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Abstract

We build up local, time translation covariant Boundary Quantum Field Theory nets
of von Neumann algebras AV on the Minkowski half-plane M+ starting with a local
conformal netA of von Neumann algebras on R and an element V of a unitary semigroup
E(A) associated withA. The case V = 1 reduces to the netA+ considered by Rehren and
one of the authors; if the vacuum character of A is summable AV is locally isomorphic
to A+. We discuss the structure of the semigroup E(A). By using a one-particle version
of Borchers theorem and standard subspace analysis, we provide an abstract analog of
the Beurling-Lax theorem that allows us to describe, in particular, all unitaries on the
one-particle Hilbert space whose second quantization promotion belongs to E(A(0)) with
A(0) the U(1)-current net. Each such unitary is attached to a scattering function or,
more generally, to a symmetric inner function. We then obtain families of models via
any Buchholz-Mach-Todorov extension of A(0). A further family of models comes from
the Ising model.
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1 Introduction

As is known Conformal Quantum Field Theory is playing a crucial role in several research
areas, both in Physics and in Mathematics. Boundary Quantum Field Theory, related to
Conformal Field Theory, is also receiving increasing attention.

In recent years, the Operator Algebraic approach to Conformal Field Theory has pro-
vided a simple, model independent description of Boundary Conformal Field Theory on the
Minkowski half-plane M+ = {〈t, x〉 : x > 0} [12, 13].

The purpose of this paper is to give a general Operator Algebraic method to build up
new Boundary Quantum Field Theory models on M+. We shall obtain local, Boundary
QFT nets of von Neumann algebras on M+ that are not conformally covariant but only
time translation covariant.

Motivation for such a construction comes from the papers [15, 16, 10] where one needs a
description of the space of all possible Boundary QFT’s in two dimensions compatible with
a given theory in bulk. There however a general framework for Boundary QFT was missing
and sample computations were given for certain second quantization unitaries V as in the
following.

Let us then explain our basic set up. Let A be a local Möbius covariant net of von
Neumann algebras on the real line; so we have have a von Neumann algebra A(I) on a
fixed Hilbert space H associated with every interval I of R satisfying natural properties:
isotony, locality, Möbius covariance with positive energy and vacuum vector (see Appendix
B). We identify the real line with the time-axis of the 2-dimensional Minkowski spacetime
M . Suppose that V is a unitary on H commuting with the time translation unitary group,
such that VA(I+)V

∗ commutes with A(I−) whenever I−, I+ are intervals of R and I+ is
contained in the future of I−. Then we can define a local, time translation covariant net
AV of von Neumann algebras on the half-plane M+ by setting1

AV (O) ≡ A(I−) ∨ VA(I+)V
∗ .

Here O = I− × I+ is the double cone (rectangle) of M+ given by O ≡ {〈t, x〉 : x± t ∈ I±}.
The unitaries V as above (that we renormalize for V to be vacuum preserving) form a
semigroup that we denote by E(A). The case V = 1 has been studied in [12] and gives a
Möbius covariant net A+ on M+.

So a local, Möbius covariant net A and an element V of the semigroup E(A) give rise
to a Boundary QFT net AV on the half-plane. Furthermore, if the split property holds for
the local Möbius covariant net A (in particular if the vacuum character is summable) the
net AV is locally isomorphic to the net A+ on M+.

Our first problem in this paper is to analyze the structure of E(A). We begin by con-
sidering the case A is the net A(0) generated by the U(1)-current and second quantization
unitaries, i.e. the unitary on the Fock space one obtains by promoting unitaries on the one-
particle Hilbert space. It turns out we are to consider the semigroup E(H,T ) of unitaries
V on the one-particle Hilbert space, commuting with the translation one-parameter unitary
group T , such that V H ⊂ H where H is the standard real Hilbert subspace associated with
the positive half-line (see [11]). By using a one-particle version of Borchers theorem and the
standard subspace analysis in [11] we obtain a complete characterization of these unitaries:

1If M1, M2 are von Neumannn algebras on the same Hilbert space, M1 ∨M2 denotes the von Neumann
algebra generated by M1 and M2.
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V ∈ E(H,T ) if and only if V = ϕ(Q) with ϕ the boundary value of a symmetric inner
function on the strip Sπ ≡ {z : 0 < ℑz < π} and Q is the logarithm of the one-particle
energy operator P , the generator of T .

For instance, T̄ (t) ≡ e−it(1/P ) gives a one-parameter unitary semigroup in E(H,T ), the
only one with negative generator.

The inner function structure is well known in Complex Analysis and we collect in Ap-
pendix A the basic facts needed in this paper. The above result also characterizes the closed
real real subspaces K ⊂ H such that T (t)K ⊂ K, t ≥ 0, and so is an abstract analog of
(a real version of) the Beurling-Lax theorem [2, 8] characterizing the Hilbert subspaces of
H∞(S∞) mapped into themselves by positive translations in Fourier transform, with S∞

the upper complex plane.
Now symmetric inner functions S2 on the strip Sπ with the further symmetry S2(−q) =

S2(q) are called scattering functions and appear in low dimensional Quantum Field Theory
(see [17]); in particular every scattering function will give here a local Boundary QFT net
on M+. One may wonder whether our construction is related to Lechner models on the
2-dimensional Minkowski spacetime associated with a scattering function [9], yet at the
moment there is no link between the two constructions.

Our work continues with the construction of local Boundary QFT models associated
with other local conformal nets A on R. We consider any Buchholz-Mach-Todorov local
extension A of A(0) (coset models SO(4N)1/SO(2N)2) [6]: every unitary V ∈ E(A(0)),
obtained by second quantization of a unitary V0 = ϕ(Q) ∈ E(H) as above, extends to a
unitary Ṽ ∈ E(A), provided ϕ is non-singular in zero. We so obtain other infinite families
of local, translation covariant Boundary QFT nets of von Neumann algebras on M+.

A further family of local, translation covariant Boundary QFT nets of von Neumann
algebras comes from the Ising model. Also in this case every such model is associated with
a symmetric inner function.

2 Endomorphisms of standard subspaces

We first recall some basic properties of standard subspaces, we refer to [11] for more details.
Let H be a complex Hilbert space and H ⊂ H a real linear subspace. The symplectic

complement H ′ of H is the real Hilbert subspace H ′ ≡ {ξ ∈ H : ℑ(ξ, η) = 0 ∀η ∈ H} so
H ′′ is the closure of H.

A closed real linear subspace H is called cyclic if H + iH is dense in H and separating
if H ∩ iH = {0}. H is cyclic if and only if H ′ is separating.

A standard subspace H of H is a closed, real linear subspace of H which is both cyclic
and separating. Thus a closed linear subspace H is standard iff H ′ is standard.

Let H be a standard subspace of H. Define the anti-linear operator S ≡ SH : D(S) ⊂
H → H, where D(S) ≡ H + iH,

S : ξ + iη 7→ ξ − iη , ξ, η ∈ H .

As H is standard, S is well-defined and densely defined, and clearly S2 = 1|D(S). S is a
closed operator and indeed its adjoint is given by S∗

H = SH′ . Let

S = J∆1/2
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be the polar decomposition of S. Then J is an anti-unitary involution, namely J is anti-
linear with J = J∗ = J−1, and ∆ ≡ S∗S is a positive, non-singular selfadjoint linear
operator with J∆J = ∆−1.

