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ON DEFORMATION QUANTIZATION OF QUADRATIC

POISSON STRUCTURES

ANTON KHOROSHKIN AND SERGEI MERKULOV

Abstract. We study the deformation complex of the dg wheeled properad of Z-graded quadratic Poisson
structures and prove that it is quasi-isomorphic to the even M. Kontsevich graph complex. As a first ap-
plication we show that the Grothendieck-Teichmüller group acts on the genus completion of that wheeled
properad faithfully and essentially transitively. As a second application we classify all the universal quan-
tizations of Z-graded quadratic Poisson structures (together with the underlying homogeneous formality
maps). In particular we show that two universal quantizations of Poisson structures are equivalent if the
agree on generic quadratic Poisson structures.

1. Introduction

1.1. Deformation quantization. Since the fundamental paper of Maxim Kontsevich [K2] there was a
huge progress in our understanding of universal deformation quantizations of generic Poisson structures
which lead, in particular, to the complete classification such quantizations in terms of Drinfeld associators
and, moreover, to the computation of the full cohomology of the deformation complex of any formality map
from [K2] in terms of the cohomology of the Kontsevich graph complex GC2 [K1, W1, Do, AM].

All the above mentioned results become, however, void when applied to the special class of linear Poisson
structures on a graded vector space V — the deformation quantization of such structures is unique up to
homotopy (and is given by the universal enveloping algebra), the action of the Grothendieck-Teichmüller
group on linear Poisson structures is hence trivial etc.

The next level of complexity comes with quadratic Poisson structures on V . What happens with the above
mentioned beautiful general statements when applied to a generic quadratic Poisson structure? Do we really
need associators to quantize them? How rich is the family of homotopy inequivalent universal quantizations
of quadratic Poisson structures?

In this paper we provide answers to both these questions for Z-graded quadratic Poisson structures on an
arbitrary finite-dimensional Z-graded vector space V ; if V is concentrated in degree zero, say V = RN , this
notion reduces precisely to the ordinary notion of quadratic Poisson structure on RN . The main motivation
to study Z-graded quadratic Poisson structures comes from a class of so called homogeneous Kontsevich
formality maps, the ones which respect polynomial degrees of polynomial functions on the underlying Z-
graded vector space, and which are discussed in more detail below.

It is worth pointing out right from the start an important conceptual difference between deformation quan-
tizations of generic Z-graded Poisson structures and of generic Z-graded quadratic ones. In the former case
the deformation quantization produced a curved Ass∞ algebra structure on the space of formal smooth
functions, the curvature term being unavoidable in general; moreover it is that curvature terms which con-
trol, rather surprisingly, the homotopy theory of all such universal deformation quantizations and which are
more or less directly connected to the Kontsevich graph complex GC2 [Do, AM]. By contrast, a deformation
quantizations of generic Z-graded quadratic Poisson structure always produces a flat (or ordinary) Ass∞
algebra structure, with that important for homotopy classifications the curvature term being equal to zero.
Hence it is not obvious a priori that both quantization theories are controlled essentially by one and the
same Kontsevich graph complex GC2. Which is the main claim of this paper.
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1.2. Homogeneous formality maps versus quadratic Poisson structures. Let V be a finite-
dimensional Z-graded vector space, the graded symmetric tensor algebra

OV =
⊕

k>0

Ok
V , Ok

V := ⊙kV,

can be understood as the algebra of polynomial functions on the linear space V ∗; it is well-known that
the deformation theory of OV as an associative algebra is controlled by the Hochschild dg Lie algebra
Hoch(OV ,OV ) = ⊕n>0Hom(⊗nOV ,OV )[1 − n] generated by multi-differential operators. A M. Kontsevich
formality map is a Lie∞ quasi-isomorphism of dg lie algebras,

(1) F : Poly(V ) −→ Hoch(OV ,OV ),

where Poly(V ) = ⊕k,l>0Hom(∧lV,⊙kV )[1 − l] is the Lie algebra of polyvector fields on the affine space V ∗

[K2]. If assume that the underlying space V ∗ is a linear (rather than affine) space, then both sides of the
above map come equipped with an extra grading which takes into account the polynomial degrees of formal
functions from OV . We call a quasi-isomorphism above homogeneous if it respects that the polynomial
degrees. More precisely, we consider the Lie subalgebra of Poly(OV ,OV )

Poly(0)(OV ,OV ) =
⊕

k>1

Hom(∧kV,⊙kV )[1 − l],

and the Lie subalgebra of Hoch(OV ,OV ),

Hoch(0)(OV ,OV ) =
⊕

n>1
k1,...,kn>1

Hom(Ok1

V ⊗ . . .⊗Okn

V ,Ok1+...+kn

V )[1− n]

which are spanned by polyvector fields and, respectively, polydifferential operators which preserve total
polynomial degrees of functions. The Hochschild differential preserves the degree grading and, therefore, the
cohomology of the homogeneous Hochschild complex Hoch(0)(OV ,OV ) is equal precisely to Poly(0)(OV ,OV ).
Any Lie∞ quasi-isomorphism

(2) F(0) : Poly(0)(V ) −→ Hoch(0)(OV ,OV )

is called a homogeneous formality map. It is not hard to check that the particular formality map (1)
constructed by M. Kontsevich in [K2] does have this property when restricted to the subspace Poly(0)(V ) ⊂

Poly(V ). So the set of such formality maps is non-empty. We prove in this paper that, up to homotopy
equivalence, this set is as large as the set of “full” formality maps (1) — it can be identified with the set of
Drinfeld’s associators.

The Maurer-Cartan elements of the Lie algebra Poly(V ) are called Z-graded Poisson structures. They have
a decomposition,

π =

∞∑

n,m=0

πm
n , πm

n ∈ Hom(∧nV,⊙mV )[2− n]

and can be identified with representation of a certain dg wheeled properad Holieb ⋆�

0,1 which has been studied

in [AM] where it was proven that its deformation complex is quasi-isomorphic to the Kontsevich graph

complex (implying in particular, that the group of homotopy automorphisms of Holieb ⋆�

0,1 can be identified

with the famous and mysterious Grothendieck-Teichmüller group GRT ).

Similarly, Maurer-Cartan elements ν ∈ Poly(0)(V ) are called Z-graded quadratic Poisson structures on V ∗;
they admit a decomposition

ν =
∑

n>1

νn, νn ∈ Hom(∧nV,⊙nV )[2 − n]

If the vector space V is concentrated in degree zero, i.e. V ≃ KN , then only the quadratic term
ν2 : Hom(∧2V,⊙2V ) can be non-zero, i.e. in that case we recover the standard notion of quadratic Poisson
structure. Thus the theory of homogeneous formality maps is the same as the theory of deformation quanti-
zations of Z-graded quadratic Poisson structures. We will identify each Z-graded quadratic Poisson structure

ν with a representation in V of a certain dg wheeled properad Hoqpois �

0,1 which is introduced and studied in
2



this paper. To understand the homotopy theory of a generic finite-dimensional quadratic Poisson structure
one has to compute the cohomology of the derivation complex Der(Hoqpois �

0,1) of the genus completion of

that wheeled prop (see §2 for its definition and §3 for the computation). The homotopy theory of possibly
infinite-dimensional quadratic Poisson structures is controlled by a different complex — the derivation com-
plex Der(Hoqpois0,1) of the genus completion of the ordinary (unwheeled) prop Hoqpois0,1 ( Hoqpois �

0,1 of
Z-graded quadratic Poisson structures.

The dg prop Hoqpois0,1 and its wheeled closure Hoqpois �

0,1 come naturally in a family of props Hoqpoisc,d (

Hoqpois �

c,d parameterized by two integers c, d ∈ Z, the props Hoqpois c,d being certain quotients (see §2 for

details) of the family of properads Holiebc,d whose homotopy theory has been studied in [MW1]; the case
c = 0, d = 1 corresponds to quadratic Poisson structures while the case c = d = 1 corresponds to what one
might call quadratic homotopy Lie bialgebras. At present we are not aware of any applications of the latter
case so in applications we are most interested in the case c = 1, d = 0. However we solve the problem of
computing the cohomology of derivation complexes for arbitrary values of the parameters c and d.

Let FGCd the Kontsevich graph complex GCd introduced in [K1] (see also [W1] for a detailed description)
spanned by not necessary connected graphs with all vertices at least bivalent. This is one of the most
important graph complexes in mathematics admitting applications in algebra, geometry, topology and the
theory of moduli spaces of algebaric curves (see e.g. [Me6] for a review). It was proven in [W1] that

H0(FGC2
>2) = grt,

where grt is the Lie algebra of the famous Grothendieck-Teichmüller group GRT introduced by V. Drinfeld
in [Dr]. The main result of this paper states the following.

1.2.1. Theorem. (i) There is a canonical morphism of dg Lie algebras,

(3) F� : FGC>2
c+d+1 −→ Der(Hoqpois �

c,d)

which is a quasi-isomorphism. In particular, there is an isomorphism of Lie algebras

H0(Der(Hoqpois �

0,1)) = grt

that is, the Grothendieck-Teichmüller group GRT acts up to homotopy faithfully (and essentially transitively)
on the completion of the wheeled properad Hoqpois � governing finite-dimensional Z-graded quadratic Poisson
structures. Moreover Hi(Hoqpois �

0,1) = 0 for i 6 −1.

(ii) There is an isomorphism of cohomology groups,

H•(FGC>2
c+d+1) = H•(Der(Hoqpoisc,d))

implying in particular the isomorphism

H0(Der(Hoqpois0,1)) = K

which implies, that (in sharp contrast to the situation (i)), the prop Hoqpois0,1 of possibly infinite-dimensional
Z-graded Poisson structures has no homotopy-non-trivial automorphisms other than the standard rescaling
of the generators.

