact mentioned in the introduction:

7.10. Theorem. Let F be a taut foliation ofM. Then π1(M) admits a faithful action
on Lwithout a global fixed point.

Proof. Let K be the kernel of the holonomy representation. Then K fixes every leaf

λ of F̃. In particular, K is a surface group, and is therefore left-orderable, and acts
faithfully on R. We can insert this action at some point λ ∈ L and transport it around
by the action of π1(M)/K. Geometrically, we can realize such an action by changing
the foliation F by a monotone equivalence.

7.11. Corollary. If M admits a co-orientable R-covered foliation F, then π1(M) is
left-orderable.

8. ALGORITHMIC ISSUES

Let G be a finitely presented group which has a short-lex automatic structure. In
this section, we describe computational techniques for proving that G is not left-
orderable. The existence of a short-lex automatic structure (see [ECH+] for defini-
tions) implies that the word problem for G is efficiently solvable. In fact, there is a
set of generators S of G for which there is a fast algorithm for reducing a wordw in
S to the canonical wordw ′ which is lexicographically first among all shortest words
equal tow inG.

If G is orderable, consider the positive cone P = {g ∈ G | g > 1}. Then P · P ⊂ P
andG is the disjoint union P∪P−1∪ {1}. Conversely, any P with these two properties
gives rise to a left invariant order via a > b if and only if b−1a ∈ P. Let B(r) be the
ball inG of radius r about 1, that is, all words in S of length at most r. For fixed r, we
can consider the following

8.1. Question. Does there exist a P ⊂ B(r) such that (P · P) ∩ B(r) ⊂ P and B(r) is
the disjoint union P ∪ P−1 ∪ 1?

IfG is orderable, the answer to (8.1) is yes. If the answer to (8.1) is no, thenG is not
orderable. It is not hard to show that if G is non-orderable then the answer to (8.1)
is no for large enough r. The idea is that if the answer to (8.1) is always yes, then
one can construct an global positive cone by taking an inverse limit of the partial
positive cones P(r) ⊂ B(r), picking at each stage a P(r) ⊂ B(r) which has infinitely
many extensions to larger B(R).

For any particular r, the automatic structure on G combined with the fact that
B(r) is finite means that (8.1) is algorithmically decidable. We’ll now give a simple



42 CALEGARI AND DUNFIELD

recursive algorithm to do this. The algorithm follows a similar line to the proof of
Theorem 9.1, and the reader is advised to read that proof before proceeding. Fix r
and set B = B(r). The following recursive procedure, constructP, has the property
that constructP({ }) returns true if and only if the answer to (8.1) is yes.

constructP( P such that P ⊂ B):
while (P · P) ∩ B 6⊂ P:
P := (P · P) ∩ B

if 1 ∈ P:
return false

if B = P ∪ P−1 ∪ {1}:
return true

g := a shortest word in B − (P ∪ P−1 ∪ {1})
return constructP( P ∪ {g}) or constructP( P ∪ {g−1} )

Let’s get a rough grip on how long this algorithm takes in practice. A bad case is
when P exists as then we have to construct it. Note that even if we’re handed P by an
oracle, it still takes about (#P)2 = (1/4)(#B)2 multiplications to check that P satisfies
the conditions in (8.1). If we were to compute a multiplication table for B(r) in
advance (using (1/2)(#B)2 multiplications), we could do all further multiplications
by table lookup at essentially no cost. So in cases where we end up constructing P,
we can make the running time C(#B)2 and this is roughly the best possible.

However, if the answer to (8.1) is no, in practice one needs far fewer multipli-
cations and only a few (≤ 4) levels of recursion for the algorithm to finish. So in
practice, a good strategy seems to be to stop the algorithm if the recursion depth is
greater than 5, and just assume the final answer would have been yes.

The groups we’re interested in are the fundamental groups of hyperbolic 3-man-
ifolds. These do have short-lex automatic structures. The problem is that B(r) has
exponential growth with #B(r) ≈ ACr. For the 2-generator groups we looked at
in Section 10, C is usually a little less that 3. In practice, the size of B(r) makes it
very difficult to decide (8.1) if r is bigger than, say, 7. Given this, it is remarkable
that among the small volume closed hyperbolic 3-manifolds in the Hodgson-Weeks
census there are quite a few whose fundamental groups can be shown to be non-
orderable by this method (see Section 10).