The content of following relations is the real Hilbert subspace (much easier) analog of
the fundamental Tomita-Takesaki theorem for von Neumann algebras:

∆itH = H , JH = H ′ ,

for all t ∈ R.
With a ∈ (0,∞] we denote by Sa the strip of the complex plane {z ∈ C : 0 < ℑz < a}

(so S∞ is the upper plane).

Lemma 2.1. Let H be a standard subspace of the Hilbert space H and V ∈ B(H) a bounded
linear operator on H. The following are equivalent:

• V H ⊂ H

• JV J∆1/2 ⊂ ∆1/2V

• The map s ∈ R → V (s) ≡ ∆−isV∆is extends to a bounded weakly continuous function
on the closed strip S1/2, analytic in S1/2, such that V (i/2) = JV J .

Proof. See [1, 11]. �

Note that, if the equivalent properties of Lemma 2.1 hold, then V (s + i/2) = JV (s)J .
Indeed

V (s+ i/2) = ∆izV∆−iz|z=s+i/2 = ∆izV (s)∆−iz|z=i/2 = JV (s)J , (1)

where we have applied Lemma 2.1 to the unitary V (s).

Let H be a standard subspace of the Hilbert space H and assume that there exists a
one parameter unitary group T (t) = eitP on H such that

• T (t)H ⊂ H for all t ≥ 0

• P > 0

We refer to a pair (H,T ) with H and T as above as a standard pair (of the Hilbert space
H). The following theorem is the one-particle analog of Borchers theorem for von Neumann
algebras [3].

Theorem 2.2. Let (H,T ) be a standard pair as above. The following commutation relations
hold for all t, s ∈ R:

∆isT (t)∆−is = T (e−2πst) (2)

JT (t)J = T (−t) (3)

Proof. See [11]. �
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Note that (2) gives a positive energy unitary representation of the translation-dilation
group on R that we denote by L (L is usually called the “ax+ b” group): T (t) is the unitary
corresponding to the translation x 7→ x + t on R and ∆is is the unitary corresponding to
the dilation x 7→ e−2πsx.

We shall say that the standard pair (H,T ) is non-degenerate if the kernel of P is {0}.
Now there exists only one irreducible unitary representation of the group L with strictly

positive energy, up to unitary equivalence (log P and log∆ satisfies the canonical commu-
tation relations). Therefore, if the standard pair (H,T ) is non-degenerate, the associated
representation of L is a multiple of the unique irreducible one and (H,T ) is irreducible iff
the associated unitary representation of L is irreducible.

Let the standard pair (H,T ) be non-degenerate and (non-zero) irreducible. We can
then identify (up to unitary equivalence) H with L2(R,dq), Q ≡ log P with the operator of
multiplication by q on L2(R,dq) and ∆−is by the translation by 2πs on this function space:

eitQ : f(q) 7→ eitqf(q), ∆−is : f(q) 7→ f(q + 2πs) . (4)

In this representation J can be identified with the complex conjugation Jf = f̄ and f ∈ H
iff f admits an analytic continuation on the strip Sπ such that f(· + a) ∈ L2 for every
a ∈ (0, π) with boundary values satisfying f(q + iπ) = f̄(q).

We now describe the endomorphisms of the standard pair (H,T ), namely the semi-group
E(H,T ) of unitaries V of H commuting with T such that V H ⊂ H (sometimes abbreviated
E(H)). We denote by P the generator of T and begin with the irreducible case.

With a > 0, we denote by H∞(Sa) the space of bounded analytic functions on the strip
Sa. If ψ ∈ H∞(Sa) then the limit limε→0+ ψ(q + iε) exists for almost all q ∈ R and defines
a function in L∞(R,dq) that determines ψ (and similarly on the line ℑz = ia if a <∞).

Theorem 2.3. Assume the standard pair (H,T ) of H to be irreducible and let V be a
bounded linear operator on H. The following are equivalent:

(i) V commutes with T and V H ⊂ H;

(ii) V = ψ(Q) where Q ≡ log P and ψ ∈ L∞(R,dq) is the boundary value of a function in
H∞(Sπ) such that ψ(q + iπ) = ψ̄(q), for almost all q ∈ R.

In this case V is unitary, i.e. V ∈ E(H), iff |ψ(q)| = 1 for almost all q ∈ R, namely ψ is
an inner function on Sπ, see Appendix A. 2

Proof. (i) ⇒ (ii): With ∆ and J the modular operator and the modular conjugation of
H we have the commutation relations (2,3). As the standard pair (H,V ) is assumed to be
irreducible, the associated positive energy unitary representation of L is irreducible.

Therefore the von Neumann algebra generated by {T (t) : t ∈ R} is maximal abelian in
B(H). As V commutes with T , setting Q ≡ logP we have

V = ψ(Q)

for some Borel complex function ψ on R. By (2,3) we then have

∆−isψ(Q)∆is = ψ(Q+ 2πs) (5)

2In the scattering context the variable q is usually denoted by θ, the rapidity.
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Jψ(Q)J = ψ̄(Q) (6)

As V H ⊂ H, by Lemma 2.1 and eq. (1) the function V (s) ≡ ∆−isψ(Q)∆is = ψ(Q + 2πs)
extends to a bounded continuous function on the strip S1/2, analytic in S1/2, and

V (s+ i/2) = JV (s)J = Jψ(Q+ 2πs)J = ψ̄(Q+ 2πs) = V (s)∗ .

We now identify H with L2(R,dq) with Q ≡ log P and ∆ as in (4). Then V is identified
with the multiplication operator Mψ : f ∈ L2(R,dq) 7→ ψf ∈ L2(R,dq).

It then follows by Lemma A.4 that ψ is the boundary value of a function ψ ∈ H∞(Sπ)
and ψ(q + iπ) = ψ̄(q) for almost all q ∈ R.

(ii) ⇒ (i): Conversely, let V = ψ(Q) where ψ is the boundary value of a function in
H∞(Sπ) with ψ(q + iπ) = ψ̄(q) for almost all q ∈ R. Then clearly V commutes with T ,
equations (5,6) hold, the function V (s) = ∆−isψ(Q)∆is is the boundary value of a bounded
continuous function on S1/2, analytic on S1/2, and V (i/2) = ψ(Q+ iπ) = ψ̄(Q) = Jψ(Q)J =
JV J , so V H ⊂ H by Lemma 2.1.

Clearly V is unitary iff |ψ(q)| = 1 for almost all q ∈ R. �

If (H,T ) is reducible (and non-degenerate so Q = log P is defined) the proof of (ii) ⇒ (i)
in Th. 2.3 remains valid, so the implication still holds true.

Note that E(A, T ) is commutative if (H,T ) is irreducible: it isomorphic to the semigroup
of inner functions. It will be useful to formulate Th. 2.3 in terms of functions of P and we
do this in the unitary case.

Corollary 2.4. Let (H,T ) be an irreducible standard pair and V a unitary on H. Then
V ∈ E(H,T ) iff V = ϕ(P ) with ϕ the boundary value of a symmetric inner function on S∞

such that ϕ(−p) = ϕ̄(p), p ≥ 0.

Proof. Easy consequence of the conformal identification of S∞ and Sπ by the logarithm
function. �

We now describe the Lie algebra of E(H,T ), i.e. the generators of the one-parmeter semi-
groups of unitaries in E(H,T ).