The proof of this theorem is quite different from proofs of analogous theorems in [MW3] and [AM] for the
props of Lie bialgebras. It goes through a new directed weighted version, dwGCd of the Kontsevich complex
GCd (the connected version of FGCd considered above) which is spanned by directed connected graphs whose
vertices v are assigned weights wv ∈ N satisfying certain conditions. There is a natural morphism of complex

F : GC>2
d −→ dwGCd

which sends a graph from GCd into a sum of graphs of directed weighted graphs by assigning directions to
the edges in all possible ways and weights to the vertices in all possible admissible ways. One of the central
technical results of this paper is Theorem 3.4 which says essentially that this map is a quasi-isomorphism
(up to one rescaling class), and hence leads to the conclusions of the above Theorem.
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1.3. Classification of universal quantizations of Z-graded quadratic Poisson structures. M. Kont-
sevich universal formality map (1) given in [K2] can be equivalently understood as a morphism of dg props
[AM]

F : cAss∞ −→ O(Ĥolieb
⋆�

0,1 ).

where cAss∞ is the dg free operad of curved strongly homotopy associative algebras, and Ĥolieb
⋆�

0,1 is the
genus completed version of the dg prop of Z-graded (not necessarily quadratic) Poisson structure, and O is
the polydifferential functor from the category of dg props to the category of dg operads introduced in [MW2]
(see §2 and 4 for detailed definitions and reminders). Reversely, any morphism of dg operads F as above
satisfying certain non-triviality condition gives us a universal formality map (1). The deformation complex
of any such a universal formality map has been computed in [AM] where it was identified with the graph

complex FGC>2
2 ; the curvature term on the l.h.s. of the map F played a central role in that classification

result.

Similarly, any universal homogeneous formality map (2) can be equivalently understood as a morphism of
dg operads,

F(0) : Ass∞ −→ O>1(Ĥoqpois
�

0,1).

where Ass∞ is dg free operad of ordinary (flat) strongly homotopy associative algebras and O>1 is a trun-
cation of the functor O which does not allow curvature terms. The M. Kontsevich formality morphism [K2]
when applied to quadratic Poisson structures gives us a concrete example of a universal homogeneous for-
mality map F(0). We prove in §5 that the deformation complex of any universal homogeneous formality map

F(0) is quasi-isomorphic (up to degree shift) to the deformation complex Der(Hoqpois �

0,1) studied in Theorem
1.2.1. Hence we conclude that there is a canonical morphism of complexes

FGC2 −→ Def

(
Ass∞

F(0)
→ O(Ĥoqpois�0,1 )

)
[1]

which is a quasi-isomorphism. This result implies that the space of all infinitesimal homotopy deformations
of F(0) can be identified with the Lie algebra of the Grothendieck-Teichmüller group,

H1Def

(
Ass∞

F(0)
→ O>1(Ĥoqpois�0,1 )

)
= grt.

It is not hard to see that every such infinitesimal deformation exponentiates to a genuine deformation of
F(0) implying the second main result of this paper.

1.3.1. Theorem. (i) The Grothendieck-Teichmüller group GRT acts freely and transitively on the set S of
homotopy classes of universal quantizations of Z-graded quadratic Poisson structures. The set S itself can
be identified with the set of Drinfeld associators.
(ii) If two universal quantizations of Poisson structures agree on quadratic Poisson structures, then they are
homotopy equivalent.

1.4. Structure of the paper. In §1 we remind a definition of the prop of homotopy Lie bialgebras,
introduce the wheeled prop Hoqpois �

0,1 controlling finite-dimensional Z-graded quadratic Poisson structures,
define their derivation complexes and remind the basic notions and facts of the theory of graph complexes. In
§2 we prove the first main result of this paper, Theorem 1.2.1. In §3 we explain how a universal homogeneous
formality map can be understood as a morphism of dg operads, compute the cohomology of any such a
morphism, and finally prove the second main Theorem 1.3.1 of this paper.

1.5. Some notation. We work in this paper over a field K of characteristic zero. If V = ⊕i∈ZV
i is a graded

vector space over K, then V [k] stands for the graded vector space with V [k]i := V i+k and and sk for the
associated isomorphism V → V [k]; for v ∈ V i we set |v| := i. The set {1, 2, . . . , n} is abbreviated to [n]; its
group of automorphisms is denoted by Sn; the trivial one-dimensional representation of Sn is denoted by 11n,
while its one dimensional sign representation is denoted by sgnn. The cardinality of a finite set A is denoted
by #A.

4



Acknowledgement. The research of A.Kh. was partially supported by the HSE University Basic Research
Program. S.M. was partially supported by the University of Luxembourg RSB internal grant. We are
grateful to the HSE and the UL for hospitality during our work on this project. We are very grateful to the
referees of our paper for their critical remarks and useful suggestions.

2. Derivation complexes of the wheeled prop of

Z-graded quadratic Poisson structures

2.1. Reminder on Lie (c, d)-bialgebras. By definition, Liebc,d is a quadratic properad given as the
quotient,

Liebc,d := Free〈E〉/〈R〉,

of the free properad generated by an S-bimodule E = {E(m,n)}m,n>1 with all E(m,n) = 0 except

E(2, 1) := 111 ⊗ sgnc
2[c− 1] = span

〈
⑧⑧❄❄

◦
21

= (−1)c ⑧⑧❄❄
◦

12
〉

E(1, 2) := sgnd
2 ⊗ 111[d− 1] = span

〈
❄❄⑧⑧◦
21

= (−1)d ❄❄⑧⑧◦
12

〉

by the ideal generated by the following elements

(4) R :





◦⑧⑧
❄❄◦
☎☎

❁❁
3

21

+ ◦⑧⑧
❄❄◦
☎☎

❁❁
2

13

+ ◦⑧⑧
❄❄◦
☎☎

❁❁
1

32

,
◦❄❄⑧⑧◦❂❂✁✁ 3
21

+
◦❄❄⑧⑧◦❂❂✁✁ 2
13

+
◦❄❄⑧⑧◦❂❂✁✁ 1
32

(−1)cd+c+d
⑧⑧❄❄

◦
◦
✝✝ ✽
✽

21

1 2

− ✞✞
✼✼
◦
◦✷✷

1
2

2

1

+ (−1)d ✞✞
✼✼
◦
◦✷✷

2
1

2

1

+ (−1)d+c ✞✞
✼✼
◦
◦✷✷

2
1

1

2

+ (−1)c ✞✞
✼✼
◦
◦✷✷

1
2

1

2

Note that, when representing elements of all operads and props discussed in this paper as graphs, we tacitly
assume that all edges and legs are directed along the flow going from the bottom of the graph to the top.
The minimal resolution Holiebc,d of the properad Liebc,d was constructed in [K3, MaVo, V]; it is the free
properad generated by the following (skew)symmetric (m,n)-corollas of degree 1 + c(1−m) + d(1− n)

(5) ◦

❑❑❑❑❑
❃❃❃❃
. . .✁✁✁✁

sssss

σ(1) σ(2) σ(m)

ss
ss
s

✁✁
✁✁
. . .❃
❃❃

❃
❑❑

❑❑
❑

τ(1) τ(2) τ(n)

= (−1)c|σ|+d|τ | ◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m−1 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 n−1 n

∀σ ∈ Sm, ∀τ ∈ Sn, m, n > 1,m+ n > 3,

with m+ n > 3,m,n > 1, and equipped with the differential given on the generators by

(6) δ ◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m−1 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 n−1 n

=
∑

[1,...,m]=I1⊔I2
|I1|>0,|I2|>1

∑

[1,...,n]=J1⊔J2
|J1|>1,|J2|>1

(−1)d(#J1+#I1#J2+σ(I1,I2)+σ(J1,J2))
◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

❦❦❦❦❦❦❦❦

︷ ︸︸ ︷I1

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

︸ ︷︷ ︸
J1

◦

▲▲▲▲▲▲
❃❃❃❃
. . . ✟✟✟✟

✈✈✈✈✈

︷ ︸︸ ︷I2

⑦⑦
⑦⑦
. . . ✺

✺✺
✺

●●
●●

●

︸ ︷︷ ︸
J2

where the vertices on the r.h.s. are ordered in such a way that the lowest one comes first. A representation
ρ of Holiebc,d in a dg vector space V can be identified with a degree c + d + 1 Maurer-Cartan element π,
{π, π} = 0, in the completed graded commutative algebra

π =
∑

m,n>1

πm
n ∈

∏

m,n>1,m+n>3

Hom(⊙n(V [d]),⊙m(V [−c]) ⊂
∏

k>0

⊙k(V ∗[−d]⊕ V [−c])

equipped with the Poisson type Lie bracket { , }, of degree −c−d induced by the natural paring V ⊗V ∗ → K.
Here, by definition,

πm
n := ρ

(
◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m−1 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 n−1 n

)
for m+ n > 3,

and π1
1 is the given differential in V . We are mostly interested in this paper in the case c = 1, d = 0, V = RN

when π becomes a formal Poisson structure on RN which vanishes at 0 ∈ RN ,

(7) π =

N∑

a,b=1

πa,b(x)∂a ∧ ∂b, with πab(x) :=
∑

n>1

1

n!
πab
c1...cn

xc1 · · ·xcn

5



for some constants πab
c1...cn

= −πba
c1...cn

∈ R.

Consider a differential ideal I in Holiebc,d generated by graphs which contain at least one (m,n)-corolla with
m 6= n, and let

Hoqpoisc,d := Holiebc,d/I

be the quotient dg properad. It is a free properad generated by (m,m)-corollas with m > 2 from the family
(5),

◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m−1 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 m−1 m

, m > 2

and equipped with the differential δ induced from (6); it is easy to see that δ acts trivially on the (2, 2)-
corolla. Let J be the differential closure of the ideal in Hoqpois c,d generated by (m,m)-corollas with m > 3
and set

Qpoisc,d := Hoqpois c,d/J

The latter properad is a quadratic properad generated by the (2, 2)-corolla of degree 1− c− d,

⑧⑧❄❄
❄❄⑧⑧◦
21

21

= (−1)c
⑧⑧❄❄
❄❄⑧⑧◦
12

21

= (−1)d
⑧⑧❄❄
❄❄⑧⑧◦
21

12

modulo the relations
∑

τ,σ∈Z3

⑧⑧
❄❄
◦❄❄⑧⑧

τ(3)τ(2)

τ(1)

◦
❄❄

❂❂✁✁ σ(3)

σ(2)σ(1)

= 0

where Z3 is the subgroup of S3 generated by the permutation (123). Thus representations of the properad
Qpois1,0 in an arbitrary (not necessarily finite-dimensional) graded vector space V can be identified with

quadratic Poisson structures on the vector space V ∗; in particular, in the case V = RN they are given by
(7) with only πab

c1c2
6= 0. It is shown in [KM] that the canonical epimorphism

p : Hoqpoisc,d −→ Qpoisc,d

is a quasi-isomorphism implying that the properad Qpoisc,d is Koszul (we do not use this reult in this paper).