The algorithm can be easily modified to keep track of the origin of an element of
P as a product of the elements g that have been added to P. This lets one generate
a proof that the group is non-orderable. In fact, this was how we found the proof of
Theorem 9.2.

9. THE WEEKS MANIFOLD

The Weeks manifold is the smallest known hyperbolic 3-manifold. In this section,
we will show that its fundamental group cannot act faithfully on R or S1. The Weeks
manifoldW is the (5/2, 5/1) Dehn surgery on the Whitehead link (our convention is
that +1 surgery on a component of this link yields the trefoil). It is arithmetic, and
its volume is about 0.942707362776. Its fundamental group is

G =
〈
a, b

∣∣ bababAb2A, ababaBa2B
〉
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whereA = a−1 and B = b−1.
We’ll begin with the easy case of actions on R.

9.1. Theorem. The fundamental group G of the Weeks manifold is non-orderable.

Proof. Suppose that G is orderable. Consider the positive cone

P = {g ∈ G | g > 1}.

Then P · P ⊂ P and G is the disjoint union P ∪ P−1 ∪ {1}. Switching > around if
necessary, we can assume that a > 1, that is a ∈ P. We now consider the various
possibilities.

Case b ∈ P. As P · P ⊂ P, we have ab, bab, abab, etc. contained in P.
Subcase aB ∈ P. Then (abab)·(aB)·a·(aB) is in P. ButababaBa2B = 1

inG, and so 1 ∈ P, a contradiction.
Subcase bA ∈ P. Then (baba)·(bA)·b·(bA) is in P. But bababAb2A =

1 inG, and so 1 ∈ P, a contradiction.
Case B ∈ P. Using the relations R1 and R2 we have

BaB2a2Ba2B = b−1R−1
1 b · R2 = 1

inG. But then BaB2a2Ba2B ∈ P, a contradiction.

This shows that such a P does not exist, and soG is non-orderable.

Next we’ll show:

9.2. Theorem. The fundamental group of the Weeks manifold has no faithful action
on S1.

Proof. Suppose that G acts faithfully on a circle. Since H1(M,Z/2) = 0, the action
is orientation preserving. The Euler class e of the action must be nontrivial as the
previous theorem shows thatG can’t action faithfully on R. NowH2(M) ∼= H1(M) =

Z/5 ⊕ Z/5, and so e has order 5. By Section 7.7, this means that G acts faithfully
on the union of 5 lines. Let N be the stabilizer of one of the lines. The subgroup
N acts faithfully on that line and so is left-orderable. The action on the set of lines
is transitive, since 5 is the smallest multiple of e which vanishes; thus N has index
5 in G. To prove the theorem, we’ll show that no subgroup of G of index 5 is left-
orderable.

One can check that the only subgroups ofG of index 5 are normal. SoN is normal
and G/N ∼= Z/5. ThusN is the kernel of some homomorphism G→ Z/5, and there
are 6 possibilities forN. Consider the automorphisms ofG given by

φ : a 7→ b, b 7→ a and ψ : a 7→ aB, b 7→ a.

(To check thatψ induces an automorphism, use the relation BaB2a2Ba2B = 1men-
tioned above.) Together, φ and ψ generate a subgroup of the outer automorphism
group isomorphic toD6 (in fact, this is the whole isometry group ofW).

In any event, it is easy to check that under the action of 〈φ,ψ〉 there are two orbits
of subgroups of index 5 in G. Representatives of these orbits are N1, the kernel of
the homomorphism sending a 7→ 0 and b 7→ 1, and N2, the kernel of a 7→ 1 and
b 7→ −1.
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First we’ll show that N1 is non-orderable. Let P be the positive cone, and assume
that a ∈ P. The proof is completed by considering the following cases. The needed
identities in G can be checked in number of ways, e.g. by using automatic groups,
multiplying matrices, or for the determined, the relations and a chalkboard.

Case baB ∈ P. Then a(baB)3(a3(baB))2a2(baB)(a3(baB))2(baB)2 = 1 in P.
Case bAB ∈ P.

Subcase abaB ∈ P. Then

a2(abaB)a2(bAB)2a(abaB)a(a(abaB))2(a2(abaB))2a(abaB) = 1 in P.

Subcase bABA ∈ P. SetW = ((bAB)(bABA)(bAB))2. Then

a2W(bABA)2a(bAB)(bABA)(bAB)2(bABA)W(bAB) = 1 in P.