Corollary 2.5. Let (H,T ) be a standard pair of the Hilbert space H and P the generator
of T . Let V (s) = eisA be a one-parameter unitary group of H. Then V (s) ∈ E(H,T ) for
all s ≥ 0 if A = f(P ) where f : R → R is an odd function f(−p) = −f(p) that admits an
analytic continuation in the upper plane S∞ with ℑf(z) ≥ 0.

Conversely, if (H,T ) is irreducible, every unitary one-parameter group V (s) on H such
that V (s) ∈ E(H,T ) for all s ≥ 0 has the form V (s) = eisf(P ) with f as above.

The proof of Corollary 2.5 follows from the analysis in Section A of the semigroup of inner
functions; we shall write the explicit form of f and of the inner functions ψ in Theorem 2.3.

Example. If (H,T ) is a non-degenerate standard pair, the self-adjoint operator − 1
P belongs

to the Lie algebra of E(H,T ), namely e−it(1/P )H ⊂ H, t ≥ 0, with P the generator of T .

We may now describe the reducible case. Let (H̃, T̃ ) be a non-zero, non-degenerate standard
pair on the Hilbert space H̃. Since, up to unitary equivalence, there exists only one non-zero,
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non-degenerate irreducible standard pair (H,T ), the pair (H̃, T̃ ) is the direct sum of copies
(H,T ). In other words we may write H̃ =

⊕n
k=1Hk, H̃ =

⊕n
k=1Hk, T̃ =

⊕n
k=1 Tk, for

some finite or infinite n, where every Hilbert space Hn is identified with the same Hilbert
space H and each pair (Hk, Tk) is identified with (H,T ). With this identification we have:

Theorem 2.6. A unitary Ṽ belongs to E(H̃, T̃ ) if and only if Ṽ is a n×n matrix (Vhk) with
entries in B(H) such that Vhk = ϕhk(P ). Here ϕhk : R → C are a complex Borel functions
such that (ϕhk(p)) is a unitary matrix for almost every p > 0, each ϕhk is the boundary
value of a function in H(S∞) and is symmetric, i.e. ϕ̄hk(p) = ϕhk(−p).

Proof. Assume that V belongs to E(H̃, T̃ ). We may write H̃ = H ⊗ ℓ2 and T̃ = T ⊗ 1;
here ℓ2 is the Hilbert space of n-uples (finite n) or of countable square summable sequences
(n = ∞). As Ṽ commutes with T̃ , Ṽ belongs to the von Neumann algebra {T}′ ⊗ B(ℓ2)
which coincides with {T}′′ ⊗ B(ℓ2) because T generates a maximal abelian von Neumann
algebra. Therefore Ṽ = (Vhk) where Vhk = ϕhk(P ) for some complex functions ϕhk : R → C

and (ϕhk(p)) is a unitary matrix for (almost) every p because Ṽ is unitary.
Now ∆̃ = ∆ ⊗ 1 and J̃ = J ⊗ 1 are constant diagonal matrices, therefore by equations

(2,3) we have
∆isϕhk(P )∆

−is = ϕhk(e
−2πsP ) (7)

Jϕhk(P )J = ϕ̄hk(P ) (8)

By Lemma 2.1 we have ∆̃1/2Ṽ ⊃ J̃ Ṽ J̃∆̃1/2 so

(

ϕhk(−P )
)

=
(

∆−isϕhk(P )∆
is|i=1/2

)

= J̃ Ṽ J̃ =
(

Jϕhk(P )J
)

=
(

ϕ̄hk(P )
)

Therefore
ϕ̄hk(p) = ϕhk(−p) .

Clearly the matrix operator norm ||ϕ(z)|| is bounded, indeed ||ϕ(z)|| ≤ 1.
We may now reverse the above proof to get the converse statement. We only have to

check that if each ϕhk(z) is bounded then ||ϕ(z)|| ≤ 1. If n is finite this is true because
each ϕhk(z) is bounded iff ||ϕ(z)|| is bounded and in this case ||ϕ(z)|| ≤ 1 by the maximum
modulus principle. If n = ∞ we then note that the operator norm of each finite corner
matrix must be bounded by 1 so ||ϕ(z)|| ≤ 1 also in this case. �

We note the following proposition: when combined with Cor. 2.4 or Thm. 2.6, it gives an
abstract, (real) analog of the Beurling-Lax theorem [2, 8], see also [14].

Proposition 2.7. Let (H,T ) be a non-degenerate standard pair of the Hilbert space H. A
standard subspace K ⊂ H satisfies T (t)K ⊂ K for t ≥ 0 if and only if K = V H for some
V ∈ E(H,T ). In particular, if (H,T ) is irreducible, K = ϕ(P )H with P the generator of T
and ϕ a symmetric inner function on S∞.

Proof. Let UH and UK be the representations of L associated with (H,T ) and (K,T ). By
assumptions UH and UK agree on the translation one-parameter group, in particular (K,T )
is non-degenerate too. Moreover UH and UK have the same multiplicity because this is also
the multiplicity of the abelian von Neumann algebra generated by T . Therefore UH and
UK are unitarily equivalent and indeed also the associated anti-unitary representations of
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the group generated by L and the reflection x 7→ −x are unitarily equivalent, namely there
exists a unitary V ∈ B(H) such that

UK(g) = V UH(g)V
∗ , g ∈ L , V JKV

∗ = JH ,

and in particular V commutes with T (t). Then

V SHV
∗ = V JH∆

1/2
H V ∗ = JK∆

1/2
K = SK ,

hence V H = K and we conclude that V ∈ E(H,T ).
The converse statement that if V ∈ E(H,T ) then K ≡ V H satisfies T (t)K ⊂ K for

t ≥ 0 is obvious.
In the irreducible case K = ϕ(P )H by Cor. 2.4. �

Note that the unitary V in Prop. 2.7 is not unique (but in the irreducible case V is unique
up to a sign). On the other hand the unitary

Γ ≡ JKJH

is a canonical unitary associated with the inclusion K ⊂ H and commutes with T because
JHT (t)JH = T (−t) and JKT (t)JK = T (−t), so Γ ∈ E(H,T ). Clearly

Γ = V JHV
∗JH .

In the irreducible case V = ϕ(P ) for some symmetric inner function ϕ so JHV JH = V ∗ and
Γ = V 2.

We now consider the von Neumann algebraic case.

Corollary 2.8. Let M be a von Neumann algebra on a Hilbert space H with a cyclic and
separating vector Ω and T (t) = eitP a one-parameter unitary group on H, with positive
generator P , such that T (t)MT (−t) ⊂M for all t ≥ 0. Suppose that the kernel of P is CΩ.

If V is a unitary on H commuting with T such that VMV ∗ ⊂M then V |H0
= (ϕhk(P0))

where (ϕhk(p)) is a matrix of functions as in Theorem 2.6. Here H0 is the orthogonal
complement of Ω in H and P0 = P |H0

.