The category of wheeled props has been introduced and studied in [Me2, MMS]. The properads Hoqpoisc,d
and Qpoisc,d have very simple wheeled closures denoted by Hoqpois �

c,d and Qpois�c,d respectively. They have

the same sets of generators, but one is a allowed to build from them (via gluing outgoing legs of one generator
to ingoing legs of another or the same generator) graphs which have closed paths of directed edges. For,
example the graph

◦❄❄❄⑧⑧⑧
⑧⑧⑧

❄❄❄ ⑧⑧⑧
__

is allowed in both properads Hoqpois �

c,d and Qpois�c,d, and, in the notation used in (7), gets represented by
the linear vector field ∑

a,b,c

1

2
πac
bc x

b∂a.

This example shows a fundamental difference between ordinary props and their wheeled closures: if, for
example, the properad Qpois0,1 controls quadratic Poisson structures in both finite- and infinite-dimensional

spaces, its wheeled closure Qpois�c,d admits representations only in finite-dimensional vector spaces as it

involves the trace operation Hom(V, V ) → K! Hence in the context of deformation quantization we should

be interested in properads Hoqpois �

0,1 and Qpois�0,1 as universal quantization formulae must use graphs with

wheels (see §5 in [Me3]).

There is an exact functor from the category of properads to the category of props [V]. Properads P studied in
this paper are spanned by connected graphs while their prop closures use disjoint unions of connected graphs,
i.e. they have the same generators and relations but the graphs built from generators are not necessarily
connected. The prop enveloping of a properad P is denoted by the same symbol P ; often it plays no role
whether we work with a properad P or its prop enveloping P but when it is important we say this explicitly.
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Another important technical point is that deformation quantization formulae [K2] of a generic Z-graded
(quadratic) Poisson structure involve formal power series in an auxiliary formal parameter ~ (the “Planck

constant”). In terms of props this fact leads us to consider genus completed version, Ĥoqpois�0,1 of the prop

Hoqpois �

0,1. This is one of the main reasons why we develop below deformation theory of completed wheeled

props Ĥoqpois�c,d rather than of the ordinary ones.

2.2. Complexes of derivations of properads. There is a useful endofunctor, P → P+, in the category
of (wheeled) dg props introduced in [Me5]. Given any dg (wheeled) prop P , the associated extended dg prop
P+ is obtained from P by adjoining an extra generator t ∈ P+(1, 1) and is uniquely characterized by the
property: there is a 1-1 correspondence between representations

ρ : P+ −→ EndV

of P+ in a dg vector space (V, d), and representations of P in the same space V but equipped with a deformed
differential d + d′, where d′ := ρ(t). The complex of derivations of an arbitrary prop P has been defined in
[MW1] as the space of derivations,

Der(P) := Der(P+ → P)

of the plus-extended prop with values in P ; the plus extension is used in order not to loose an important
information about the homotopy theory of the (wheeled) prop P , cf. [MW1, MW2, GY, MW3]. The dg

props Ĥoqpois
+

c,d an Hoqpois+�
c,d is easy to describe explicitly — both are built from generators (5) and one

extra (1, 1)-generator • which is assigned degree +1. The differential δ+ is given on the new generator by

the formula

δ+• := •
•

while its value on “old” generators is given by

δ+ ◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m−1 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 m−1 m

:= δ ◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m−1 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 m−1 m

+

m−1∑

i=0

◦

▲▲▲▲▲
✹✹✹✹

.. •

i+1

qqqqqq
✠✠✠✠
..1 i m

rr
rrr
✄✄
✄✄
. . . ❀❀

❀❀
▲▲

▲▲▲

1 2 m−1 m

±

m−1∑

i=0

◦
rr
rrr
✡✡
✡✡

.. •

i+1

▼▼▼
▼▼▼ ✺✺
✺✺

..
1 i m

▲▲▲▲▲
❀❀❀❀
. . . ✄✄✄✄

rrrrr

1 2 m−1 m

It is not hard to show that the complexes Der(P+ → P) and Der(P+ → P+) are quasi-isomorphic so that
there is no loss of generality to define a derivation complex of a dg prop P as Der(P+ → P+) making the
Lie algebra structure on it more transparent. Hence it is a matter of taste which definition to use. We prefer
the original one from ([MW1]) and set

Der(Hoqpois c,d) := Der(Ĥoqpois
+

c,d → Ĥoqpoisc,d), Der(Hoqpois �

c,d) := Der(Ĥoqpois
+�

c,d → Ĥoqpois
�

c,d).

As graded vector spaces, they can be identified with spaces generated by certain graphs. For example

(8) Der(Hoqpois �

c,d) =
∏

m>1

(
Ĥoqpois

�

c,d(m,m)⊗ sgn⊗|c|
m ⊗ sgn⊗|d|

m

)Sm×Sm

[1 + (c+ d)(1 −m)],

Its elements are directed not necessary connected graphs (possibly, with wheels) which might have incoming
and outgoing legs and vertices have the same numbers of incoming and outgoing edges, for example

(9)
• •

• •

oo??
⑧⑧
⑧⑧

??
⑧⑧
⑧⑧

99rrr__
❄❄

❄❄

OO //__

❄❄
❄❄

❄❄
❄

��

??

⑧⑧
⑧⑧
⑧⑧
⑧ bb

❊❊❊
❊

__
❄❄

❄❄ ??
⑧⑧
⑧⑧

OO

∈ Der(Hoqpois �

c,d)

Note that contrary to the prop Holieb�c,d, the out- or ingoing legs (if any) of a graph from Der(Hoqpois �

c,d)

have their numerical labels are (skew)symmetrized in accordance with the parity of the integer parameters
c and d; one can think that they are not labelled at all — just for odd c or d some ordering is chosen (up to

an even permutation). The subspace Der(Hoqpoisc,d) ⊂ Der(Hoqpois �

c,d) is generated by similar graphs but

with no wheels (in this case the summand above corresponding to m = 0 vanishes).
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The value of the differential d on an element Γ ∈ Der(Hoqpois �

c,d) consists of three terms

(10) dΓ = δΓ±
∑

m>2

•

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

rrrrrrr

Γ

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑ ±

∑
•

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

rrr
rrr

rr

Γ

ssssss

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

Here

• in the first term the differential δ acts on the vertices of Γ as in the quotient properad Hoqpois �

c,d,

that is, by formula (6) modulo terms involving (m,n)-corollas with m 6= n.
• in the last two terms one attaches (m,m)-corollas, m > 2, to each outgoing leg and each ingoing leg
of Γ.

2.2.1. Remark. The dg prop Hoqpois �

c,d = {Hoqpois �

c,d(m,n)}m,n>0 contains graphs with no legs at all,

i.e. its part Hoqpois �

c,d(0, 0) does not vanish. Hence one one might consider an extended deformation theory

of that prop in which such graphs also “enter the game”, and introduce a further extension, (Ĥoqpois
∗�

c,d ) of

the above prop (Ĥoqpois
+�

c,d , δ+),

Ĥoqpois
+�

c,d ( Ĥoqpois
⋆�

c,d

by adding to the latter a (0, 0)-generator • in degree 1 + c + d on which the differential acts trivially. The

extended derivation complex of Der(Hoqpois �

c,d) can then be defined as follows (cf. [AM]),

Der∗(Hoqpois �

c,d) := Der(Ĥoqpois
⋆�

c,d → Ĥoqpois
�

c,d)

We have obviously a canonical isomorphism of graded vector spaces,

(11) Der∗(Hoqpois �

c,d) =
∏

m>0

(
Ĥoqpois

�

c,d(m,m)⊗ sgn⊗|c|
m ⊗ sgn⊗|d|

n

)Sm×Sm

[1 + c(1−m) + d(1 − n)],

i.e. the only difference from (8) is the presence of the summand with m = 0. Contrary to the analogous
situation studied in [AM] this extension does not give us something really novel as the new extended complex
is the direct sum of already introduced complexes,

(12) Der∗(Hoqpois �

c,d) = Ĥoqpois
�

c,d(0, 0)[1 + c+ d] ⊕ Der(Hoqpois �

c,d).

Nevertheless it is useful sometimes (see §3 below) to consider the extended complex while studying the most

interesting for us deformation complex Der(Hoqpois �

c,d).

2.3. Remark. Note that representations of the dg prop Holieb0,1 in a vector space RN describe Poisson
structures (40) which vanish at 0 ∈ RN . This is a restriction which is desirable to avoid, and this can

be easily done via introducing a new family of dg props Holieb ⋆

c,d as the free prop generated by (m,n)-

corollas (5) for all possible values m,n > 0 and equipped with an obvious extension of the differential (6).

Representations of the (wheeled closure) of the prop Holieb ⋆

0,1 in a dg (finite-dimensional) vector space V
are in 1:1 correspondence with arbitrary Z-graded Poisson structures on V ∗.

There is an epimorphism of dg props

p : Holieb ⋆�

c,d −→ Hoqpois ⋆�

c,d

so that the above complex Der∗(Hoqpois �

c,d) can be identified with the deformation complex of that epimor-

phism (up to a degree shift),

Der∗(Hoqpois �

c,d) = Der(Holieb ⋆�

c,d → Hoqpois ⋆�

c,d ) = Def(Holieb ⋆�

c,d → Hoqpois ⋆�

c,d )[1].

In particular, the epimorphism p induces a morphism of dg Lie algebras

Der(Holieb ⋆�

c,d ) := Der(Holieb ⋆�

c,d

Id
→ Holieb ⋆�

c,d ) −→ Der∗(Hoqpois �

c,d).

The derivation complex Der(Holieb ⋆�

c,d ) has been studied in [AM] where it has been proven that its coho-

mology is determined (up one rescaling class) by the Kontsevich graph complex GC>2
c+d+1 whose definition is

recalled below.
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2.4. Directed and undirected graph complexes. A graph without legs, or simply a graph, Γ is a 1-
dimensional CW complex whose 0-cells are called vertices and 1-cells are called edges; its set of vertices is
denoted by V (Γ) while the set of edges by E(Γ). A graph Γ is called directed if each edge e comes equipped
with a fixed orientation (one of the two possible on an interval). A vertex v of a directed graph is said to
have type (m,n) if it has m > 0 outgoing edges and n > 0 incoming edges; we write in this case |v|in = n,
|v|out = m; the number |v| := |v|in + |v|out is called the valency of v. A (1, 1)-vertex is called passing.

Given any integer d ∈ Z, we can associate to any graph Γ with, say, k edges and l vertices,

E(Γ) = {e1, . . . , ek}, V (Γ) = {v1, . . . , vl}

a 1-dimensional vector space

KΓ :=

{
∧#E(Γ)K[E(Γ)] if d ∈ 2Z
∧#V (Γ)K[V (Γ)] if d ∈ 2Z+ 1

where K[E(Γ)] (resp. K[V (Γ)]) is the linear span of the set of edges (resp. vertices); there are at most two
different bases (which differ by a sign) of this space given by simple vectors of the form

ei1 ∧ . . . ∧ eik , respectively, vj1 ∧ . . . ∧ vjl .