This completes the proof thatN1 is non-orderable.
Now considerN2. We can assume that ab ∈ P. The cases are:

Case ba ∈ P. Then
Subcase a2bA ∈ P. Then

(ab)(a2bA)2(ab)2(a2bA)2((ab)2(ba)2)2 = 1 in P.

Subcase aBA2 ∈ P. Then

(aBA2)2(ba)2(ab)2(ba)2(ab)(aBA2)(ba)2((ab)2(ba)2(ab)2(ba))2 = 1 in P.

CaseAB ∈ P.
Subcase a2bA ∈ P. Then

((a2bA)(ab)2(a2bA)2(ab)2)2(a2bA)2(AB)(ab)(a2bA)2(ab)2(a2bA)2(AB)2 = 1 in P.

Subcase aBA2 ∈ P. Then (ab)(AB)3(aBA2)3 = 1 in P.

This proves that N2 is non-orderable. This completes the proof that G does not act
faithfully on S1.

In fact, one can show more:

9.3. Theorem. Let G be the fundamental group of the Weeks manifold. Then any
homomorphism G→ Homeo(S1) has image which is either trivial or Z/5Z.

Proof. Consider a nontrivial action of G on the circle. Let K be the kernel of G →
Homeo(S1). We can apply the proofs of Theorems 9.1 and 9.2 to G/K unless one of
the elements we added to P is in K. In other words, we have a contradiction unless
one of

a, b, aB, bA, B, baB, bAB, abaB, bABA, ba, a2bA, aBA2, AB, a2bA, aBA2

is in K. But it is easy to check that the quotient of G by the normal closure of any of
the above words is Z/5Z. SoG/K = Z/5Z and we’re done.

As a corollary of these non-existence results, we get the following:

9.4. Corollary. The Weeks manifold does not admit a taut foliation, a tight essential
lamination, or a pseudo-Anosov flow.
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Proof. As the fundamental group of the Weeks manifold can’t act on S1, the first
and last assertions follow immediately from Theorem 6.3 and Corollary 3.9. For
tight essential laminations, though, to apply Theorem 3.2 we need the additional
hypothesis that the lamination has solid torus guts. So it remains to show:

9.5. Claim. Let Λ be a tight genuine lamination of the Weeks manifold W. Then
the complementary regions of Λ have a decomposition where all the gut regions
are solid tori.

This will follow from Agol’s work on volumes of 3-manifolds with tight lamina-
tions. A decomposition of W − Λ into interstices and guts has minimal guts if in
every complementary region C, the interstitial regions are the whole characteristic
I-bundle of C. Such a decomposition is unique up to isotopy. In [Agol], Agol shows:

9.6. Theorem (Agol). LetM be a hyperbolic 3-manifold, andΛ a tight genuine lam-
ination. LetG be the guts of the minimal decomposition ofM −Λ. Then

vol(M) ≥ −2v3χ(G),

where v3 is the volume of the regular ideal tetrahedron in H3.

So now let Gi be a gut region of the minimal decomposition of W − Λ. By Agol’s
theorem, we must have χ(Gi) = 0 as vol(W) ≈ 0.942 < 2v3 ≈ 2.02988. Thus the
boundary of Gi consists of tori. The boundary of Gi is incompressible outward into
W, and so as W is atoroidal, the boundary of Gi is compressible into Gi. Therefore
Gi is a solid torus. This proves the claim, and thus the corollary.

10. FURTHER EXAMPLES

For the smallest manifolds in the Hodgson-Weeks census [W] of closed hyperbolic
3-manifolds we tried to determine which act faithfully on R. We looked at the cen-
sus manifolds of volume< 3which are Z/2-homology spheres (so any action would
be orientation preserving). There are 128 such manifolds. Using the algorithm of
Section 8, we showed that at least 44 of them can’t act faithfully on R. Conversely,
we showed that at least 3 of them have such actions. We also found that at least 60
have essential laminations. See the table below for details. We would have liked to
give more examples where the fundamental group can’t act faithfully on S1, but the
only manifold where we were able to succeed at this was the Weeks manifold.

The algorithm was implemented starting from group presentations generated by
SnapPea and using the automatic groups program KBMAG [Holt] to solve the word
problem.