Proof. With Msa the self-adjoint part of M , the closed linear subspace H ≡ MsaΩ is a
standard subspace of H and V H ⊂ H. Thus (H0, T ) is a non-degenerate standard pair of
H0, where H0 = H ⊖ RΩ and T0(t) ≡ T (t)|H0

.
By Theorem 2.6 we then have V |H0

= (ϕhk(P0)) with (ϕhk) a matrix of functions as in
that Theorem. �

3 Constructing Boundary QFT on the half-plane

In this section we introduce the unitary semigroup E(A) associated with a local Möbius
covariant net A. By generalizing the construction in [12], each element in E(A) produces a
Boundary QFT net of local algebras on the half-plane

M+ ≡ {〈t, x〉 ∈ R2 : x > 0} .
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3.1 The semigroup E(A)

Let A be a local Möbius covariant net of von Neumann algebras on R (see Appendix B); so
we have an isotonous map that associates a von Neumann algebra A(I) on a fixed Hilbert
space H to every interval or half-line I of R. A is local namely A(I1) and A(I2) commute
if I1 and I2 are disjoint intervals.

Denote by T the one-parameter unitary translation group on H. Then T (t)A(I)T (−t) =
A(I + t), T has positive generator P and T (t)Ω = Ω where Ω is the vacuum vactor, the
unique (up to a phase) T -invariant vector. By the Reeh-Schlieder theorem Ω is cyclic and
separating for A(I) for every fixed interval or half-line I.

Lemma 3.1. Let V be a unitary on H commuting with T . The following are equivalent:

(i) VA(I2)V
∗ commutes with A(I1) for all intervals I1, I2 of R such that I2 > I1 (I2 is

contained in the future of I1).

(ii) VA(a,∞)V ∗ ⊂ A(a,∞) for every a ∈ R.

(iii) VA(0,∞)V ∗ ⊂ A(0,∞).

Proof. Clearly (ii) ⇔ (iii) by translation covariance as V commutes with T . Moreover
(ii) ⇒ (i) because VA(I2)V

∗ ⊂ VA(Ĩ2)V
∗ ⊂ A(Ĩ2) where Ĩ2 is the smallest right half-line

containing I2. Finally, assuming (i), by additivity we have that VA(0,∞)V ∗ commutes
with A(−∞, 0), so (iii) follows by duality: VA(0,∞)V ∗ ⊂ A(−∞, 0)′ = A(0,∞). �

Note that a unitary V in the above Lemma 3.1 fixes Ω up to a phase as it commutes with
T . We will assume that indeed V Ω = Ω.

Let A be a local Möbius covariant net of von Neumann algebras on R on the Hilbert space
H. The unitaries V on H satisfying the equivalent conditions in Lemma 3.1, normalized
with V Ω = Ω, form a semigroup that we denote by E(A) (or E(A, T )).

Note that E(A, T ) ⊂ E(H,T ) where H ≡ A(0,∞)saΩ. As a consequence of Corollary 2.8
every unitary V in E(A) must have the form V |H0

= (ϕhk(P0)) there described on the
orthogonal complement H0 of Ω.

Examples of unitaries V in E(A) are easily obtained by taking either V to implement
an internal symmetry (first kind gauge group element), namely VA(I)V ∗ = A(I) for all
intervals I, or by taking V = T (t) a translation unitary with t ≥ 0. We give now an
example of V in E(A) not of this form.

Example. (See Sect. 8.2 of [5].) Let O be a double cone in the Minkowski spacetime Rd+1

with d odd. We denote here by A(O) the local von Neumann algebra associated with O by
the d+ 1-dimensional scalar, massless, free field.

With I an interval of the time-axis {x ≡ 〈t, x1, . . . xd〉 : x1 = · · · = xd = 0} we set

A0(I) ≡ A(OI)

where OI is the double cone I ′′ ⊂ Rd+1, the causal envelope of I. Then A0 is a local
translation covariant net on R. (Indeed A0 extends to a local Möbius covariant net on
S1.) With U the translation unitary group of A, the translation unitary group of A0 is
T (t) = U(t, 0, . . . , 0).

9



Let V ≡ U(x) be the unitary corresponding to a positive time-like or light-like trans-
lation vector x = 〈t, x1, . . . xd〉 for A, thus t2 ≥

∑d
k=1 x

2
k. Then V ∈ E(A0, T ). Indeed

VA0(0,∞)V ∗ = VA(V+)V
∗ = A(V+ + x) ⊂ A(V+) = A0(0,∞), where V+ denotes the

forward light cone.
The net A0 is described as follows:

A0 =

∞
⊗

k=0

Nd(k + 1)A(k)

where A(k) is the local Möbius covariant net on S1 associated with the kth-derivative of
the U(1)-current and the multiplicity factor Nd

(

k + d−1
2

)

is the dimension of the space of
harmonic spherical functions of degree k on Rd.

Before further considerations we characterize the unitaries in E(A) implementing internal
symmetries.

Proposition 3.2. Let A be a local Möbius covariant net of von Neumann algebras on R

and U the associated unitary representation of the Möbius group. Then V ∈ E(A) commutes
with U if and only if V implements an internal symmetry of A.

Proof. We know that if V implements an internal symmetry then V commutes with U as
a consequence of the Bisognano-Wichmann property, see [11]. Conversely if V commutes
with U then VA(I)V ∗ ⊂ A(I) for every interval I os S1 because the Möbius group acts
transitively on open intervals of S1; in particular also VA(I ′)V ∗ ⊂ A(I ′), thus VA(I)V ∗ ⊃
A(I) by Haag duality, namely V implements an internal symmetry. �

3.2 Translation covariant Boundary QFT

Consider now the 2-dimensional Minkowski spacetimeM . Let I1, I2 be intervals of time-axis
such that I2 > I1 and let O = I1 × I2 be the double cone (rectangle) of M+ associated with
I1, I2, namely a point 〈t, x〉 belongs to O iff x− t ∈ I1 and x+ t ∈ I2.

We shall say that a double cone O = I1 × I2 of M+ is proper if it has positive distance
from the time axis x = 0, namely if the closures of I1 and I2 have empty intersection. We
shall denote by K+ the set of proper double cones of M+.

A local, (time) translation covariant Boundary QFT net of von Neumann algebras on M+

on a Hilbert space H is a triple (B+, U,Ω) where

• B+ is a isotonous map
O ∈ K+ → B+(O) ⊂ B(H)

where B+(O) is a von Neumann algebra on H;

• U is a one-parameter group on H with positive generator P such that

U(t)B+(O)U(−t) = B+(O + 〈t, 0〉), O ∈ K+, t ∈ R;

• Ω ∈ H is a unit vector such that CΩ are the U -invariant vectors and Ω is cyclic and
separating for B+(O) for each fixed O ∈ K+.

• B+(O1) and B+(O2) commute if O1,O2 ∈ K+ are spacelike separated.
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3.3 A construction by an element of the semigroup E(A)

Let now A be a local, Möbius covariant net of Neumann algebras on the time-axis R of M+.
With V a unitary in E(A) we set

AV (O) ≡ A(I1) ∨ VA(I2)V
∗

where I1, I2 are intervals of time-axis such that I2 > I1 and O = I1 × I2.

Proposition 3.3. AV is a local, translation covariant Boundary QFT net of von Neumann
algebras on M+.