An orientation on Γ is, by definition, a choice of a particular simple basis or ofKΓ; equivalently, an orientation
on Γ is a choice of ordering of edges (resp. vertices) up to an even permutation. If #E(Γ) > 2 for d even or
#V (Γ) > 2 for d odd, there are precisely two different orientations, (or,−or), on Γ.

Let dfGCd be the (”directed full”) completed1 topological vector space generated over a field K by the set of
all pairs (Γ, or) (which is often abbreviated simply by Γ) modulo the equivalence relation,

(Γ,−or) = −(Γ, or).

We make dfGCd into a Z-graded vector space by setting the (cohomological) degree of any graph generator
Γ to be given by

|Γ| = d#V (Γ) + (1− d)#E(Γ) − d.

This graded vector space has a Lie algebra structure with

[Γ′,Γ′′] :=
∑

v∈V (Γ′)

Γ′ ◦v Γ
′′ − (−1)|Γ

′||Γ′′|Γ′′ ◦v Γ
′

where Γ′ ◦v Γ
′′ is defined by substituting the graph Γ′′ into the vertex v of Γ′ and taking the sum over all

possible re-attachments of |v|in + |vout| dangling edges to the vertices of Γ′′. It is easy to see that graph
• •// ∈ dcGCd is a Maurer-Cartan element, so that one makes dfGCd into a complex with the differential

δ := [• •// , ].

This dg Lie algebra was introduced and studied in [K1, W1]. The complex dfGCd contains a subcomplex
dfcGCd spanned by connected graphs. One has an isomorphism of complexes

dfGCd = ⊙•>1 (dfcGCd[−d]) [d]

The complex dfcGCd contains a subcomplex dfcGC>2
d spanned by graphs with all vertices v having valency

|v| > 2 which in turn contains a subcomplex dcGCd spanned by graphs with no passing vertices (in particular,

with no the tadpole graph consisting of one vertex and one edge); the monomorphism dfcGC>2
d →֒ dfcGCd is

a quasi-isomorphism, while the monomorphism dcGCd →֒ dfcGC>2
d is a quasi-isomorphism up to the tadpole

graph [W1]. The complex dcGCd contains a subcomplex OGCd spanned by directed connected graphs with
no closed paths of directed edges (“wheels”); such directed graphs are called oriented. It was proven in [W2]
that

H•(dcGCd) = H•(OGCd+1).

1We mean the completion with respect to the filtration of dfGCd by the number of vertices.
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Let dfGC
(l)
d ⊂ dfGCd be the linear subspace spanned by graphs with l edges. The group Z×l

2 acts naturally

on the generators of dfGC
(l)
d by reversing directions on edges. Hence one can define an undirected version of

dfGCd as follows,

fGCd =
∏

l>0

dfGC
(l)
d ⊗

Z
×l
2

sgn
⊗l|d|
2

Graphs from fGCd have no directions on edges for even d, or have a direction given on every edges up a flip
and multiplying by −1.

The complex fGCd contains a subcomplex fGC>2
d spanned by graphs with all vertices having valency at least

two, which in turn contains a subcomplex GC>2
d spanned by connected graphs. There is an isomorphism of

complexes,

(13) fGC>2
d = ⊙•>1

(
GC>2

d [−d]
)
[d]

and a direct splitting,

GC>2
d = GCd ⊕ GC2

d

where GC2
d is the subcomplex spanned by graphs containing at least one bivalent vertex and GCd is spanned

by graphs with all vertices at least trivalent. The cohomology of GC2
d has been computed in [W1],

H•(GC2
d) =

⊕

p>1
p≡2d+1 mod 4

K[d− p],

where the summand K[d− p] is generated by the polytope with p vertices, that is, a connected graph with p
bivalent vertices. On the other hand, the cohomology of GCd is understood at present only in non-positive
degrees [W1]

H•6−1(GC2) = 0 and H0(GC2) = H0(GC>2
2 ) = H0(OGC3) = grt1,

where grt1 is the Lie algebra of the Grothendieck-Teichmüller group GRT1. Moreover, it was proven in [W1]
that there is a quasi-isomorphism of complexes

(14) i : GC>2
d −→ dfcGC>2

d

which sends an undirected graph into a sum of directed graphs by assigning directions to its edges in all
possible ways.

In this paper we have to work with the “full” Grothendieck-Teichmüller group GRT rather than with its

subgroup GRT1. Hence we need a slight extension [MW2] of the complex GC>2
d ,

GC>2
d −→ GC>2

d ⊕K

where the generator of the 1-dimensional summand K is a cycle, “a graph with no vertices and edges”, and

has Lie bracket with any graph Γ from GC>2
d equal to 2ℓΓ, where ℓ is the number of its loops. In our story

this class takes care about the obvious rescaling automorphism of the prop Hoqpois �

c,d. Hence we define the
full graph complexe of not necessarily connected graphs as the completed graded symmetric tensor algebra

(15) FGC>2
d := ⊙̂•

(
(GC>2

d ⊕K)[−d]
)
[d].

The above results imply

H0(FGC>2
2 ) = grt,

where grt is the Lie algebra of GRT .
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2.5. A quotient complex of dcGCd. The complex dcGCd contains a subcomplex dcGC6=
d spanned by graphs

with at least one vertex v satisfying |v|in 6= |v|out. The quotient complex dcGC=
d ,

(16) 0 −→ dcGC6=
d −→ dcGCd −→ dcGC=

d −→ 0,

is spanned by graphs with all vertices satisfying |v|in = |v|out. It is precisely the connected part of the direct

summand Ĥoqpois
�

c′,d′(0, 0)[1 + c′ + d′] in the “full” derivation complex (12) with d = c′ + d′ + 1.

Any graph Γ in dcGC=
d has vertices v ∈ V (Γ) of type (lv, lv) for some lv > 2; hence its cohomological degree

is given by

|Γ| = d(#V (Γ)− 1) + (1− d)
∑

v∈V (Γ)

lv.

Hence for d > 2 we obtain

|Γ| 6 d(#V (Γ)− 1) + (1− d)
∑

v∈V (Γ)

2 = (2 − d)#V (Γ)− d

and conclude that for d = 2 the quotient complex dcGC=
2 is concentrated in degrees 6 −2. As H•(dcGC2) is

concentrated in non-negative degrees [W1], we also conclude that the canonical projection at the cohomology
level

H•(dcGC2) −→ H•(dcGC=
2 )

is equal to the zero map (hence the map H•(dcGCd) −→ H•(dcGC=
d ) is also equal to zero for any even d).

Therefore in the most important for us in this paper case d = 2 the long exact sequence of cohomology
groups associated with (16) decomposes into a collection of short exact sequences,

(17) 0 −→ H•(dcGC=
2 )

b
−→ H•+1(dcGC6=

2 ) −→ H•+1(dcGC2) −→ 0

The subcomplex Ĥoqpois
�

0,1(0, 0)[2] = ⊙>1(dcGC=
2 [−2])[2] in the “full” derivation complex (12) does not

interact with the second summand in (12) at all; it is the second summand Der(Hoqpois �

c,d) which plays the
key role in classification of the universal quantizations of Z-graded Poisson structures. We shall study its
cohomology in §4 below.

3. Cohomology of the deformation complex of Hoqpois�c,d

3.1. Graph complexes versus derivation complexes. The differentials in the dg props Holiebc,d,

Holieb ⋆

c,d and Hoqpoisc,d (and of their wheeled closures) are given by connected graphs (see (6) so the
subspaces of all these props spanned by connected graphs form dg properads which we denote by the same
symbols. However we use a slightly different symbol der to denote the Lie algebras of derivations of the
properads as opposed to the symbol Der is reserved for derivations of the associated props. Both types of
dg Lie algebras are related to each other by an exact symmetric tensor algebra functor as follows,

Der(Holiebc,d) = ⊙•>1(der(Holiebc,d)[−1− c− d])[1 + c+ d],

Der(Hoqpois �

c,d) = ⊙•>1(der(Hoqpois �

c,d)[−1− c− d])[1 + c+ d]

Thus it is enough to study the cohomology of the complex der of properadic derivations in each case.

There is a morphism of dg Lie algebras (see §3.3 in [MW1])

(18)
F : OGCc+d+1 → der(Holiebc,d)

Γ → F (Γ)

where the derivation F (Γ) acts (from the right) on the generators of the completed (by the loop number, cf.

[MW1]) properad Ĥoliebc,d as follows

(19)

(
◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 m

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 n

)
· F (Γ) =

∑

s:[n]→V (Γ)
ŝ:[m]→V (Γ)

1 2 m

2 n1

...

...
Γ

❄❄❄❄
✴✴✴ ✎✎✎

⑧⑧⑧⑧

✎✎
✎ ✴✴
✴

❄❄❄
❄

⑧⑧⑧
⑧
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where the sum is taken over all ways of attaching the incoming and outgoing legs to the graph Γ, and one
sets to zero every resulting graph if it contains (i) a vertex with valency < 3, or (ii) or a vertex with no
incoming edge(s)/leg(s), or (iii) a vertex with no outgoing edge(s)/leg(s). Moreover, it was proven in [MW1]
that map F is a quasi-isomorphism up to one class in the complex der(Holiebc,d) given explicitly by the
cycle,

(20) r =
∑

m,n

(n− 1)

m×︷ ︸︸ ︷
...

...
•

❄❄❄❄
✷✷✷ ☞☞☞

⑧⑧⑧⑧

☞☞
☞ ✷✷
✷
❄❄

❄❄
⑧⑧
⑧⑧

︸ ︷︷ ︸
n×

.

Note that coefficient (n − 1) above can be replaced by (m − 1) or by (m + n − 2) — all the corresponding
cycles represent the same cohomology class.

A similar morphism of dg Lie algebras

F� : dcGCc+d+1 −→ der(Holieb ⋆�

c,d )

for the wheeled closure Holieb ⋆�

c,d of the “full” ordinary dg properad has been studied in [AM] where it has

been proven that F� is also a quasi-isomorphism up to the same rescaling class r; that proof is in fact much
easier and shorter than the proof of the quasi-isomorphism (18)) in the unwheeled case.

The first (resp. second) result has been used in [MW3] (resp. in [AM]) to classify (up to homotopy) all
universal deformation quantizations of Lie bialgebras (resp., of generic Poisson structures).