To show manifolds contain essential laminations, we used two techniques. The
first is that for many simple knots, such as two-bridge knots or most knots under
11 crossings, every nontrivial Dehn surgery contains an essential lamination (see
[Gab, pg. 8] and the references therein). In particular, this is true for the knots that
appear in the table below. In some cases, such as for two-bridge knots, one can take
the lamination to be a taut foliation [Del].

The second technique also uses Dehn filling, but is more complicated to explain.
Let M be a 3-manifold with torus boundary whose interior is hyperbolic. Gabai
and Mosher [Mos] proved that M contains a pair of laminations Λ± coming from
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a pseudo-Anosov flow associated to a finite depth foliation. When M fibers over
S1, these are just the suspensions of the stable and unstable laminations of the sur-
face homeomorphism. There is a degeneracy slope in ∂M associated to Λ± with the
following property: for any slope αwith ∆(δ, α) > 1, the laminations Λ± remain es-
sential in the Dehn fillingM(α) (for more see [Mos, Thm. B] or the summary of this
theory in [Bri2]).

In general, it is quite difficult to determine the degeneracy slope. Here, we used
the following trick. Suppose M has Dehn fillings M(α1), . . . ,M(αn) which have fi-
nite fundamental group. The M(αi) don’t contain any essential laminations. Now
consider some other fillingM(β). IfM(β) also has no essential lamination, we must
have ∆(αi, δ) ≤ 1 and ∆(β, δ) ≤ 1 where δ is the degeneracy slope. So if there does
not exist such a δ, we can conclude that M(β) has an essential lamination. What’s
more, that essential lamination inM(β) is very full, because the laminationsΛ± are
themselves very full.

Below is the table summarizing our findings. In the Ord column, N means that
the fundamental group is non-orderable, O means that it is orderable, and blank
means unknown. The Lam column lists an L if the manifold is known to contain an
essential lamination. If the manifold is known to contain an essential lamination,
the final column gives the reason. In that column, K(p/q) means the complement
of the p/q two-bridge knot, and numbers of the form 820 refer to the complements
of the corresponding knots in the standard table [Rol]. For the trick with the degen-
eracy slope, we give the particular expression as a Dehn filling that was used.

Finally, the reason that the indicated manifolds have orderable fundamental group
is that they have taut foliations and are integral homology spheres. In such cases,
the action on the universal circle lifts to a faithful action on R.

Name Volume Hom Ord Lam Reason for knowing laminar

m003(−3, 1) 0.9427073628 Z/5+ Z/5 N
m003(−2, 3) 0.9813688289 Z/5 L Ism004(5, 1) andm004 is K(2/5).
m003(−4, 3) 1.2637092387 Z/5+ Z/5 N L Degeneracy test asm003(−4, 3).
m004(1, 2) 1.3985088842 0 O L Ism004(1, 2) andm004 is K(2/5).
m003(−4, 1) 1.4236119003 Z/35 N

m004(3, 2) 1.4406990067 Z/3 L Ism004(3, 2) andm004 is K(2/5).
m004(7, 1) 1.4637766449 Z/7 L Ism004(7, 1) andm004 is K(2/5).
m004(5, 2) 1.5294773294 Z/5 L Ism004(5, 2) andm004 is K(2/5).
m003(−5, 3) 1.5435689115 Z/35 N L Degeneracy test asm003(−5, 3).
m007(1, 2) 1.5435689115 Z/21 N L Degeneracy test asm011(3, 2).

m007(4, 1) 1.5831666606 Z/21 N
m007(3, 2) 1.5831666606 Z/3+ Z/9 N
m006(−3, 2) 1.6496097158 Z/15 N L Degeneracy test asm006(−3, 2).
m015(5, 1) 1.7571260292 Z/7 L Ism015(5, 1) andm015 is K(−2/7).
m007(−3, 2) 1.8243443222 Z/3+ Z/3 N L Degeneracy test asm007(−3, 2).