Proof. Isotony of AV is obvious. Locality means that AV (O1) commutes elementwise with
AV (O2) if the double cone O2 = I3 × I4 is contained in the spacelike complement of the
double cone O1 = I1 × I2. Say O2 is contained in the right spacelike complement of O1.
Then I4 > I2 > I1 > I3. Now VA(I4)V

∗ commutes with VA(I2)V
∗ by the locality of A and

with A(I1) because V ∈ E(A); analogously A(I3) commutes with A(I1) by locality and with
VA(I2)V because V ∈ E(A). Therefore A(I3)∨VA(I4)V

∗ and A(I1)∨VA(I2)V
∗ commute.

Finally translation covariance with respect to T follows at once because V commutes with
T by assumptions. �

If V = 1 the net AV is the net A+ in [12].

Corollary 3.4. Let V1, V2 ∈ E(A). The following are equivalent:

(i) AV1 = AV2;

(ii) V2 = V1V with V implementing an internal symmetry of A;

(iii) V1A(0,∞)V ∗
1 = V2A(0,∞)V ∗

2 ,

Proof. (iii) ⇔ (ii) follows by Lemma 3.1 and (ii) ⇒ (i) is immediate. (i) ⇒ (iii): note
that the von Neumann algebra ViA(−∞, 0)V ∗

i is generate by the von Neumann algebras
AVi(O) as O = I1 × I2 ∈ K+ varies with I1, I2 ⊂ (−∞, 0); therefore AV1 = AV2 =⇒
V1A(−∞, 0)V ∗

1 = V2A(−∞, 0)V ∗
2 =⇒ V1A(0,∞)V ∗

1 = V2A(0,∞)V ∗
2 by duality. �

So we have constructed a map:

local Möb-covariant net A on R & V ∈ E(A) 7→ BQFT net AV on M+

and, given A, the map V ∈ E(A) 7→ AV is one-to-one modulo internal symmetries.

We shall say that two nets B1, B2 on M+, acting on the Hilbert spaces H1 and H2, are
locally isomorphic if for every proper double cone O ∈ K+ there is an isomorphism ΦO :
B1(O) → B2(O) such that

ΦÕ|B1(O) = ΦO

if O, Õ ∈ K+, O ⊂ Õ and

U2(t)ΦO(X)U2(−t) = ΦO+t(U1(t)XU1(−t)), X ∈ B1(O) ,

with U1 and U2 the corresponding time translation unitary groups on H1 and H2.
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Proposition 3.5. Let A be a local Möbius covariant net of Neumann algebras on R with
the split property. If V is a unitary in E(A) the net AV is locally isomorphic to A+.

Proof. Let I2 > I1 be intervals with disjoint closures and O = I1 × I2. Let Ĩ2 be the
smallest right half-line containing I2. By the split property there is a natural isomorphism

Ψ : A(I1) ∨ A(Ĩ2) → A(I1)⊗A(Ĩ2)

with Ψ(ab) = a⊗ b for a ∈ A(I1), b ∈ A(Ĩ2).
Then the commutative diagram

A+(O) ⊂ A(I1) ∨ A(Ĩ2)
Ψ

−−−−→ A(I1)⊗A(Ĩ2)

ΦO





y





y
id⊗AdV

AV (O) ⊂ A(I1) ∨ VA(Ĩ2)V
∗ −−−−→

Ψ
A(I1)⊗ VA(Ĩ2)V

∗

defines a natural isomorphism ΦO : A+(O) → AV (O) and the family {ΦO : O ∈ K+} has
the required consistency properties. �

As an immediate consequence, if Vt is a one-parameter semigroup of unitaries in E(A), the
family AVt gives a deformation of the conformal net A+ on M+ with translation covariant
nets on M+ that are locally isomorphic to A+.

Let again A(0) be the Möbius covariant net on R associated with by the U(1)-current.
In other words A(0) is generated by the U(1)-current j

A(0)(I) =

{

W (f) ≡ exp

(

−i

∫

j(x)f(x)dx

)

: suppf ⊂ I

}′′

,

and similarly A(k) by the net generated by the k-derivative of j.
Then A(k) is the net obtained by second quantization of the irreducible, positive energy

representation U (k+1) of Möbius group with lowest weight k + 1 or, equivalently, A(k) is
the net associated with the irreducible Möbius covariant net of standard subspaces of the
one-particle Hilbert space associated with U (k+1), see [7].

With V0 a unitary on the one-particle Hilbert space H0 we denote by Γ(V0) it second
quantization promotion to the Bosonic Fock space over H0. We shall refer to a unitary of
the form Γ(V0) as a second quantization unitary.

Theorem 3.6. A second quantization unitary Γ(V0) belongs to E(A(k)) if and only if V0 =
ϕ(P (k)). Here P (k) is the generator of the translation unitary group on the one-particle
Hilbert space H0 and ϕ : [0,∞) → C is the boundary value of a symmetric inner function
on S∞ as in Corollary 2.4.

Proof. With H(k)(0,∞) the standard subspace of H0 associated with (0,∞), the von
Neumann algebra A(0,∞) is generated by the Weyl unitariesW (h) as h varies in H(k)(0,∞)
(see [11]). As Γ(V0)W (h)Γ(V0)

∗ =W (V0h), we immediately see that V0 ∈ E(H(k)(0,∞)) ⇒
Γ(V0) ∈ E(A(k)).

The converse implication follows because W (h) ∈ A(0,∞) if and only if h ∈ H(k)(0,∞)
(e.g. by Haag duality). �
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Note that Γ(V0) belongs to a one-parameter semigroup of E(A(k)) if ϕ is a singular inner

function (see Cor. A.2) so to a deformation of the net A
(k)
+ ; this is not the case if ϕ is a

Blaschke product.

3.4 Families of models

We now construct elements of E(A) with A a local extension of the U(1)-current net A(0); so
we get further families of local, translation covariant Boundary QFT nets of von Neumann
algebras on M+. For convenience we regard A(0) as a net on R.

The local extensions of A(0) are classified in [6]. Such an extension A is the crossed
product of A(0) by a localized automorphism β. Recall that β acts on Weyl unitaries by

β
(

W (h)
)

= e−i
∫
ℓ(x)h(x)dxW (h)

for every localized element h of the one-particle space, say h ∈ S(R) and h has zero integral,
where S(R) denotes the Schwartz real function space, see [6, 7]. In other words β is associated
with the action on the U(1)-current

j(x) → j(x) + ℓ(x)

and A is generated by A(0) and a unitary U implementing β, see below.
Here ℓ ∈ S(R) and the sector class of β (i.e. the class of β modulo inner automorphisms)

is determined by the charge g ≡ 1
2π

∫

ℓ(x)dx. β is inner iff the charge of ℓ is zero and in this
case β = AdW (L) where L is the primitive of ℓ, namely L(x) =

∫ x
−∞ ℓ(s)ds.

For the extension A to be local the spin N = 1
2g

2, given by the Sugawara construction,
is to be an integer. We take ℓ with support in (0,∞) so that β is localized in (0,∞) and, in
particular, β gives rise to an automorphism of the von Neumann algebra A(0)(0,∞).

As said, A(0) acts on the Bose Fock space on the one particle Hilbert space H and H
carries the irreducible unitary representation U (1) of the Möbius group with lowest weight 1.
Therefore we may identify H with be the Hilbert space K1 = L2(R+, pdp) with the known
lowest weight 1 unitary representation of the Möbius group; S(R) embeds into K1 (thus in
H) by Fourier transform and the scalar product determined by (f, g) =

∫∞
0 pf̂(p)ĝ(p)dp,

f, g ∈ S(R), see [7].
Let H(0,∞) be the standard real Hilbert subspace of H associated with (0,∞). Then,

in the configuration space, a function h on R belongs to H(0,∞) if it is real, supph ⊂ [0,∞)
and its Fourier transform ĥ satisfies

∫∞
0 |p||ĥ(p)|2dp <∞.