In this section we address a similar problem for the derivation complex of the wheeled properad of homotopy
quadratic Poisson structures. Its solution given below will lead us in §5 to the classification of all homotopy
classes of universal quantizations of Z-graded quadratic Poisson structures.

3.2. Marked graph complex. A weight function on a directed graph Γ ∈ dfcGCd is, by definition, a map

w : V (Γ) −→ N>1

v −→ wv

satisfying the condition

(21) wv > max{1, |v|in − 1, |v|out − 1}

The weight function s is given by the equality

sv := max{1, |v|in − 1, |v|out − 1}

is called canonical.

A weighted graph is, by definition, a pair Γw := (Γ,w) where Γ ∈ dfcGCd andw is a weight function on Γ. The
integer wv is called the weight of the vertex v of a weighted graph. The natural number w(Γ) :=

∑
v∈V (Γ) wv

is called the (total) weight of the weighted graph Γw. The cohomological degree of Γw is defined by the
standard formula

(22) |Γw| := d(#V (Γ)− 1)− (d− 1)#E(Γ)

i.e. |Γw| = |Γ|, the degree of the underlying graph.

Let dwGC⋆
d be the completed (by the number of vertices and edges) graded vector space over a field K which

is generated by weighted directed connected graphs. Its generators Γw can be represented pictorially as
follows,

a '!&"%#$ b '!&"%#$

c '!&"%#$ d '!&"%#$

oo

OO //__

❄❄
❄❄

❄❄
❄

��

??

⑧⑧
⑧⑧
⑧⑧
⑧

,

a '!&"%#$ b '!&"%#$

c '!&"%#$ d '!&"%#$

e '!&"%#$

oo

OO //__

❄❄
❄❄

❄❄
❄

��

??

⑧⑧
⑧⑧
⑧⑧
⑧

OO

∈ dwGC⋆
d,

where the natural numbers a, b, d, c, e ∈ N>1 stand for weights wv of the corresponding vertices.
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Recall that the standard differential δ in dfcGCd is defined by

(23) δΓ := [Γ,
•
•OO
] = δ0Γ− (−1)|Γ|

∑

v∈V (Γ)

•

Γ

OO
− (−1)d+|Γ|

∑

v∈V (Γ) •

ΓOO

where

- the first summand δ0Γ is equal to
∑

v∈V (Γ) δv with δvΓ obtained from Γ by replacing the vertex v

with the graph
•

•OO
and taking the sum over all possible ways to reattach the dangling edges (connected

earlier to v) to the two newly created vertices.
- the second (resp., the third) summand is obtained by attaching the ingoing (resp., outgoing) leg of
• •// to a vertex v ∈ V (Γ).

The graphs Γ in dfGCd are oriented (depending on the parity of d), and their orientations are defined up to
a sign. Let us explain in full detail the rule of signs behind formula (23) by defining explicitly the induced
orientation of each summand on the r.h.s. of (23) from the given orientation or of an input graph Γ:

(i) if d ∈ 2Z, then or is given by choosing of an ordering of edges, say, by

or = e1 ∧ e2 ∧ . . . ∧ ek, k = #E(Γ).

Then each graph in the first summand δ0Γ has, by definition, the orientation given by

e1 ∧ e2 ∧ . . . ∧ ek ∧ e′

where e′ is the newly created edge. Each graph in the remaining two summands (the ones with the
univalent black vertex) has an induced orientation given by

e′ ∧ e1 ∧ e2 ∧ . . . ∧ ek.

As (−1)|Γ| = (−1)k, we conclude that if Γ is not an isolated vertex, then the two graphs in the
summand δviΓ of δ0Γ which have a univalent black vertex cancel out the corresponding graphs from
the remaining two summands which have the new edge attached to vi.

(ii) if d ∈ 2Z+ 1, then or is given by choosing an ordering of vertices, say

or = v1 ∧ v2 ∧ . . . ∧ vi ∧ . . . ∧ vl, l = #V (Γ).

Then each graph in the summand δviΓ of δ0Γ has, by definition, the orientation given by

v1 ∧ . . . ∧ vi−1 ∧ v′i ∧ vi+1 ∧ . . . ∧ vl ∧ v′′i ,

where v′i and v′′i are the vertices of the newly created edge e′ such that v′i (resp., v
′′
i ) is the initial

(resp. last) vertex along the direction flow on e′. Each graph in the last two summands in (23) which
has the new edge attached to vi (in one of the two possible ways) has the induced orientation given
by

v′i ∧ v1 ∧ . . . ∧ vi−1 ∧ v′′i ∧ vi+1 ∧ . . . ∧ vl

As (−1)|Γ| = (−1)l+1, we conclude that if Γ is not an isolated vertex, then the two graphs in each
summand δviΓ which have v′ or v′′ univalent cancel out the corresponding graphs from the remaining
two summands, the ones have the new edge attached to vi.

We make dwGCd into a complex by defining a differential d in a close analogy to the above formula,

(24) dΓw = d0Γ
w − (−1)|Γ|

∑

c∈N>1

∑

v∈V (Γ)
wv>|v|out−1

c '!&"%#$

Γw

OO
− (−1)|Γ|+d

∑

c∈N>1

∑

v∈V (Γ)
wv>|v|in−1

c '!&"%#$
Γw

OO

where

- the first summand d0Γ
w is equal to

∑
v∈V (Γ) δvΓ

w with δvΓ
w obtained from Γw by replacing the

vertex v with weight, say, a ∈ N>1 by the sum of graphs

(25) a '!&"%#$ −→
∑

a=a′+a′′

a′(/).*-+,

a′′07162534
OO

13



and taking one more sum over all possible way to reattach the dangling edges to the newly created
vertices a′(/).*-+, and a′′07162534 in such a way that the condition (21) is respected; for example, if v has
weight 1, then δvΓ

w = 0;

- the second summand consists of graphs obtained by attaching the ingoing leg of the graph
c '!&"%#$OO

to each vertex v of Γw whose weight satisfies the strict inequality wv > #|v|out − 1 (so that the
condition (21) is not violated);

- the third summand is an obvious “outgoing” analogue of the second one.

The rule of signs in (24) is identical to the rule of signs in (23) as weights on vertices do not influence the
cohomological degrees and orientations of weighted graphs! This simplification of the rule of signs is one of
the motivation of introducing the complex dwGCd.

This complex splits as a direct sum (cf. (12))

(26) dwGC⋆
d = dwGC=

d ⊕ dwGCd

where the summand dwGC=
d is spanned by graphs Γ such that for each v ∈ V (Γ) one has wv = |v|in − 1 =

|v|out − 1 (implying |v|in = |v|out > 2); the differential in this summand is given by the first term d0 only in
the above general formula (24) for d. It is not hard to check that dwGC=

d is identical to the quotient complex
dcGC=

d of dcGCd introduced in §2.5. This observation tells us that the similarity between formulae (23) and
(24) can be sometimes deceiving — the complex dcGC=

d is not a direct summand of dcGCd.

The summand dwGCd is spanned by graphs with at least one vertex v having weight wv 6= |v|in − 1 or
wv 6= |v|out − 1.

3.2.1. Lemma. There are canonical isomorphisms of complexes,

der⋆(Hoqpois �

c,d) ≡ der(Holieb ⋆�

c,d → Holieb �

c,d) ≃ dwGC⋆
c+d+1, der(Hoqpois �

c,d) ≃ dwGCc+d+1.

Proof. Consider a map
w : der⋆(Hoqpois �

c,d) −→ dwGC⋆
c+d+1

γ −→ γw

defined as follows: γw is obtained from γ ∈ der∗(Hoqpois �

c,d) by decorating each (m,m)-vertex v of γ, m > 2,
with the weight wv := m − 1 and removing all ingoing and outgoing legs. This map is an epimorphism:
given any γw, the graph γ obtained from it by attaching to each vertex v ∈ V (γw) wv + 1− |vout| outgoing
legs and wv +1−|vin| ingoing ones (and then (skew)symmetrizing them) belongs to the pre-image w−1(γw);
moreover, this γ is reconstructed from γw is reconstructed from γw in a unique way, so the map w is an
isomorphism of vector spaces.

Let us check next that the map w respects the Z-grading of both sides. On the one hand we have (cf. (22)

|γw| = (c+ d+ 1)(#V (γ)− 1)− (c+ d)#E(γ).

On the other hand, the isomorphism (8) implies that each vertex v ∈ V (γ), that is, each (wv + 1,wv + 1)-
corolla in γ contributes the degree

1 + c+ d− (c+ d)(av + 1) = 1− (c+ d)wv

Shifting the resulting total degree by (1 + c+ d− (c+ d)12L(γ)), where L(γ) is the total number of ingoing
and outgoing legs of γ, we obtain

|γ| =
∑

v∈V (γ)

(1− (c+ d)wv)−

(
1 + c+ d− (c+ d)

1

2
L(γ)

)

= #V (Γ)− (c+ d)w(γw)−

(
1 + c+ d− (c+ d)

1

2
L(γ)

)
.

The total number of half-edges in Γ is equal to 2
∑

v∈V (γ)(1 +wv) = 2#V (γ) + 2w(γw), out of this number

2#E(γ) are paired into internal edges, so that the remaining number of legs is given by

L(γ) = 2#V (γ) + 2w(γ)− 2#E(γ)
14



and we obtain finally,

|γ| = #V (γ)− (c+ d)w(γw)− (1 + c+ d− (c+ d) (#V (γ) +w(γw)−#E(γ)))

= (c+ d+ 1)(#V (γ)− 1)− (c+ d)#E(γ).

Hence |γw| = |γ| so that the map w does respect the degrees.

The compatibility of the map w with the differentials follows from the very definition (24) of the differential

in dwGCc+d+1 — the latter was essentially copied from the differential (10) in Der⋆(Hoqpois �

c,d) via the
isomorphism w. �

It is easy to check that

(27) r :=
∑

a>1

(a− 1) a '!&"%#$

is a non-trivial cohomology class in dwGCd. It is the image of the rescaling class (20) under the composition

of the projection der(Ĥoliebc,d) → der(Hoqpois �

c,d) with the above isomorphism.

There is a monomorphism of complexes

(28)

F� : dfcGC>2
d −→ dwGCd

Γ −→
∑

w:V (Γ)→N>1

Γw

where Γw is the graph obtained from Γ by assigning to each vertex v the weight av := w(v), and setting Γw

to zero if for at least one vertex the condition (21) is violated.