m016(−3, 2) 1.8854147256 Z/39 N L Degeneracy test asm016(−3, 2).
m017(−3, 2) 1.8854147256 Z/7+ Z/7 N L Degeneracy test asm017(−3, 2).
m006(3, 2) 1.8859142560 Z/45 N L Degeneracy test asm006(3, 2).
m011(2, 3) 1.9122102501 0 L Ism222(−2, 1) andm222 is 820.
m006(4, 1) 1.9222971095 Z/35 N

m006(−2, 3) 1.9537083154 Z/35 N L Degeneracy test asm006(−2, 3).
m006(2, 3) 1.9627376578 Z/55 N L Degeneracy test asm006(2, 3).
m017(−1, 3) 1.9627376578 Z/7+ Z/7 N
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Name Volume Hom Ord Lam Reason for knowing laminar

m023(−4, 1) 2.0143365838 Z/3+ Z/3
m007(5, 2) 2.0259452819 Z/33 N

m006(−5, 2) 2.0288530915 Z/5 L Ism015(1, 2) andm015 is K(−2/7).
m036(−3, 2) 2.0298832128 Z/3+ Z/15

m007(−6, 1) 2.0555467489 Z/3+ Z/3
m007(−5, 2) 2.0656708385 Z/3 L Ism015(−1, 2) andm015 is K(−2/7).
m015(−5, 1) 2.1030952907 Z/3 L Ism015(−5, 1) andm015 is K(−2/7).

m016(3, 2) 2.1145676931 Z/33 N L Degeneracy test asm016(3, 2).
m015(3, 2) 2.1145676931 Z/7 L Ism015(3, 2) andm015 is K(−2/7).
m011(4, 1) 2.1243017573 Z/43

m017(1, 3) 2.1557385676 Z/35 N
m011(−2, 3) 2.1557385676 Z/53 N L Degeneracy test asm011(−2, 3).

m034(4, 1) 2.1847555751 Z/7 L Is s385(−2, 1) and s385 is 10125.
m034(−4, 1) 2.1959641187 Z/25 N
m011(−3, 2) 2.2082823597 Z/57 N L Degeneracy test asm011(−3, 2).
m011(4, 3) 2.2102443409 Z/25 L Degeneracy test asm011(4, 3).
m011(1, 4) 2.2109517391 Z/23 L Degeneracy test asm011(1, 4).

m015(−3, 2) 2.2267179039 0 O L Ism015(−3, 2) andm015 is K(−2/7).
m015(7, 1) 2.2267179039 Z/9 L Ism015(7, 1) andm015 is K(−2/7).
m038(1, 2) 2.2597671326 0 L Ism372(−2, 1) andm372 is 946.
m015(5, 2) 2.2662435733 Z/9 L Ism015(5, 2) andm015 is K(−2/7).
m026(−4, 1) 2.2726318636 Z/13

m011(−1, 4) 2.2757758101 Z/49 N L Degeneracy test asm011(−1, 4).
m023(−3, 2) 2.2944383001 Z/3 L Ism032(5, 1) andm032 is K(−2/9).
m038(−5, 1) 2.3126354033 Z/17

m017(−5, 1) 2.3188118677 Z/7+ Z/7 N L Degeneracy test asm022(−3, 2).
m016(−5, 1) 2.3188118677 Z/23

m019(4, 1) 2.3207602675 Z/7 L Ism199(3, 1) andm199 is 942.
m022(1, 3) 2.3380401178 Z/35 N
m016(−1, 4) 2.3522069054 Z/73 N L Degeneracy test asm026(2, 3).
m017(−1, 4) 2.3522069054 Z/63 N
m019(−2, 3) 2.3641969332 Z/63 N L Degeneracy test asm019(−2, 3).

m022(5, 1) 2.3705924006 Z/3+ Z/7

m019(−4, 1) 2.3803358221 Z/41 N L Degeneracy test asm026(−2, 3).
m022(5, 2) 2.4224625169 Z/7 L Ism032(−5, 1) andm032 is K(−2/9).
m019(4, 3) 2.4444077795 Z/27 L Degeneracy test asm019(4, 3).
m022(−1, 3) 2.4540294422 Z/7+ Z/7

m026(4, 1) 2.4631393944 Z/51

m029(−3, 2) 2.4682321967 Z/5+ Z/9 N
m036(3, 2) 2.4682321967 Z/3+ Z/9 N L Degeneracy test asm036(3, 2).
m022(−5, 1) 2.4878225918 Z/7+ Z/7 N
m023(−6, 1) 2.4903791858 Z/15

m038(3, 2) 2.5026593054 Z/5 L Ism289(2, 1) andm289 is K(−3/11).
m034(−5, 1) 2.5065758445 Z/29 N
m034(5, 1) 2.5144043349 Z/11

m070(−3, 1) 2.5274184773 Z/11 L Degeneracy test asm117(−3, 2).
m038(−5, 2) 2.5274184773 Z/19