Let ϕ be a symmetric inner function ϕ on S∞ and set V0 = ϕ(P ) with P the positive
generator of the time-translation unitary one-parameter group on the one-particle Hilbert
space. By Cor. 2.4 the unitary V0 belongs to E(H(0,∞)). So V ≡ Γ(V0) ∈ E(A(0)) and we
denote by η the endomorphism of A(0)(0,∞) implemented by V .

We shall assume that |ϕ(p)−1|2

|p| is locally integrable in zero (Hölder continuity at 0). Also,

as ϕ(0) = ±1, replacing ϕ by −ϕ if necessary we may and do assume that ϕ(0) = 1.
We formally set ℓ1 = V0ℓ; rigorously ℓ1 is defined to be the function on R whose Fourier

transform is ϕ(p)ℓ̂(p). Clearly ℓ̂(0) = ℓ̂1(0), namely
∫

ℓ1(x)dx =
∫

ℓ(x)dx; moreover ℓ1 is
real because ℓ is real and ϕ is symmetric. Note that the support of ℓ1 is contained in [0,∞)
by the Paley-Wiener theorem as ϕ ∈ H(S∞). So ℓ − ℓ1 has zero charge and belongs to
H(0,∞).
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In the following β is the localized automorphism of A(0) associated with ℓ. Denote by
L1 the primitive of ℓ1. Note that the primitive L−L1 of ℓ− ℓ1 belongs to H(0,∞), indeed

∫ ∞

0
|p||L̂(p)− L̂1(p)|

2dp =

∫ ∞

0

|1− ϕ(p)|2

|p|
|ℓ̂(p)|2dp <∞ .

Lemma 3.7. On A(0)(0,∞) we have

η · β = Adz · β · η

where the unitary z belongs to A(0)(0,∞), indeed z =W (L− L1).

Proof. For every h ∈ H(0,∞) we have

η · β(W (h)) = η
(

e−i
∫
ℓ(x)h(x)dxW (h)

)

= e−i
∫
ℓ(x)h(x)dxW (V0h)

and

Adz · β · η(W (h)) = Adz · β(W (V0h)) = e−i
∫
ℓ(x)V0h(x)dxAdz

(

W (V0h)
)

= e−i
∫
ℓ1(x)V0h(x)dxW (V0h) = e−i

∫
V0ℓ(x)V0h(x)dxW (V0h) = e−i

∫
ℓ(x)h(x)dxW (V0h) .

�

With A a local extension of A(0), the von Neumann algebra A(0,∞) is generated by
A(0)(0,∞) and a unitary U implementing β, namely β(a) = UaU∗, a ∈ A(0)(0,∞); finite
sums

∑n
k=−n akU

k, ak ∈ A(0)(0,∞), are dense in A(0,∞).

Proposition 3.8. η extends to a vacuum preserving endomorphism η̃ of A(0,∞) determined
by η̃(U) = zU with z as in Lemma 3.7.

Proof. LetN be the subalgebra ofA(0,∞) of finite sums {
∑

k akU
k} with ak ∈ A(0)(0,∞).

It is immediate to check that the map η̃0

η̃0 :
∑

k

akU
k 7→

∑

k

η(ak)(zU)k , ak ∈ A(0)(0,∞) ,

is an endomorphism of N . η̃0 preserves the vacuum conditional expectation
∑

k akU
k 7→ a0,

so the vacuum state. Moreover η̃0(N ) is cyclic on the vacuum vector Ω because η̃0(N )Ω
contains the closure of η(A(0)(0,∞))Ω = VA(0)(0,∞)Ω, namely the Hilbert space of A(0),
and is U -invariant because U ∈ η̃0(N ).

Then we have a unitary Ṽ determined by

Ṽ XΩ = η̃0(X)Ω , X ∈ N , (9)

that implements η̃0. Therefore η̃ = AdṼ is a normal extension of η̃0 to A(0)(0,∞). �

Proposition 3.9. The unitary Ṽ defined by eq. (9) belongs to E(A).
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Proof. By construction V implements the endomorphism η̃ of A(0)(0,∞) and Ṽ Ω = Ω.
We only need to show that Ṽ commutes with the translation unitary group T of A, namely
η̃ ·τt = τt · η̃, t ≥ 0, on A(0)(0,∞) with τt ≡ AdT (t). Since V ∈ E(A(0)), we have η ·τt = τt ·η
on A(0)(0,∞) so it suffices to show that ητt(U) = τtη(U).

We have
τt(U) = u∗tU (10)

where ut is a unitary τ -cocycle Adut · τt · β = β · τt, actually ut =W (L−Lt) where ℓt(x) ≡
ℓ(x− t) and Lt is the primitive of ℓt. Therefore η̃τt(U) = τtη̃(U) means η(u∗t )zU = τt(z)u

∗
tU

and we need to show that zut = η(ut)τt(z). Indeed we have

zut =W (L1 − L)W (L− Lt) =W (L1 − L1t)W (L1t − Lt)

=W (V0(L− Lt))W (L1t − Lt) = η(ut)τt(z) ,

where L1t is the primitive of ℓ1t, so the proof is complete. �

Corollary 3.10. Let ϕ be a symmetric inner function on S∞ which is Hölder continuous at
0 as above with ϕ(0) = 0, and N ∈ N be an integer. There is a local, translation covariant
Boundary QFT net of von Neumann algebras on M+ associated with ϕ and N .

Proof. Given N ∈ N, the extension AN of the U(1)-current net with charge g such that
1
2g

2 = N is local [6] and ϕ determines an element Ṽ ∈ E(AN ) as above. Hence we have a
Boundary QFT net by the above construction. �

Recall for example the structure of the net AN (cf. [6]): A1 is associated with the level 1

ŝu(2)-Kac-Moody algebra with central charge 1, A2 is the Bose subnet of the free complex
Fermi field net, A3 appears in the Z4-parafermion current algebra analyzed by Zamolod-
chikov and Fateev, and in general AN is a coset model SO(4N)1/SO(2N)2.

3.4.1 Case of the Ising model

One further family of local Boundary QFT nets comes by considering the Ising model
conformal net AIsing on R, namely the Virasoro net with central charge c = 1/2.

AIsing is the fixed point net of F under the Z2 gauge group action, where F is the
twisted-local net of von Neumann algebras on R generated by a real Fermi field.

The one-particle Hilbert space of F is H carries the irreducible unitary spin 1/2 repre-
sentation of the double cover of the Möbius group and F acts on the Fermi Fock space over
H.

With T the translation unitary group on H, the standard subspace H of H associated
with (0,∞) is the one associated with the unique irreducible, non-zero standard pair (H,T ).

With P the generator of T , then every symmetric inner function ϕ on S∞ gives a unitary
V0 = ϕ(P ) on H mapping H into itself.