3.3. An auxiliary complex. Consider an auxiliary graph complex,

(29) C =
⊕

n>1

Cn.

where Cn is spanned by graphs of the form

(30) a107162534 a207162534 . . . an07162534// // // // ,

with a1, . . . , an ∈ N>1. It is useful to interpret such graphs as elements of a free properad generated by
weighted corollas of type (1, 1) and (1, 0) because the differential can defined by its action on generators as
follows

(31) d a '!&"%#$ // =
∑

a=b+c

b '!&"%#$ c '!&"%#$// // , d a '!&"%#$// // =
∑

a=b+c

b '!&"%#$ c '!&"%#$// // // ,

3.3.1. Lemma [CMW]. H•(C) = K[−1] ≃ span〈 1 '!&"%#$ // 〉.

As the cohomology of C is one-dimensional and is concentrated in degree 1, we notice for the future use that
H•(⊙k>2C) = 0.

3.4. Theorem. The morphism

(32)

F� : dfcGC>2
d −→ dwGCd

Γ −→
∑

w:V (Γ)→N>1

Γw

is a quasi-isomorphism up to one rescaling class (27).

Proof. We shall study the full graph complex dwGC⋆
d and, using certain spectral sequences, show the quasi-

isomorphism of complexes

dwGC⋆
d ≡ dwGC=

d ⊕ dwGCd ≃ dcGC= ⊕F�(dfcGC>2
d )⊕ span〈r〉.

which implies the theorem.

Let us call (weighted or un-weighted) univalent vertices of our graphs with precisely one outgoing (resp.,
ingoing) edge univalent in-vertices (resp. univalent out-vertices); such vertices have the form a '!&"%#$ // or

• // (resp. a '!&"%#$oo or •oo ).
15



Step 1: skeleton filtration. Delete from a graph Γw ∈ dwGC⋆
d recursively all univalent in-vertices. The result

is a weighted graph Γw

sk called the skeleton graph of Γw; the vertices of Γw

sk are called the skeleton vertices
of Γw. If we forget the induced weight function on Γw

sk we get a graph Γsk which belongs to a subspace
dfcGC′

d ⊂ dfcGCd of the full directed graph complex spanned by graphs with no univalent in-vertices. For a
vertex r ∈ Γsk set

sskr := max{1, |r|skin − 1, |r|skout − 1},

where |r|skin (resp., |r|skout) is the number of incoming (resp., outgoing) edges attached to the skeleton vertex
r in the skeleton graph Γsk (not in the original graph Γw).

Consider a filtration of the complex dwGCd by the number of skeleton vertices (which can not decrease under
the action of the differential), and let {EkdwGCd, dk}k>0 be the associated spectral sequence. By Maschke
Theorem, we can assume without loss of generality that vertices and edges of the skeleton graph in the next
step are distinguished so that the automorphism group of the sketelon graph is trivial.

Step 2: Computation of E1dwGCd = H•(E0dwGCd, d0). Let tGCd ⊂ dfcGCd be the subspace spanned by
directed trees of the form

(33) Tr =

r

•

• • •

•• • • •

• •

<<

②②
②②
②②
② KK

✗✗
✗✗
dd

❏❏
❏❏

❏❏
❏

WW

✴✴
✴✴
✴EE

☛☛
☛☛
☛ GG

✎✎
✎✎
✎ SS

✬✬
✬✬ __

❄❄
❄❄

❄❄

FF

✌✌
✌✌
XX
✶✶
✶✶

that is, by genus zero directed graphs whose every vertex (except the special one called the root vertex and
denoted by r) has precisely one outgoing edge; the root vertex has no outgoing edges. Note that Tr may
consist solely of the root vertex, i.e. in general #V (Tr) > 1.

The complex E0dwGCd decomposes, up to the trivial “skeleton” complex, into a product
∏

Γsk∈dfcGC′
d

⊗

r∈V (Γsk)

Cr

where

Cr :=
∏

Tr∈tGCd

∏

w:V (T )→N>1

Tw

r

where the second product is taken over all weight functions w satisfying the standard condition w(v) >

max{1, |v|in − 1} for every non-root vertex v 6= r of a tree T , and

w(r) > max{1, |r|Tin + |r|skin − 1, |r|skout − 1}

where |r|Tin (resp., |r|skin) counts the number of incoming edges to r in the tree T (resp., in the skeleton graph
Γsk).

The induced differential is given by

(34) d0T
w = δ0T

w ±
∑

v∈V (Γ)
w(v)>#Inv−1

∑

c>1 c '!&"%#$
Tw

OO

where

• the first term δ0Γ
w is equal to the sum ±

∑
v∈V (Γ) δ0,vT

w over all vertices of T (including the root

vertex r) with δ0,vΓ
w obtained from Tw by replacing the vertex v with weight, say, a ∈ N>1 by the

sum of graphs

a '!&"%#$ −→
∑

a=a′+a′′

a′(/).*-+,

a′′07162534
OO

and taking one more sum over all possible way to reattach the dangling edges to the newly created
vertices a′(/).*-+, and a′′07162534 in such a way that the condition (21) is respected and no new skeleton
vertices appear.

16



• the second summand is a linear combination of trees obtained by attaching an in-vertex c '!&"%#$ //

to each vertex v of Tw whose weight satisfies the strict inequality w(v) > |v|Tin − 1 if v 6= r and
w(r) > |v|Tin + |v|skin − 1 if v is the root vertex r.

Each complex Cr has at least one cohomology class spanned by the root vertex assigned the following sum
of weights,

(35) Or :=
∑

a>s
sk
r

a '!&"%#$

If the root vertex r has skeleton valency satisfying |r|skout 6 |r|skin and |r|skin > 2, then there is one more
cohomology class

or := s
sk
r

8?9>:=;<
spanned by the root vertex equipped with the minimal possible weight, that is with the skeleton weight.
Let us show that there are no other cohomology classes in the complexes Cr. Call a maximal connected
subgraph of a tree Tw

r a string if it consists of passing vertices and a univalent in-vertex (so the root vertex
is never a part of some string); every string looks like an element (30) of the auxiliary complex C for some
n > 1. If #V (Tw) > 2, then Tw contains at least one string. Call vertices of Tw which belong to a string
stringy vertices and the remaining vertices core ones. The set of core vertices is non-empty as it always
contains the root vertex. Consider a filtration of Cr by the number of core vertices, and then a filtration
by the total weight of the stringy vertices. The induced differential acts only on stringy vertices in exactly
the same way as on the vertices of the auxiliary complex C (see (31) above) so that, by Lemma 3.3.1, each
string (if any) has length 1 and is spanned by the single in-vertex of weight 1. If the number of core vertices
is greater than or equal to 2, then at least one core vertex contains at least two strings and hence does not
contribute to the cohomology as H•(⊙>2C) = 0. Hence it remains to consider the case when the number of
core vertices is equal to 1, i.e. the only core vertex is the root vertex. The next page of the spectral sequence
by the total weight filtration of stringy vertices gives us a complex spanned by elements of two types — by
the single root vertex (equipped with an arbitrary weight a > sskr ) and by the root vertex together with one
univalent in-vertex of weight 1 attached,

span

〈
a '!&"%#$ ,

1 '!&"%#$
b '!&"%#$OO 〉

where

b >

{
sskr if |r|skout > |r|skin or

(
|r|skin = 1, |r|skout 6 1

)

sskr + 1 if |r|skout < |r|skin or |r|skin = |r|skout > 2

The induced differential acts trivially on the second generator and it acts on the first generator as follows

a '!&"%#$ −→





− 1 '!&"%#$a '!&"%#$ oo if
(
|r|skout > |r|skin or

(
|r|skin = 1, |r|skout 6 1

))
and a = sskr

1 '!&"%#$a−1@GAFBECDoo − 1 '!&"%#$a '!&"%#$oo if |r|skout > |r|skin or |r|skin = |r|skout = 1 a > sskr

0 if |r|skout < |r|skin or |r|skin = |r|skout > 2 and a = sskr
− 1 '!&"%#$a '!&"%#$ oo if |r|skout < |r|skin or |r|skin = |r|skout > 2 and a = sskr + 1

1 '!&"%#$a−1@GAFBECDoo − 1 '!&"%#$a '!&"%#$oo if |r|skout < |r|skin or |r|skin = |r|skout > 2 and a > sskr + 1

It is now almost immediate to see that the cohomology is generated by the class Or and, in the case when
|r|skout 6 |r|skin and |r|skin > 2, by one extra the class or, i.e. that it is at most 2-dimensional.

We conclude that the next page E1dwGCd = H•(E0dwGCd, d0) is generated by weighted graphs Γw with
no univalent in-vertices and with every vertex v either assigned the sum of weights as in (35) (we call such
vertices the hairy ones and denote them by double circles �������� '!&"%#$ ) or, if |v|out 6 |v|in and |v|in > 2, the weight

sskv ; we call the latter vertices the bold ones.

Step 3: Study of the complex (E1dwGCd, d1). The induced differential d1 is given by

(36) d1Γ =
∑

v∈V (Γ)

dv1Γ±
∑

v is baldand

|r|sk
out

<|r|sk
in

��������(/).*-+,

Γ

OO
±

∑

v is hairy

��������(/).*-+,

Γ

OO

17



where the operator dv1 splits a bald vertex v into a pair bald vertices as in (25) and a hairy vertex v into a
pair of hairy vertices as follows

��������(/).*-+, −→ ��������(/).*-+,

��������(/).*-+,
OO

Two other summands stand for the sums over attaching a new hairy univalent-out vertex to bald vertices v
with |r|skout < |r|skin and to hairy vertices.

Note that passing and univalent (out-)vertices (if any) in a graph Γ from E1dwGCd must be hairy.

Deleting from a graph Γ ∈ E1dwGC
⋆
d recursively all univalent (hairy) out-vertices, we obtain a graph Γ′

called the prime graph of Γ (cf. Step 1 above). Consider next a filtration by the number of vertices in the
prime graphs, and let (Er,1dwGCd, dr,1) be the associated spectral sequence. The associated graded complex
(E0,1dwGCd, d0,1) is the tensor product of tree type complexes spanned by elements of the form (33) with
arrows reversed on every edge, and with every vertex except the root being a hairy vertex. The root vertex
r can be a hairy vertex or a bald vertex satisfying the conditions |r|prime

out < |r|prime
in and |r|prime

in > 2; here

|r|prime
in and |r|prime

out stand for the valencies of the root vertex in the prime graph Γ′ (not in the original
graph Γ). An analysis similar to the one discussed above leads us easily to the conclusion that the next page

E1,1dwGCd ≃ H•((E0,1dwGCd, d0,1)

is spanned by graphs with no univalent vertices and with no bald vertices v such that |v|in 6= |v|out. The
induced differential d1,1 splits a bald vertex into the pair of bald vertices, and a hairy vertex into a pair of
hairy vertices. This complex decomposes naturally into a direct sum,

E1,1dwGCd = E1,1dwGC
bold
d ⊕ E1,1dwGC

hairy
d ⊕ E1,1dwGC

mixed
d

where

• the summand E1,1dwGC
bold
d is spanned by graphs whose every vertex v is bald and hence satis-

fies |v|in = |v|out. This subcomplex is precisely the summand dwGC=
d ≃ Der=(Hoqpois �

c,d) in the

decomposition (26).