m036(−5, 1) 2.5274184773 Z/33

m030(5, 2) 2.5303032876 Z/63 N
m023(−5, 2) 2.5415850101 Z/3+ Z/3
m038(5, 1) 2.5495466001 Z/13

m026(−5, 1) 2.5667347900 Z/21
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Name Volume Hom Ord Lam Reason for knowing laminar

m160(1, 2) 2.5689706009 Z/3+ Z/5
m036(−1, 3) 2.5751620736 Z/57

m030(1, 3) 2.5854830480 Z/7+ Z/7 L Degeneracy test asm030(1, 3).
m160(−3, 2) 2.5953875937 Z/3+ Z/9 N
m036(−5, 2) 2.6095439552 Z/51

m027(−4, 1) 2.6122234482 Z/77

m027(4, 3) 2.6172815707 Z/25 L Degeneracy test asm027(4, 3).
m081(1, 3) 2.6244624283 Z/37 N
m036(5, 1) 2.6285738915 Z/3 L Is s580(−2, 1) and s580 is 10145.
m032(5, 2) 2.6294053953 0 O L Ism032(5, 2) andm032 is K(−2/9).

m034(−1, 3) 2.6414714456 Z/31 L Degeneracy test asm034(−1, 3).
m036(1, 3) 2.6536080625 Z/51 L Degeneracy test asm082(−3, 2).
m034(−2, 3) 2.6555425236 Z/35
m034(1, 3) 2.6646126469 Z/23 L Degeneracy test asm034(1, 3).
m160(2, 1) 2.6735274161 Z/3 L Ism372(2, 1) andm372 is 946.

m032(7, 1) 2.6822267321 Z/5 L Ism032(7, 1) andm032 is K(−2/9).
m069(4, 1) 2.6954841673 Z/65 N L Degeneracy test asm081(−3, 2).
m069(−1, 3) 2.6954841673 Z/39

m030(5, 3) 2.7067833105 Z/77 N L Is Haken. See [Dun].
m120(−3, 2) 2.7124588084 0 L Ism199(−3, 1) andm199 is 942.
m116(−1, 3) 2.7589634387 Z/7 L Is s580(2, 1) and s580 is 10145.
m081(−1, 3) 2.7725163132 Z/59 N
m160(−2, 3) 2.8022537823 Z/3+ Z/11
m221(3, 1) 2.8281220883 Z/21

m142(3, 2) 2.8281220883 Z/19

m206(1, 2) 2.8281220883 Z/5

m082(2, 3) 2.8458961160 Z/83 N
m070(4, 3) 2.8472238006 Z/85 N
m069(4, 3) 2.8472238006 Z/99
m137(−5, 1) 2.8656302333 0

m070(−2, 3) 2.8669017766 Z/61 N L Degeneracy test asm070(−2, 3).
m069(−2, 3) 2.8669017766 Z/27 L Degeneracy test asm069(−2, 3).
m069(−4, 1) 2.8733431176 Z/31
m070(−4, 1) 2.8733431176 Z/7

m100(2, 3) 2.8824943873 Z/85 Is Haken. See [Dun].

m082(−2, 3) 2.9027039980 Z/79 L Degeneracy test asm082(−2, 3).
m221(−1, 2) 2.9133321143 Z/7

m116(1, 3) 2.9169341134 Z/41

m120(−5, 1) 2.9356518985 Z/17
m078(2, 3) 2.9398104423 Z/37

m145(2, 3) 2.9400386172 Z/47 N
m078(5, 2) 2.9438596478 Z/43

m249(3, 1) 2.9545326040 Z/3+ Z/5
m145(3, 2) 2.9582502906 Z/13

m117(3, 2) 2.9605565159 Z/53 N

m117(−5, 1) 2.9607151670 Z/19
m154(2, 3) 2.9670703390 Z/77

m078(−2, 3) 2.9696321386 Z/17

m100(−2, 3) 2.9709840073 Z/77 L Degeneracy test asm100(−2, 3).
m117(1, 3) 2.9760925194 Z/55

m078(−5, 2) 2.9769925267 Z/7 L Ism199(−1, 2) andm199 is 942.
m159(3, 2) 2.9781624873 Z/35
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Name Volume Hom Ord Lam Reason for knowing laminar

m137(5, 1) 2.9868370451 0
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