The Fermi second quantization V of V0 then satisfies V F(0,∞)V ∗ ⊂ F(0,∞) and com-
mutes with translations. Moreover V commutes with the Z2 gauge group unitary (the Fermi
second quantization of −1) so it restricts to a unitary V− on the AIsing Hilbert subspace and
V−AIsing(0,∞)V ∗

− ⊂ AIsing(0,∞) namely V− ∈ E(AIsing). By applying our construction we
conclude:
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Proposition 3.11. Given any symmetric inner function ϕ on S∞, there is a local, trans-
lation covariant Boundary QFT associated with AIsing as above.

Appendix

A One-parameter semigroups of inner functions

We recall and comment on basic facts about inner functions, see [14].
Consider the disk D ≡ {z ∈ C : |z| < 1} and the Hardy space H∞(D) of bounded

analytic functions on D. Every ϕ ∈ H∞(D) has a radial limit f∗(eiθ) ≡ limr→1− ϕ(re
iθ)

almost everywhere with respect to the Lebesgue measure of ∂D and defines a function
ϕ∗ ∈ L∞(∂D,dθ), where ∂D is the boundary of D. As ||ϕ∗||∞ = sup{ϕ(z) : z ∈ D} by the
maximum modulus principle, and in particular ϕ∗ determines ϕ, we may identify H∞(D)
with a Banach subspace of L∞(∂D,dθ). We shall then denote ϕ∗ by the same symbol ϕ if
no confusion arises.

Given a sequence of elements an ∈ D such that
∑∞

n=1(1− |an|) <∞ , the function

B(z) ≡
∞
∏

n=1

Ban(z)

is called the Blaschke product. Here Ba(z) is the Blaschke factor |a|
a

z−a
1−āz if a 6= 0 and

B0(z) ≡ z. This product converges uniformly on compact subsets of the D, and thus B is a
holomorphic function on the disk. Moreover |B(z)| ≤ 1 for z ∈ D.

An inner function ϕ on D is a function ϕ ∈ H∞(D) such that |ϕ(z)| = 1 for almost all
z ∈ ∂D.3 A Blaschke product is an inner function. Indeed, up to a phase, Ba(z) is the only
inner function with a simple zero in a (thus the Möbius transformation mapping a to 0) and
B(z) the only inner function on D that has zeros exactly at {an}, with multiplicity.

If an inner function ϕ has no zeros on D, then ϕ is called a singular inner function.
ϕ is an inner function if and only if

ϕ(z) = αB(z) exp

(

−

∫ π

−π

eiθ + z

eiθ − z
dµ(eiθ)

)

, (11)

where µ is a positive, finite, Lebesgue singular measure on ∂D, B(z) is a Blaschke product
and α is a constant with |α| = 1. The decomposition is unique. Note that all the zeros of
ϕ come from the Blaschke product so ϕ is singular if and only if B is the identity.

Note that the inner functions form a (multiplicative) semigroup and the singular inner
functions form a sub-semigroup. We now consider a one-parameter semigroup {ϕt, t ≥ 0} of
inner functions. Namely ϕt is an inner function for every t ≥ 0, and ϕt+s = ϕtϕs. Clearly
ϕ0 = 1. We require that the map t ∈ [0,∞) → ϕ∗

t is weak∗ continuous in L∞(∂D,dθ).
This is equivalent to the weak operator continuity (hence to the strong operator continuity)
of the one-parameter unitary group Mϕ∗

t
on L2(∂D,dθ), where Mϕ∗

t
is the multiplication

operator by ϕ∗
t on L2(∂D,dθ).

3Every function in H∞(D) factorizes into the product of an inner function and an outer function [14]. We
don’t need this fact here.

16



Proposition A.1. Let ϕt be a one-parameter semigroup of inner functions on D. Then:
a) ϕt(z) → 1 as t→ 0 uniformly on compact subsets of D,
b) every ϕt is singular,
c) ϕt(z) = eitf(z) where f is a analytic function on D with ℑf(z) ≥ 0 such that the radial

limit function of f on ∂D exists almost everywhere and is real.

Proof. a): By the weak∗ continuity of ϕt we have

∮

∂D
ϕt(z)g(z)dz −→

∮

∂D
g(z)dz (12)

as t→ 0, for all g ∈ L1(∂D,dθ).
Let z0 ∈ D. Since ϕt ∈ H∞(D) the value ϕt(z0) is given by the Cauchy integral

ϕt(z0) =
1

2πi

∮

∂D

ϕt(z)

z − z0
dz

so, choosing g(z) ≡ 1
2πi

1
z−z0

in (12), we see that ϕt(z0) → 1 as t → 0. As the family of
analytic functions {ϕt : t > 0} is bounded, hence normal, the convergence is indeed uniform
on compact subsets of D.

b): Fix z0 ∈ D and suppose z0 is a zero of some ϕt. Let t0 ≡ inf{t > 0 : ϕt(z0) = 0}.
Since ϕt(z0) → 1 as t → 0 we have t0 > 0. Write now t = ns with s ∈ (0, t0) and n an
integer. Then ϕt(z0) = ϕns(z0) = ϕs(z0)

n 6= 0, so we conclude that ϕt never vanishes in D

for every t > 0.
c): For a fixed z ∈ D, the map t 7→ ϕt(z) is a one-parameter semigroup of complex

numbers with modulus less than one, therefore ϕt(z) = eitf(z) for a complex number f(z)
such that ℑf(z) ≥ 0.

Now, by point a), on any given compact subset of D, we have |ϕt(z) − 1| < 1 for a
sufficiently small t > 0; thus itf(z) = logϕt(z) showing that f an analytic function on D.
This also shows that f(z) has a real radial limit to almost all points of ∂D. �

We shall say that ϕ ∈ H∞(D) is symmetric if ϕ(z) = ϕ̄(z̄) for all z ∈ D, thus iff ϕ is
real on the interval (−1, 1) (ϕ is real analytic). Of course ϕ is symmetric iff the equality
ϕ(z) = ϕ̄(z̄) holds almost everywhere on the boundary ∂D. Note that a Blaschke factor Ba
is symmetric iff a is real, thus a Blaschke product is symmetric iff the non-real zeros come
in pairs, with multiplicity.

We now determine all semigroups of inner functions.

Corollary A.2. Every one-parameter semigroup of inner functions ϕt on D is given by

ϕt(z) = eitλ exp

(

−t

∫ π

−π

eiθ + z

eiθ − z
dµ(eiθ)

)

, (13)

where µ is a positive, finite measure on ∂D which is singular with respect to the Lebesgue
measure and λ ∈ R is a constant.

Conversely, given a finite, positive, Lebesgue singular measure µ and a constant λ ∈ R,
formula (13) defines a one-parameter semigroup of inner functions on D.

All functions ϕt are symmetric if and only if λ = 0 and µ(eiθ) = µ(e−iθ).
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Proof. Let ϕ be a semigroup of inner functions ϕt on D. By point c) in Prop. A.1 every
ϕt is singular for every t ≥ 0. By formula (11) we then have

ϕt(z) = α(t) exp

(

−

∫ π

−π

eiθ + z

eiθ − z
dµt(e

iθ)

)

,

where α(t) is complex numbers of modulus one and µt is a Lebesgue singular measure.
Clearly α is a semigroup, so α(t) = eitλ for a real constant λ. By comparing the above
expression with the formula ϕt = eitf given by point c) in Prop. A.1, we see that µt

t is a
constant, namely µt = tµ for a Lebesgue singular measure µ as desired.