• The summand E1,1dwGC
hairy
d is exactly the image, F�(dfcGC>2

d ), of the injective morphism of
complexes (28).

• The summand E1,1dwGC
mixed
d is spanned by graphs with at least one vertex bald and at least one

hairy vertex.

Hence to complete the proof of the Theorem it remains to show that the subcomplex E1,1dwGC
mixed
d is

acyclic. For this let us call a maximal connected path of consisting of passing vertices (if any) a weighted
edge (recall that every passing vertex must be a hairy vertex). One can understand such a weighted edge as
an ordinary edge together with a positive number (its weight) assigned to it,

k
−→

where k counts the number of passing vertices, e.g.

2
−→ := ��������(/).*-+, ��������(/).*-+,// // //

We shall allow next weighted edges equipped with the zero weight by identifying them with ordinary edges,

0
−→ :=−→ .

Any graph Γ from E1dwGC
mixed
d can be understood as a graph Γreduced with no passing vertices but with

weighted edges. Every such a graph containing at least one weighted wedge connecting bald and hairy
vertices; the number of such edges is preserved under the differential d1,1 so that we can assume without
loss of generality that such mixed edges are distinguished, e.g. marked by positive integers starting with 1.
Consider a filtration by the number of vertices in Γreduced plus the total weight of mixed edges with labels
> 2. The induced differential acts only on the mixed edge labelled by 1 increasing its weight from k > 0 to
k + 1. Hence the complex E1dwGC

mixed
d is acyclic indeed, and the Theorem is proven. �
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The above Theorem, the isomorphism

Der(Hoqpois �

c,d) = ⊙•>1(dwGCc+d+1[−1− c− d])[1 + c+ d]

and the canonical quasi-isomorphism (14) imply immediately Theorem 1.2.1 in the Introduction.

An immediate corollary to Theorem 1.2.1 is that the canonical morphism of dg Lie algebras

Der(Holieb ⋆�

c,d ) −→ Der(Hoqpois ⋆�

c,d )

is a quasi-isomorphism.

Considering an oriented version of the weighted graph complex dwGCd and using arguments almost identical
to the ones used in the proof of Theorem 3.4 leads us to the the following result about the derivation complex
of the ordinary properad of Z-graded Poisson structures.

3.4.1. Theorem. There is a canonical morphism of dg Lie algebras,

OGC>2
c+d+1 −→ Der(Hoqpois c,d)

which is a quasi-isomorphism up to one rescaling class r. In particular, there is an isomorphism of Lie
algebras

H0(Der(Hoqpois0,1)) = K

that is, the only homotopy non-trivial automorphism of the properad Ĥoqpois0,1 is given by the rescaling of
the generators as follows

◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 n−1 n

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 n−1 n

−→ λn−1 ◦

❑❑❑❑❑
❃❃❃❃
. . . ✁✁✁✁

sssss

1 2 n−1 n

ss
ss
s

✁✁
✁✁
. . . ❃❃

❃❃
❑❑

❑❑
❑

1 2 n−1 n

, ∀λ ∈ K \ 0, ∀ n > 2.

The second claim follows from the well-known equality of cohomology groups [W2]

H•(OGC2) = H•(GC>2
1 )

and the fact that H0(GC>2
1 ) = 0.

4. Classification of universal quantizations of quadratic Poisson structures

4.1. Kontsevich formality map as a morphism of dg operads. Let V be a finite-dimensional Z-graded
vector space, and V ∗ := Hom(V,K) be its dual vector space. Let us view V ∗ as a pointed manifold and view
the symmetric tensor algebra

OV =
⊕

k>0

Ok
V , Ok

V := ⊙kV,

as the algebra of formal smooth functions on V ∗. Deformations of the standard graded commutative product
in OV are controlled by the standard dg Lie algebra, the so called Hochschild complex,

Hoch(OV ,OV ) :=
⊕

n>0

Hochn(OV ,OV ), Hochn(OV ,OV ) := Hom(⊗nOV ,OV )[1− n]

of polydifferential operators (see [K2] for the explicit formulae of the differential in Hoch(OV ,OV ) and the
Lie brackets).

The space of tangent vector fields on V ∗ can be identified with the Lie algebra of derivations of OV which
are uniquely determined by its values on the generators, that is by the values on the elements of V ,

Der(OV ) ≃ Hom(V,⊙•V )

The Lie algebra of polyvector fields on V ∗ can be identified as a vector space with

Poly(V ) := ∧•
OV

Der(OV ) ≃
⊕

k>0

Polyk(V ), Polyk(V ) :=
⊕

l

Hom(∧lV,⊙kV )[1− l]

The explicit formula for the Lie bracket in Poly(V ) can be found, for example, in [K2]. The differential in
Poly(V ) is assumed to be zero.
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Let ~ be a formal parameter (of cohomological degree zero), and let, for a vector space A, the symbol A[[~]]
stand for the vector space of formal power series in ~ with coefficients in A. Maxim Kontsevich formality
map is a quasi-isomorphism of dg Lie algebras

(37) FK : Poly(V )[[~]] −→ Hoch(OV ,OV )[[~]],

An explicit formula for such a quasi-isomorphism for K = R was constructed in [K2] (implying its existence
over any fieldK of characteristic zero). That formula gives a universal formality morphism which is applicable
to an arbitrary finite-dimensional graded vector space V , and hence can be reformulated without any reference
to any particular V . Such a reformulation was given in [AM] as a morphism of dg operads

(38) F : cAss∞ −→ O(Holieb
⋆�

0,1 )

satisfying a certain non-triviality condition. Here cAss∞ is a dg operad of curved A∞-algebras which is, by
definition, the free operad generated by the S-module

(39) E(n) := K[Sn][n− 2] = span

(
•

sss
sss
✂✂
✂✂. . . ❁❁
❁❁

❑❑❑
❑❑❑

σ(1) σ(2) σ(n)

)

σ∈Sn

, ∀ n > 0

where K[Sn] is the group algebra of the permutation group. It has a canonical basis is given by permutations
σ ∈ Sn which we identify with planar corollas with one output leg and n input legs (every such a corolla
stands, roughly speaking, for a generic lineal map ⊗nV −→ V [2−n]). The differential in cAss∞ is given on
the generators by the formula

δ •
⑧⑧
⑧⑧
⑧
✒✒
✒✒ ✱✱
✱✱
❄❄

❄❄
❄

1 ... n

=

n∑

k=0

n−k∑

l=0

(−1)k+l(n−k−l)+1
•

1 ... k (k+l+1) ... n
❥❥❥❥

❥❥❥❥
❥

③③
③③
③

❲❲❲❲❲
❲❲❲❲❲

❲❲
❑❑❑

❑❑❑

•
⑧⑧
⑧⑧
✒✒
✒ ✱✱
✱
❄❄

❄❄

k+1 ... k+l

.

The properad Holieb ⋆�

0,1 has been defined in §2. The symbol O stands for a polydifferential functor

O : Category of dg (wheeled) props −→ Category of dg operads

introduced in [MW2]. Elements of O(Holieb ⋆�

0,1 ) are generated by graphs from Holieb ⋆�

0,1 whose outgoing
legs are symmetrized and attached to the new white out-vertex, while ingoing legs are partitions into disjoint
union of some subsets, legs in each subset are symmetrized and are attached to a new in-vertex which is

labelled by an integer. For example [AM], For example, an element e =
◦

◦
1

2

2 3

6

1

4 5

✱✱✱ ✆✆✆

✕✕
✕ ✮✮
✮

✆✆
✆✆

✷✷
✷

❉❉
❉❉ ∈ Ĥolieb

⋆�

0,1 (2, 6) can

generate the following element ◦
◦

'&%$ !"#

1'&%$ !"# 2'&%$ !"# 3'&%$ !"# 4'&%$ !"#✘✘
✘✘
✘✘
✘

✰✰
✰✰
✰✰
✰

✲✲✲✲✲
✒✒✒✒✒✒✒

④④
④④
④④
④④
④④ in the operad O(Ĥolieb

⋆�

0,1 )(4).

It was shown in [AM] that for any universal formality morphism (38) there is a canonically associated
morphism of complexes

FGC>2
2 −→ Def

(
cAss∞

F
−→ O(Ĥolieb

⋆�

0,1 )
)
[1]

which is a quasi-isomorphism, where the symbol Def stands for the standard deformation complex of the
particular morphism F constructed along the recipe given in [MV] and its slight modification introduced
in §3.4 of [MW3]. This results gives us (almost immediately) the classification of all universal formality
morphisms up to homotopy equivalence — the set of such morphisms can be identified with set of Drin-
feld associators. In the next subsection we obtain a similar conclusion for the set of homotopy classes of
homogeneous formality morphisms.

4.2. Kontsevich formality map applied to Z-graded quadratic Poisson structures. Let

Hoch(0)(OV ,OV ) =
⊕

n>0

Hochn(0)(OV ,OV ), Hochn(0)(OV ,OV ) := Hom(Ok1

V ⊗ . . .⊗Okn

V ,Ok1+...+kn

V )[1 − n]

be the subspace of Hoch(OV ,OV ) spanned by homogeneous polydifferential operators, that is, the ones which
preserve the total polynomial degree of formal functions. It is a dg Lie subalgebra.
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Similarly, let

Poly(0)(V ) := ∧Der(0)(OV ) ≃
⊕

k

Hom(∧kV,⊙kV )[1− k]

be the Lie subalgebra of Poly(V ) spanned by homogeneous polyvector fields. The Maurer-Cartan elements
of the Lie algebra Poly(0)(V ) are called Z-graded quadratic Poisson structures. They have a decomposition,

(40) π =

∞∑

n=0

πn, πn ∈ Hom(∧nV,⊙nV )[2 − n]

If the vector space V is concentrated in degree zero, then only the term with n = 2 survives giving the
notion of ordinary quadratic Poisson structure. The term π0 is just a constant playing no role in deformation
quantization theory; hence it can be ignored.

Using properties P1-P5 (see §7 in [K2]) of the Kontsevich formality FK , it is easy to see that the restriction
of the map FK : Poly(V )[[~]] −→ Hoch(OV ,OV )[[~]] to the subcomplex

Poly(V )>1
(0) :=

⊕

k>1

Poly(V )k(0) ⊂ Poly(V )

takes values in

Hoch>1
(0)(OV ,OV )[[~]] =

⊕

k>1

Hochk(0)(OV ,OV )[[~]].

Put another way, the Kontsevich map gives us a quasi-isomorphism of reduced complexes,

(41) FK : Poly(V )>1
(0) −→ Hoch>1

(0)(OV ,OV )[[~]]

Note that such a reduction is not possible in the case (37), with the summand Hoch0(OV ,OV )[[~]] in the
r.h.s. playing a key role of the classification of homotopy inequivalent formality maps [Do, AM]. Let us call
any strongly homotopy quasi-isomorphism of Lie algebras as in (41) a homogeneous formality map.

Our purpose is to classify all universal homotopy inequivalent homogeneous formality maps. To give a precise
definition of what universal means we shall use again the theory of operads. Let Ass∞ be the standard
operad of (flat) strongly homotopy associative algebras. It is a free operad generators by the S module (39)
with n > 2 only. The canonical epimorphism of dg props

Ĥolieb
⋆�

0,1 −→ Ĥoqpois
�

0,1

induces an epimorphism of dg operads

O
(
Ĥolieb

⋆�

0,1

)
−→ O

(
Ĥoqpois

�

0,1

)
.

Let O>1
(
Ĥoqpois

�

0,1

)
be a subspace of O

(
Ĥoqpois

�

0,1

)
spanned by graphs with at least one incoming white

vertex. The Kontsevich formality map (41) gives us a morphism of dg operads

(42) FK : Ass∞ −→ O>1
(
Ĥoqpois

�

0,1

)

satisfying the following boundary conditions, O(2))

(43) FK

(
•

⑧⑧
⑧⑧
⑧
✒✒
✒✒ ✱✱
✱✱
❄❄

❄❄
❄

1 ... n

)
=





'&%$ !"#

1'&%$ !"# 2'&%$ !"# +
∑

p>0
1
2 ◦

'&%$ !"#

1'&%$ !"# 2'&%$ !"#③③③
③ ❉❉❉
❉ +O(2) if n = 2

1
n!

n
...

...

◦

'&%$ !"#

1'&%$ !"# 2'&%$ !"# n'&%$ !"#✉✉✉
✉✉✉
✑✑
✑

■■
■■

■ +O(2) for n > 3

where O(2) stand for the terms with the number of internal vertices > 2. Any morphism F0 of dg operads
as in (42) satisfying the above boundary condition (which guarantees its non-triviality) is called a universal
homogeneous formality map.
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4.3. Theorem (Classification of homogeneous formality maps). For any homogeneous formality mor-
phism

F0 : Ass∞−→O>1(Ĥoqpois
�

0,1)

there is a canonically associated morphism of complexes

f0 : FGC>2
2 −→ Def

(
Ass∞

F0−→ O>1(Ĥoqpois
�

0,1)
)
[1]

which is a quasi-isomorphism.

Proof. The proof of this Theorem is a straightforward adoption of the arguments used in the proof of
Proposition 5.4.1 in [MW3], and is based essentially on the contractibility of the permutahedra polytopes.
Let us first explain the structure of the induced morphism f0. Any derivation of the dg wheeled prop

Ĥoqpois
�

0,1 gives us an infinitesimal deformation of the identity automorphism of Ĥoqpois
�

0,1 which in turn

induces an infinitesimal deformation of the identity automorphism of the dg operad O>1(Ĥoqpois
�

0,1) which
in its turn induces an infinitesimal deformation of the homogeneous formality map F via the action on the
r.h.s. Therefore we have a sequence of canonical morphisms of complexes

Der(Ĥoqpois
�

0,1)
≃
−→ Def

(
Ĥoqpois

�

0,1
Id
→ Ĥoqpois

�

0,1

)
[1]

≃
−→ Def

(
O>1(Ĥolieb

�

0,1)
Id
→ O>1(Ĥolieb

�

0,1)
)
[1]

↓

Def
(
Ass∞

F0−→ O>1(Ĥoqpois
�

0,1)
)
[1]

The first arrow above is a quasi-isomorphism because both complexes are identical to each other up to a
degree shift. The second arrow is a quasi-isomorphism because the functor O is exact [MW2]. We shall
show below that the third arrow is also a quasi-isomorphism. Combining this latest claim with the quasi-
isomorphism (3) proves the Theorem.

Thus to prove the Theorem it is enough to show that the composition

(44) c : Der(Ĥoqpois
�

0,1) −→ Def
(
Ass∞

F0−→ O>1(Ĥoqpois
�

0,1)
)
[1]

is a quasi-isomorphism. Both complexes in (44) admit filtrations by the number of edges which is preserved
by the map c. Hence that map induces a morphism of the associated spectral sequences,

cr : (ErDer(Ĥoqpois
�

0,1), dr) −→
(
ErDef

(
Ass∞

F
−→ O>1(Ĥoqpois

�

0,1)
)
[1], δr

)
.

The induced differential d0 on the initial page of the spectral sequence of the l.h.s. is trivial, d0 = 0. The
induced differential δ0 on the initial page of the spectral sequence of the r.h.s. is not trivial and is determined
by the following summand in F0 (see the boundary condition (43) for F0),

'&%$ !"#

1'&%$ !"# 2'&%$ !"#

Hence the differential δ0 acts only on input white vertices of graphs by splitting each such white vertex v'&%$ !"#
into two new white vertices v′/.-,()*+ v′′76540123 and redistributing all edges (if any) attached to v in all possible ways
among the new vertices v′ and v′′. The cohomology

E1Def
(
Ass∞

F
−→ O(Ĥoqpois

�

0,1)
)
[1] = H

(
E0Def

(
Ass∞

F
−→ O(Ĥoqpois

�

0,1)
)
[1], δ0

)

is spanned by graphs all of whose white vertices are precisely univalent and skew symmetrized (see, e.g.,
Theorem 3.2.4 in [Me4] where this result is obtained from the cell complexes of permutahedra, or Appendix
A in [W1] for another purely algebraic argument) and hence is isomorphic (after erasing these no more

needed white vertices) to Der(Ĥoqpois
�

0,1) as a graded vector space. The boundary condition (43) says that

the induced differential δ1 in the complex E1Def
(
Ass∞

F
−→ O>1(Ĥoqpois

�

0,1)
)
[1] agrees precisely with the

induced differential d1 in E1Der(Ĥoqpois
�

0,1) = Der(Ĥoqpois
�

0,1) so that the morphism of the next pages of
the spectral sequences,

c1F : (E1Der(Ĥoqpois
�

0,1), d1) −→
(
E1Def(Ass∞

F
→ O>1(Ĥoqpois

�

0,1), δ1

)
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is simply an isomorphism. By the comparison theorem, the morphism cF is a quasi-isomorphism. �

4.4. Proof of Theorem 1.3.1. Let F0 be an arbitrary homogeneous formality map (in particular, the one
constructed by M.Kontsevich in [K2]). The above theorem implies

Hi+1
(
Def

(
Ass∞

F0→ O>1(Ĥoqpois
�

0,1)
))

= Hi(fGC>2
2 ), ∀ i ∈ Z.

In particular,

H1
(
Def

(
Ass∞

F
→ O(Ĥoqpois

�

0,1)
))

= H0(fGC>2
2 ) = grt

To complete the proof of Theorem 1.3.1 it remains to show that every infinitesimal deformation η ∈

H1
(
Def

(
Ass∞

F0→ O(Ĥolieb
�

0,1)
))

of any given homogeneous formality map F0 exponentiates to a gen-

uine homogeneous formality map Fη
0 , and then apply Lemma 3 from Thomas Willwacher paper [W3]. The

argument is standard and is based on the remarkable fact that the two dg Lie algebras

Der(Ĥoqpois
�

0,1) and Def(Ĥoqpois
�

c,d

Id
→ Ĥoqpois

�

c,d)

are identical – after a degree shift — as complexes

Der(Ĥoqpois
�

0,1) = Def(Ĥoqpois
�

c,d → Ĥoqpois
�

c,d)[1]

but have really different Lie algebra structures (even, of different degrees). The element η (more pre-
cisely its arbitrary lift to a cycle) has degree zero when understood as an element of the dg Lie algebra

Der(Ĥoqpois
�

0,1). The Lie brackets of the latter respect the gradation by the total number of internal edges
and legs (which is always positive) so that it makes sense to consider its exponent exp(η) as an element of

the group Aut(Ĥoqpois
�

0,1). Hence exp(η) gives us a non-trivial Maurer-Cartan element of the second dg Lie
algebra

Def(Ĥoqpois
�

c,d −→ Ĥoqpois
�

c,d)

which is mapped into a non-trivial Maurer-Cartan element of the dg Lie algebra

Def
(
Ass∞

F
→ O(Ĥoqpois

�

0,1)
)

giving us the required exponentiation of the infinitesimal deformation η of F0 to a genuine formality morphism

Fη
0 : Ass∞−→O(Ĥoqpois

�

0,1)

satisfying the boundary condition (43) and which differs at the infinitesimal level from F0 precisely by the
cycle η. The proof of part (i) is completed.

It is known [Do, AM] that universal quantizations of generic Poisson structures are also classified by the
same set of Drinfeld’s associators. Hence if any two such quantizations agree on generic quadratic Poisson
structures, then by the result in (i), they must correspond to the same associator and, therefore, must be
equivalent. The proof of the theorem is completed.
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[Me3] S.A. Merkulov, Lectures on props, Poisson geometry and deformation quantization, in “Poisson Geometry in Mathematics

and Physics”, Contemporary Mathematics, 450 (eds. G. Dito, J.H. Lu, Y. Maeda and A. Weinstein), AMS (2009), 223-257.
[Me4] S.A. Merkulov, Permutahedra, HKR isomorphism and polydifferential Gerstenhaber-Schack complex. In: “Higher Struc-

ture in Geometry and Physics: In Honor of Murray Gerstenhaber and Jim Stasheff”, Cattaneo, A.S., Giaquinto, A., Xu,
P. (Eds.), Progress in Mathematics 287, XV, Birkhaüser, Boston (2011).
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