The rest is immediate. �

Therefore if ϕ is a symmetric inner function then:

ϕ belongs to a one-parameter semigroup of symmetric inner functions ⇔ ϕ is singular.

Set h(z) ≡ i1+z1−z . We now use the conformal maps h and log to identify D with S∞ and with
Sπ as follows

D
h

−→ S∞
log
−→ Sπ .

With this identification we shall carry the above notions to S∞ and Sπ. In particular given
a function ϕ ∈ H∞(Sπ) (resp. ϕ ∈ H∞(S∞)) we shall say that ϕ is symmetric iff ϕ(q+ iπ) =
ϕ̄(q) (resp. ϕ(−q) = ϕ̄(q)) for almost all q ∈ R; and ϕ is inner if |ϕ(q)| = |ϕ(q + iπ)| = 1
for almost all q ∈ R (resp. |ϕ(q)| = 1 for almost all q > 0).

Note that by eq. (11) every inner function ϕ on S∞ can be uniquely written as

ϕ(p) = B(p) exp

(

−i

∫ +∞

−∞

1 + ps

p− s
dm(s)

)

. (14)

Here m is a measure on R∪{∞} singular with respect to the Lebesgue measure (the point at
infinity can have positive measure). A factor in the Blasckhe product B here have the form
p−α
p+α with ℑα ≥ 0 and is symmetric iff ℜα = 0. Clearly ϕ is symmetric iff the Blasckhe factors
corresponding to α and −ᾱ, with ℜα 6= 0, appear in pairs (with the same multiplicity) and
m(s) = m(−s).

Corollary A.3. Let ϕt, t ≥ 0, be a semigroup of symmetric inner functions on S∞. Then
ϕt(z) = exp(itf(z)) where f is holomorphic on S∞ with ℑf(z) ≥ 0. For almost all p ∈ R the
limit f∗(p) = limε→0+ f(p+ iε) exists almost everywhere and is real with f∗(−p) = −f∗(p).
For p ≥ 0 we have:

f∗(p) = cp+

∫ +∞

0

p

λ2 − p2
dν(λ) (15)

where c ≥ 0 is a constant and (1+ λ2)−1ν(λ) is a finite, positive measure on [0,+∞) which
is singular with respect to the Lebesgue measure.

Conversely every function f∗ on [0,∞) given by the right hand side of (15) is the bound-
ary value of a function f analytic in S∞ and ϕt ≡ eitf , t ≥ 0, is a one-parameter semigroup
of symmetric inner functions on S∞.

Proof. This is a consequence of Cor. A.2 and formula (14). �
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With ψ ∈ L∞(R,dq), denote by Mψ the operator of multiplication by ψ on L2(R,dq). Set
also ψs(q) = ψ(q + s).

Lemma A.4. Let ψ ∈ L∞(R,dq). The operator-valued map s ∈ R → V (s) ≡ Mψs
∈

B(L2(R,dq)) extends to a bounded weakly continuous function on the strip Sa, a > 0,
analytic in Sa, such that V (s + ia) = V (s)∗ if and only if ψ is the boundary value of a
function in H∞(Sa) such that ψ(s+ ia) = ψ̄(a) for almost s ∈ R.

Proof. Suppose that s ∈ R → V (s) ∈ B(L2(R,dq)) extends to a bounded weakly continuos
function on the strip Sa, analytic in Sa, and V (s+ia) = V (s)∗. Then for every g ∈ L1(R,dq)
the map

s ∈ R → (g1, V (s)g2) =

∫

ψ(q + s)g(q)dq

is the boundary value of a function Vg in H∞(Sa) such that Vg(s + ia) = V ∗
ḡ . Here g1, g2

are L2-functions with g1ḡ2 = g. For a fixed u ∈ (0, a) the map g → Vg(iu) is a linear
functional on L∞(R,dq) which is weak∗ continuos by the maximum modulus theorem. Thus
Vg(iu) =

∫

ψiu(q)g(q)dq with ψiu a L∞-function. Setting ψ(z) = ψiu(q) with z = q+ iu one
can then show that ψ is a function in H∞(Sa) and ψ(s + ia) = ψ̄(a).

The converse statement is easily verified. �

By a scattering function S2 we shall mean a symmetric inner function on Sπ which is
continuous on Sπ with the additional symmetry S2(−z̄) = S2(z) (cf. [9]).

Let ϕ be an inner function on Sπ which is continuous on Sπ. Viewed as a function on D,
ϕ has only two possible singularities at 1 and −1; if it is further singular then by eq. (13)

ϕ(z) = exp

(

c1
z + 1

z − 1
− c2

z − 1

1 + z

)

.

for some constants c2 ≥ 0, c2 ≥ 0 and ϕ is a scattering function iff c1 = c2.

Corollary A.5. Let ϕt be a one-parameter semigroup of symmetric inner functions on S∞
and let f be its generator, i.e. ϕt(z) = eitf(z). The following are equivalent:

• f is holomorphic in C with at most one singularity in 0,

• f(z) = c1z − c2
1
z for some constants c2 ≥ 0, c2 ≥ 0,

• viewed as a function on Sπ, ϕt is continuous up to the boundary for every t ≥ 0.

In particular ϕt is a scattering function for every t ≥ 0 iff f(z) = c(z − 1
z ) with c ≥ 0.

Proof. Immediate by the above discussion. �
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B Möbius covariant nets of von Neumann algebras

The reader may find in [11] the basic properties of local, Möbius covariant net of von
Neumann algebras on R. Here we recall the definition.

A net A of von Neumann algebras on S1 is a map

I → A(I)

from I, the set of open, non-empty, non-dense intervals of S1, to the set of von Neumann
algebras on a (fixed) Hilbert space H that verifies the following isotony property:

1. Isotony : If I1, I2 are intervals and I1 ⊂ I2, then

A(I1) ⊂ A(I2) .

The net A is said to be Möbius covariant if the following properties 2,3 and 4 are satisfied:

2. Möbius invariance: There is a strongly continuous unitary representation U of G on
H such that

U(g)A(I)U(g)∗ = A(gI) , g ∈ G, I ∈ I.

Here G denotes the Möbius group (isomorphic to PSL(2,R)) that naturally acts on S1.

3. Positivity of the energy : U is a positive energy representation.

4. Existence and uniqueness of the vacuum: There exists a unique (up to a phase)
unit U -invariant vector Ω (vacuum vector) and Ω is cyclic for the von Neumann algebra
∨I∈IA(I)

The net A is said to be local if the following property holds:

5. Locality : If I1 and I2 are disjoint intervals, the von Neumann algebras A(I1) and
A(I2) commute:

A(I1) ⊂ A(I2)
′

A local Möbius covariant net on R is the restriction of a local Möbius covariant net on S1

to R = S1 r {−1} (identification by the stereographic map).

We say that the split property holds for a local Möbius covariant net A on S1 if A(I1)∨
A(I2) is naturally isomorphic with A(I1) ⊗ A(I2) when I1, I2 are intervals with disjoint
closures. (If A is non-local one requires that the inclusion A(I1) ⊂ A(I ′2) has an intermediate
type I factor.) This very general property holds in particular if Tr(e−βL0) <∞ for all β > 0,
where L0 is the conformal Hamiltonian, see [5].
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